1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The Maastrichtian ‐ Paleocene sequence studied in the Cocuy area and adjacent basins documents crustal intra‐basinal deformation since Maastrichtian. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.

, Abstract

The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12496
2021-01-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Amorocho, R., Bayona, G., & Reyes, A. (2011). Controls on the composition of fluvial sands in the proximal area of a tropical foreland basin (Colombia). Geología Colombiana, 36, 163–177.
    [Google Scholar]
  2. Ayala‐Calvo, C., Bayona, G., Cardona, A., Ojeda, C., Montenegro, O., Montes, C., … Jaramillo, C. (2012). The Paleogene synorogenic succession in the northwestern Maracaibo block: Tracking intraplate uplifts and changes in sediment‐delivery systems. Journal of South American Earth Sciences, 39, 93–111. https://doi.org/10.1016/j.jsames.2012.04.005
    [Google Scholar]
  3. Babault, J., Teixell, A., Struth, L., Van den Driessche, J., Arboleya, M., & Teson, E. (2013). Shortening, structural relief and drainage evolution in inverted rifts: insights from the Atlas Mountains, the Eastern Cordillera of Colombia and the Pyrenees. In M. Nemčok, A. R. Mora, & J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Geological Society of London, Special Publication, 377, 144–158.
    [Google Scholar]
  4. Baby, P., Rivadeneira, M., Barragán, R., & Christophoul, F. (2013). Thick‐skinned tectonics in the Oriente foreland basin of Ecuador. In M. Nemčok, A. R. Mora, & J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Geological Society of London, Special Publication, 377, 69–76.
    [Google Scholar]
  5. Ballesteros‐Torres, C. I., Galvis‐Portilla, H. A., Higuera‐Díaz, I. C., De la Parra, F., Céspedes, S. P., Cantisano, M. T., …Castillo, R. D. (2013). Anotaciones acerca de la estratigrafía del intervalo Cenomaniano‐Campaniano atravesado por el pozo La Luna‐I, Cuenca Valle Medio del Magdalena. Resumen extendido, Congreso Colombiano de Geología.
  6. Bayona, G. (2018). El inicio de la emergencia de los Andes del norte: Una perspectiva a partir del registro tectono‐sedimentológico del Coniaciano al Paleoceno: Revista de la Academia Colombiana de Ciencias Exactas. Físicas Y Naturales, 42, 364–378. http://dx.doi.org/10.18257/raccefyn.632
    [Google Scholar]
  7. Bayona, G., Bustamante, C., Nova, G., & Salazar‐Franco, A. M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In J. Gómez & A. O. Pinilla‐Pachon (Eds.), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 36, 37. https://doi.org/10.32685/pub.esp.36.2019.05
    [Google Scholar]
  8. Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., … Valencia, V. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos basin; response to Caribbean – South American collision in early Palaeogene time. In M. Nemčok, A. R. Mora, &, J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Geological Society of London, Special Publication, 377, 285–314. https://doi.org/10.1144/SP377.5
    [Google Scholar]
  9. Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., … Ibañez, M. (2012). Early paleogene magmatism in the northern andes: Insights on the effects of Oceanic Plateau‐continent convergence. Earth and Planetary Science Letters, 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015
    [Google Scholar]
  10. Bayona, G., Cardona, A., Tellez, G., Garzon, A., Pinzon, D., Mendez, J., … Rueda, M. (2015). Magmatismo Paleoceno‐Eoceno Temprano(?) en la Cuenca proximal de los Llanos: XV Congreso Colombiano de Geología, 2015. “Innovar en Sinergia con el Medio Ambiente”, Bucaramanga, Colombia (Agosto 31‐ Septiembre 5, 2015), 560–563.
  11. Bayona, G., Cortes, M., Jaramillo, C., Ojeda, G., Aristizabal, J., & Reyes‐Harker, A. (2008). An integrated analysis of an orogen‐sedimentary basin pair: Latest Cretaceous‐Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geological Society of America Bulletin, 120, 1171–1197. https://doi.org/10.1130/B26187.1
    [Google Scholar]
  12. Bayona, G., Jaramillo, C., Rueda, M., Reyes‐Harker, A., & Torres, V. (2007). Paleocene‐middle Miocene flexural‐margin migration of the nonmarine Llanos foreland basin of Colombia. CT&F Ciencia, Tecnología Y Futuro, 3, 141–160.
    [Google Scholar]
  13. Bayona, G., Montes, C., Cardona, A., Jaramillo, C., Ojeda, G., & Valencia, V. (2011). Intraplate subsidence and basin filling adjacent to an oceanic arc‐continental collision; a case from the southern Caribbean‐South America plate margin. Basin Research, 23, 403–422. https://doi.org/10.1111/j.1365‐2117.2010.00495.x
    [Google Scholar]
  14. Bayona, G., Villamarin, P., Mora, A., Ojeda, G., Cortes, M., Valencia, A., … Torres, V. (2009). Exploratory Implications of Forebulge Geometry and Migration in the Llanos Basin (p. 10). Bogotá, Colombia: Asociación Colombiana de Geólogos y Geofísicos del Petróleo: Memorias del X Simposio Bolivariano de Cuencas Subandinas.
    [Google Scholar]
  15. Bilmes, A., D’Elia, L., Lopez, L., Richiano, S., Varela, A., Alvarez, M., … Ariztegui, D. (2019). Digital outcrop modelling using “structure‐from‐ motion” photogrammetry: Acquisition strategies, validation and interpretations to different sedimentary environments. Journal of South American Earth Sciences, 96, 102325.https://doi.org/10.1016/j.jsames.2019.102325
    [Google Scholar]
  16. Blum, M., Martin, J., Milliken, K., & Garvin, M. (2013). Paleovalley systems: Insights from Quaternary analogs and experiments. Earth‐Science Reviews, 116, 128–169. https://doi.org/10.1130/B31307.1
    [Google Scholar]
  17. Buchanan, & J., Buchanan, P., eds. (1995). Basin Inversion (Vol. 88). London: Geological Society Special Publication.
    [Google Scholar]
  18. Bustamante, C., Archanjo, C., Cardona, A., Valencia, V., & Vervoort, J. (2016). Late jurassic to early cretaceous plutonism in the colombian Andes: A record of long–term arc maturity. Geological Society of America Bulletin, 128, 1762–1779. https://doi.org/10.1130/B31307.1.
    [Google Scholar]
  19. Bustamante, C., Cardona, A., Archanjo, C., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post‐collisional arc magmatism. Lithos, 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025
    [Google Scholar]
  20. Caballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L. E., … Duddy, I. (2013). Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: the Nuevo Mundo syncline, middle Magdalena Valley, Colombia. In M. Nemčok, A. R. Mora, & J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication, 377, 315–342. https://doi.org/10.1144/SP377.12
    [Google Scholar]
  21. Caballero, V., Parra, M., Mora, A., López, C., Rojas, E., & Quintero, I. (2013). Factors controlling selective abandonment and reactivation in thick skin orogens: A case study in the Magdalena Valley, Colombia. In M. Nemčok, A. R. Mora, & J. W. Cosgrove (Eds), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Geological Society of London, Special Publication, 377, 343–367. https://doi.org/10.1144/SP377.4
    [Google Scholar]
  22. Cardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gerhels, G., … Ruiz, J. (2011). Early subduction orogeny in the Northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin. Northern Colombia: Terranova, 23, 26–34.
    [Google Scholar]
  23. Cardona, A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani, U., & Muñoz, C. (2014). Geochronology and geochemistry of the parashi granitoid. NE Colombia: tectonic implication of the short‐ lived early eocene plutonism along the SE caribbean margin. Journal of South American Earth Science, 50, 75–92.
    [Google Scholar]
  24. Carroll, A. R. (2017). Xenoconformities and the stratigraphic record of paleoenvironmental change. Geology, 45(7), 639–642. https://doi.org/10.1130/G38952.1
    [Google Scholar]
  25. Catuneanu, O. (2019). First‐order foreland cycles: Interplay of flexural tectonics, dynamic loading, and sedimentation. Journal of Geodynamics, 129, 290–298. https://doi.org/10.1016/j.jog.2018.03.001
    [Google Scholar]
  26. Céspedes, S., & Peña, L. (1995). Relaciones estratigráficas y ambientes de depósito de las formaciones del Terciario Inferior aflorante entre Tunja y Paz del Rio, Boyacá [Undergraduate thesis]. Bogotá: Universidad Nacional de Colombia.
  27. Colleta, B., Hébrard, F., Letouzey, J., Werner, P., & Rudkiewikz, J. L. (1990). Tectonic style and crustal structure of the Eastern Cordillera (Colombia), from a balanced cross section. In J. Letouzey (Ed.), Petroleum and tectonics in mobile belts. Editions Technip, Paris, 11990, 81–100.
    [Google Scholar]
  28. Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., … Taborda, A. (1995). Basin development and tectonic history of the Llanos basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79, 1421–1443. https://doi.org/10.1306/7834D9F4‐1721‐11D7‐8645000102C1865D
    [Google Scholar]
  29. Cooper, M., & Williams, G., eds, (1989). Inversion tectonics (vol. 44). London: Geological Society Special Publication.
    [Google Scholar]
  30. Correa, M. A. M., Rodríguez, G. G., Arango, M. M. I., Zapata, G. G., & Bermúdez, J. G. (2016). Catálogo de unidades litoestratigráfics de Colombia. Batolito de Mogotes, Bogotá, Colombia: . Cordillera Oriental. Departamento de Santander. : Medellin, Servicio Geológico Colombiano.
    [Google Scholar]
  31. De la Parra, F., Mora, A., Rueda, M., & Quintero, I. (2015). Temporal and spatial distribution of tectonic events as deduced from reworked palynomorphs in the eastern northern Andes. AAPG Bulletin, 99, 1455–1472. https://doi.org/10.1306/02241511153
    [Google Scholar]
  32. DeCelles, P. G., & Horton, B. K. (2003). Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geological Society of America Bulletin, 115, 58–77. https://doi.org/10.1130/0016‐7606(2003)115<0058:ETMTFB>2.0.CO;2
    [Google Scholar]
  33. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G. Zuffa (Ed.), Provenance of Arenites. Dordrecht‐boston, Reidel, NATO, ASI Series, 148, 333–361.
    [Google Scholar]
  34. Dickinson, W. R., & Lawton, T. (2001). Tectonic setting and sandstone petrofacies of the Bisbee basin (USA‐Mexico). Journal of South American Earth Sciences, 14, 475–504. https://doi.org/10.1016/S0895‐9811(01)00046‐3
    [Google Scholar]
  35. Duarte, E., Bayona, G., Ramírez, C., Baquero, M., & Tabares, M. (2019). Construcción de un modelo de paleocorrientes integrando datos de campo y modelos digitales; un ejemplo del Paleoceno en el extremo norte de la zona axial de la (Vol. 15, pp. 29–37). Cordillera Oriental: Geología Norandina.
    [Google Scholar]
  36. Ecopetrol . (2004). Levantamiento estratigráfico de la secuencia del Cretácico Superior – Terciario inferior (p. 24). Sierra Nevada del Cocuy: Internal report elaborated by Geoconsult to Ecopetrol.
    [Google Scholar]
  37. English, J. M., Johnston, S. T., & Wang, K. L. (2003) Thermal modelling of the Laramide orogeny: testing the flat‐slab subduction hypothesis. Earth and Planetary Science Letters. 214, 619–632.
    [Google Scholar]
  38. Etayo‐Serna, F. (1985). Paleontología estratigráfica del Sistema Cretácico en la Sierra Nevada del Cocuy. Proyecto Cretácico: Publicaciones geológicas especiales del Ingeominas # 16. Editores Fernando Etayo y Fabio Laverde M., Santafe de Bogotá, 24–25.
  39. Fabre, A. (1981). Estratigrafía de la Sierra Nevada del Cocuy, Boyacá y Arauca (Vol. 4, pp. 3–12). Cordillera Oriental (Colombia): Geología Norandina.
    [Google Scholar]
  40. Fabre, A., Osorio, M., Vargas, R., & Etayo, F. (1984). Geología de la plancha 153 – Chita, Ingeominas. Scale 1:100.000.
  41. Fabre, A., Osorio, M., Vargas, R., & Etayo, F. (1985). Geología de la plancha 137 – Cocuy, Ingeominas. 1:100.000.
  42. Fabuel‐Perez, I., Hodgetts, D., & Redfern, J. (2010). Integration of digital outcrop models (DOMs) and high resolution sedimentology – workflow and implications for geological modelling: Oukaimeden Sandstone Formation, High Atlas (Morocco). Petroleum Geoscience, 16, 133–154. https://doi.org/10.1144/1354‐079309‐820
    [Google Scholar]
  43. Faccenna, C., Oncken, O., Holt, A. F., & Becker, T. W. (2017). Initiation of the Andean orogeny by lower mantle subduction. Earth and Planetary Science Letters, 463, 189–201. https://doi.org/10.1016/j.epsl.2017.01.041
    [Google Scholar]
  44. Folk, R. L. (1974). Petrography of sedimentary rocks (Vol. 182). Austin, Texas: Hemphill.
    [Google Scholar]
  45. Franco, M. L. S., Tejada, M. L., Gómez, R., Villamizar, C., Caballero, V., Rodriguez, G., … Mora, A. (2018). Paleogene buried hills in the Llanos Basin. Exploratory implications. Memorias del Simposio Latinoamericano de Exploración y Desarrollo. I Cumbre del Petróleo y Gas: Bogotá. 7.
  46. Gehrels, G. (2012). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. In C.Busby, & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent advances, Chichester, UK: John Wiley & Sons, Ltd.
    [Google Scholar]
  47. Goméz, E., Jordan, T. E., AllmendingerR. W., Hegarty, K., Kelley, S., Heizler, M. (2005). Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Norther Andes. GSA Bulletin, 117 (5/6), 547–560. https://doi.org/10.1130/B25454.1
    [Google Scholar]
  48. Gómez, S. (2019). Evaluación de los efectos del óptimo climático del Eoceno temprano sobre los sedimentos de la Formación Arcillas del Socha a partir de una sección estratigráfica en el municipio de Guican, Boyacá [undergraduate thesis]. Medellin, Universidad EAFIT.
    [Google Scholar]
  49. Guerrero, J., & Sarmiento, G. (1996). Estratigrafía Física, Palinológica, Sedimentológica y Secuencial del Cretácico Superior y Paleoceno del Piedemonte Llanero. Implicaciones en Exploración Petrolera. Geología Colombiana, 20, 3–66.
    [Google Scholar]
  50. Guerrero, J., Sarmiento, G., & Navarrete, R. (2000). The stratigraphy of the W Side of the Cretaceous Colombian Basin in the upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana., 25, 45–110.
    [Google Scholar]
  51. Gutscher, M. A., Spakman, W., Bijwaard, H., & Engdahl, E. R. (2000). Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19, 814–833. https://doi.org/10.1029/1999TC001152
    [Google Scholar]
  52. Holdsworth, R., Butler, C., & Roberts, A. (1997). The recognition of reactivation during continental deformation. Journal of the Geological Society of London, 154, 73–78. https://doi.org/10.1144/gsjgs.154.1.0073
    [Google Scholar]
  53. Horton, B. K. (2018). Sedimentary record of Andean mountain building: Earth‐. Science Reviews, 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025
    [Google Scholar]
  54. Horton, B. K., Anderson, V. J., Caballero, V., Saylor, J. E., Nie, J., Parra, M., & Mora, A. (2015). Application of detrital zircon U‐Pb geochronology to surface and subsurface correlations of provenance, paleodrainage and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere, 11(6), 1790–1811. https://doi.org/10.1130/GES01251.1
    [Google Scholar]
  55. Horton, B. K., Hampton, B. A., & Waanders, G. L. (2001). Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the Central Andes. Geological Society of America Bulletin, 113, 1387–1400. https://doi.org/10.1130/0016‐7606(2001)113<1387:PSSITA>2.0.CO;2
    [Google Scholar]
  56. Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes‐Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U‐Pb ages, Eastern Cordillera, Colombia, Colombia. Geological Society of America Bulletin, 122, 1423–1442. https://doi.org/10.1130/B30118.1
    [Google Scholar]
  57. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐ Dickinson point‐counting method. Journal of Sedimentary Petrology, 54, 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  58. Jaramillo, C., Bayona, G., Pardo‐Trujillo, A., Rueda, M., Torres, V., Harrington, G., & Mora, G. (2007). The palynology of the cerrejon formation (Upper Paleocene) of Northern Colombia. Palynology, 31, 153–189. https://doi.org/10.2113/gspalynol.31.1.153
    [Google Scholar]
  59. Jaramillo, C., & Cardenas, A. (2013). Global Warming and Neotropical Rainforests: A historical perspective. Annual Reviews of Earth and Planetary Sciences, 41, 741–766. https://doi.org/10.1146/annurev‐earth‐042711‐105403
    [Google Scholar]
  60. Jaramillo, C., & Rueda, M. (2004). Impact of Biostratigraphy on Oil exploration, Memorias de la Tercera Convención Técnica de la Asociación Colombiana de Geólogos y Geofísicos del Petróleo. Asociación Colombiana de Geólogos y Geofísicos del Petróleo.7.
  61. Jaramillo, C., & Rueda, M. (2019). A Morphological electronic database of cretaceous‐tertiary and extant pollen and spores from Northern South America v2019. Retrieved from http://biogeodb.stri.si.edu/jaramillo/palynomorph/
  62. Jaramillo, C., Rueda, M., & Mora, G. (2006). Cenozoic plant diversity in the Neotropics. Science, 311, 1893–1896. https://doi.org/10.1126/science.1121380
    [Google Scholar]
  63. Jaramillo, C., Rueda, M., & Torres, V. (2011). A Palynological zonation for the cenozoic of the llanos and llanos foothills of Colombia. Palynology, 35, 46–84. https://doi.org/10.1080/01916122.2010.515069
    [Google Scholar]
  64. Kurcinka, C., Dalrymple, R., & Gugliotta, M. (2018). Facies and architecture of river‐dominated to tide‐influenced mouth bars in the lower Lajas Formation (Jurassic), Argentina. AAPG Bulletin, 102, 885–912. https://doi.org/10.1306/0609171618917155
    [Google Scholar]
  65. Macedo, J., & Marshak, S. (1999). Controls on the geometry of fold‐thrust belt salients. Geological Society of America Bulletin, 111, 1808–1822.
    [Google Scholar]
  66. Mange, A. M., & Maurer, W. H. (1992). Heavy minerals in colour. London: Chapman and Hall.
    [Google Scholar]
  67. Martínez, J., & Hernandez, R. (1992). Evolution and Drowning of the Late Cretaceous Venezuelan Carbonate Platform. Journal of South American Earth Sciences, 5, 197–210. https://doi.org/10.1016/0895‐9811(92)90038‐Z
    [Google Scholar]
  68. Martínez, M. (2010). Petrogénesis de las vulcanitas estratificadas en sedimentitas del Cretácico Superior, Río Guaguaquí, flanco occidental de la Cordillera Oriental [undergraduate thesis]. Bogotá: Universidad Nacional de Colombia.
    [Google Scholar]
  69. Martinod, J., Gérault, M., Husson, L., & Regard, V. (2020). Widening of the Andes: An interplay between subduction dynamics and crustal wedge tectonics. Earth‐Science Reviews, 204, 103170. https://doi.org/10.1016/j.earscirev.2020.103170
    [Google Scholar]
  70. Martinod, J., Husson, L., Roperch, P., Guillaume, B., & Espurt, N. (2010). Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters, 299, 299–309. https://doi.org/10.1016/j.epsl.2010.09.010
    [Google Scholar]
  71. Montaño, P., Nova, G., Bayona, G., Mahecha, H., Ayala, C., Jaramillo, C., & De La Parra, F. (2016). Análisis de secuencias y procedencia EN sucesiones sedimentarias de grano fino: un ejemplo de la Formación Umir y base de la Formación Lisama, en el sector de Simacota (Santander, Colombia). Boletín De Geología, 38(1), 51–72. https://doi.org/10.18273/revbol.v38n1‐2016003.
    [Google Scholar]
  72. Montenegro, O., Bayona, G., Cardona, A., Restrepo‐Moreno, S., Ojeda, C., & Ayala, C. (2012). Procedencia de las unidades Paleógenas de la cuenca del Catatumbo y su comparación con las cuencas adyacentes: relación con la convergencia de la placa Caribe. Geología Colombiana, 37(2), 123–151.
    [Google Scholar]
  73. Montes, C., Rodríguez‐Corcho, A., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc‐continent collisions: The Northern Andes‐Caribbean margin. Earth Science Reviews, 198, 102–903. https://doi.org/10.1016/j.earscirev.2019.102903
    [Google Scholar]
  74. Mora, A., Casallas, W., Ketcham, R. A., Gomez, D., Parra, M., Namson, J., … Ghorbal, B. (2015). Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99, 1575–1598. https://doi.org/10.1306/04281411108
    [Google Scholar]
  75. Mora, A., García‐Bautista, D., Reyes‐Hacker, A., Parra, M., Blanco, V., Sánchez, N., … Arias‐Martínez, J. P. (2019). Tectonic evolution of petroleum systems within the onshore Llanos Basin: Insights on the presence of Orinoco heavy oil analogs in Colombia and a comparison with other heavy oil provinces worldwide. AAPG Bulletin, 1103(5), 1179–1224. https://doi.org/10.1306/1003181611417236
    [Google Scholar]
  76. Mora, A., Parra, M., Forero, G., Blanco, V., Moreno, N., Caballero, V., … Ghorbal, B. (2015). What drives orogenic asymmetry in the Northern Andes?: A case study from the apex of the Northern Andean Orocline. In C. Bartoline, & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin. AAPG Memoir, 108, 547–586.
    [Google Scholar]
  77. Mora, A., Reyes‐Harker, A., Rodriguez, G., Tesón, E., Ramirez‐Arias, J. C., Parra, M., … Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. In M. Nemčok, A. Mora, J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Journal of the Geological Society of London, Special Publication, 377, 411–442. https://doi.org/10.1144/SP377.6
    [Google Scholar]
  78. Moreno, C. J., Horton, B. K., Caballero, V., Mora, A., Parra, M., & Sierra, J. (2011). Depositional and provenance record of the Paleogene transitional from foreland to hinterland basin evolution during Andean orogenesis, northern middle Magdalena Valley Basin, Colombia. Journal of South American Earth Sciences, 32, 1–18.
    [Google Scholar]
  79. Morón, S., Fox, D., Feinberg, J., Jaramillo, C., Bayona, G., & Montes, C. (2013). Climate change during the early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism: Palaeogeography. Palaeoclimatology, Palaeoecology, 388, 115–127. https://doi.org/10.1016/j.palaeo.2013.08.010
    [Google Scholar]
  80. Morton, A. C. (1985). Heavy minerals in provenance studies. In G. G.Zuffa (Ed.), Provenance of Arenites (pp. 249–277). Netherlands: Springer.
    [Google Scholar]
  81. Naranjo, J., Gómez, P., Gélvez, J., Duque, N., & Moreno, N. (2013). Methodology proposal for correlation studies of fluvial sediments based on petrographic and lithogeochemical analysis: Example of its application on Cenozoic rock from the Lisama Formation (Middle Magdalena Valley, Colombia). CT&F, Ciencia, Tecnología Y Futuro, 5, 19–46. https://doi.org/10.29047/01225383.46
    [Google Scholar]
  82. Navarrete‐Parra, R. E., Sánchez, C., Daza, D. Z., Galeano, E., Prince, M., Calderón, J.(2015). Maastrichtiense a Mioceno temprano, correlación entre 19 escenarios en el sector norte del valle medio del Magdalena mediante palinoestratigrafía y foraminíferos, XV Congreso Colombiano de Geología, 2015. “Innovar en Sinergia con el Medio Ambiente”: Bucaramanga, Colombia (Agosto 31‐ Septiembre 5, 2015). 1033–1039.
  83. Nemčok, M., Mora, A., & Cosgrove, J. W. (2013). Thick‐skin‐dominated orogens; from initial inversion to full accretion: an introduction. In M. Nemčok, A. Mora & J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Journal of the Geological Society of London, Special Publication377, 1–17. https://doi.org/10.1144/SP377.17
    [Google Scholar]
  84. (2013). Silva, A., Mora, A., Caballero, V., Rodriguez, G., Ruiz, C., & Moreno, N., … Quintero, I.Basin compartmentalization and drainage evolution during rift inversion: evidence from the Eastern Cordillera of Colombia. In M. Nemčok, A. R. Mora, & J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: From initial inversion to full accretion. Geological Society of London, Special Publication, 377, 369–409. https://doi.org/10.1144/SP377.15
    [Google Scholar]
  85. Nie, J., Horton, B. K., Mora, A., Saylor, J. E., Housh, T. B., Rubiano, J., & Naranjo, J. (2010). Tracking exhumation of Andean ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 38(5), 451–454. https://doi.org/10.1130/G30775.1
    [Google Scholar]
  86. Nie, J., Horton, B. K., Saylor, J. E., Mora, A., Mange, M., Garzione, C. N., … Parra, M. (2012). Integrated provenance analysis of a convergent retroarc foreland system: U–Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth‐Science Reviews, 110(1‐4), 111–126. https://doi.org/10.1016/j.earscirev.2011.11.002
    [Google Scholar]
  87. Ochoa, D., Hoorn, C., Jaramillo, C., Bayona, G., de la Parra, F., & Parra, M. (2012). The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. Journal of South American Earth Sciences, 39, 157–169. https://doi.org/10.1016/j.jsames.2012.04.010
    [Google Scholar]
  88. Odoh, S., Saylor, J., Higuera, C., Copeland, P., & Lapen, T. (2019). Discriminating mechanisms for coarse clastic progradation in the Colombian foreland basin using detrital zircon double dating. In B.Horton & A.Folguera (Eds.), Andean Tectonics, 1st edn, pp. 743). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978‐0‐12‐816009‐1.00008‐3
    [Google Scholar]
  89. Pardo, A. (2004). Paleocene‐Eocene Palynology and Palynofacies from northeastern Colombia and Western Venezuela [Ph.D thesis]. Universite de Liege. 103.
  90. Pardo, A., & Jaramillo, C. (2013). Palynology and Paleoenvironments of Eastern Cordillera Paleogene deposits of Colombia: 35 million years of Neotropical vegetation history. In J.O.Rangel (Ed.), La región de la Orinoquia de Colombia (pp. 1–33). Bogotá, Colombia: Colombia Diversidad Biótica XIV, Universidad Nacional.
    [Google Scholar]
  91. Pardo, A., Jaramillo, C., & Oboh‐Ikuenobe, F. (2003). Paleogene palynostratigraphy of the eastern middle magdalena valley. Palynology, 27, 155–178.
    [Google Scholar]
  92. Pardo‐Trujillo, A., Cardona, A., Giraldo, A., León, S., Vallejo, D. F., Trejos‐Tamayo, R., … Giraldo‐Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627–https://doi.org/10.1016/j.sedgeo.2020.105627
    [Google Scholar]
  93. Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. (2010). Tectonic controls on Cenozoic foreland basin development in the north‐eastern Andes, Colombia. Basin Research, 874–903. https://doi.org/10.1111/j.1365‐2117.2009.00459.x
    [Google Scholar]
  94. Parra, M., Mora, A., Lopez, C., Rojas, L. E., & Horton, B. K. (2012). Detecting earliest shortening and deformation advance in thrust‐belt hinterlands: Example from the Colombian Andes. Geology, 40, 175–178. https://doi.org/10.1130/G32519.1
    [Google Scholar]
  95. Parra, M., Mora, A., Sobel, E. R., Strecker, M. R., & González, R. (2009). Episodic orogenic front migration in the northern Andes: Constraints from low‐temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4), TC4004. https://doi.org/10.1029/2008TC002423
    [Google Scholar]
  96. Patarroyo, G. D., Torres, G. A., Rincón, D. A., Cárdenas, C. P., & Márquez, R. E. (2017). Bioestratigrafía e inferencias paleoambientales de las asociaciones de foraminíferos en las formaciones cretácicas la luna‐colón (cuenca del catatumbo, colombia). Boletín De Geología, 39(3), 25–40. https://doi.org/10.18273/revbol.v39n3‐2017002
    [Google Scholar]
  97. Price, G., Acevedo, R., Best, G., Hardy, J., Giraldo, F., Prince, M., … Diaz, M. (2018). Acordionero Oil Field: From Discovery to Development, Middle Magdalena Basin, Colombia., Memoirs of the Simposio Latinoamericano de Exploración y Desarrollo, I Cumbre del Petróleo y Gas: Bogotá. 5.
  98. Prince, M., Cáceres, C., Rodriguez, M., Sánchez, C., Murillo, M., Daza, D., & Enachescu, M. (2016). Acordionero Oil Field Discovery, Middle Magdalena Basin, Colombia: An Unusual Large Stratigraphic Trap within the Paleocene Lisama Formation, XII SIMPOSIO BOLIVARIANO DE EXPLORACIÓN PETROLERA EN CUENCAS SUBANDINAS. Bogotá, Colombia.
  99. Quiroz, L., Romero, O., & Delgado, A. (2018). Icnofacies sustrato‐controladas, conglomerados intraformacionales y minerales autigénicos asociados a discontinuidades estratigráficas en la sucesión Aptiano‐Campaniano del Valle Medio del Magdalena, Colombia, Abstract book of the IV Simposio Latinoamericano de Icnología: Santa Marta. 35‐36.
  100. Ramos, V. A., & Folguera, A. (2009). Andean flat‐slab subduction through time. Geological Society, London, Special Publications, 327(1), 31–54. https://doi.org/10.1144/SP327.3
    [Google Scholar]
  101. Restrepo‐Pace, P. A., Colmenares, F., Higuera, C., & Mayorga, M. (2004). A Fold and thrust belt along the western flank of the Eastern Cordillera of Colombia—Style, kinematics, and timing constraints derived from seismic data and detailed surface mapping. In K. R. McClay (Ed.), Thrust tectonics and hydrocarbon systems. AAPG Memoir, 82, 598–613.
    [Google Scholar]
  102. Reyes‐Harker, A., Ruiz‐Valdivieso, C. F., Mora, A., Ramirez‐Arias, J. C., Rodriguez, G., De la Parra, F., … Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. AAPG Bulletin, 99, 1407–1543.
    [Google Scholar]
  103. Sanchez, J., Horton, B. K., Tesón, E., Mora, A., Ketcham, R. A., & Stockli, D. F. (2012). Kinematic evolution of Andean fold‐thrust structures along the boundary between the Eastern cordillera and Middle Magdalena basin, Colombia. Tectonics, 31, TC3008. https://doi.org/10.1029/2011TC003089
    [Google Scholar]
  104. Sarmiento, G. (1992). Estratigrafía y Medio de Depósito de la Formación Guaduas: Boletín Geológico Ingeominas. Boletín Geológico Ingeominas, 32(1–3), 3–44.
    [Google Scholar]
  105. Sarmiento‐Rojas, L. F. (2018) Cretaceous stratigraphy and Paleo‐Facies maps of Northwestern South America. In F. Cediel, & R. P. Shaw (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences, 10, 673–747. https://doi.org/10.1007/978‐3‐319‐76132‐9_10
    [Google Scholar]
  106. Sarmiento‐Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21, 383–411. https://doi.org/10.1016/j.jsames.2006.07.003
    [Google Scholar]
  107. Saylor, J. E., Horton, B. K., Nie, J., Corredor, J., & Mora, A. (2011). Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta basin. Eastern Cordillera, Colombia: Basin Research, 23, 377–402. https://doi.org/10.1111/j.1365‐2117.2010.00493.x
    [Google Scholar]
  108. Saylor, J. E., Stockli, D., Horton, B., Nie, J., & Mora, A. (2012). Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124(5‐6), 762–779. https://doi.org/10.1130/B30534.1
    [Google Scholar]
  109. Scott, J., Buatois, L., & Mángano, G. (2012) Lacustrine environments. In: Developments in Sedimentology (Vol. 64, p. Chapter 13). 379–417. https://doi.org/10.1016/B978‐0‐444‐53813‐0.00013‐7
    [Google Scholar]
  110. Siravo, G., Faccena, C., Gérault, M., Becker, T., Giuditta, F., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002
    [Google Scholar]
  111. Siravo, G., Fellin, M. G., Faccena, C., Bayona, G., Lucci, F., Molin, P., & Maden, C. (2018). Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics, 37(11), 4311–4337. https://doi.org/10.1029/2018TC005162
    [Google Scholar]
  112. Spencer, C. J., Kirkland, C. L., & Taylor, R. J. (2016). Strategies towards statistically robust interpretations of in situ U‐Pb zircon geochronology. Geoscience Frontiers, 7(4), 581–589. https://doi.org/10.1016/j.gsf.2015.11.006
    [Google Scholar]
  113. Teixell, A., TesonT., Ruiz, J. C., & Mora, A., (2015). The structure of an inverted back‐arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogota. In C. Bartolini & P. Mann, (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin. AAPG Memoir, 108, 499–516.
    [Google Scholar]
  114. Terraza, R. (2012). Estratigrafía y ambientes de depósito de las Areniscas de Chiquinquirá en los alrededores de la localidad tipo. Boletín De Geología, 34, 55–72.
    [Google Scholar]
  115. Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., … Valencia, V. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. In M. Nemčok, A. R. Mora, & J. W. Cosgrove (Eds.), Thick‐skin‐dominated orogens: from initial inversion to full accretion. Geological Society, London, Special Publications, 377(1), 257–283. https://doi.org/10.1144/SP377.10
    [Google Scholar]
  116. Thomas, R. G., Smith, D., Wood, J., Visser, J., Calverley‐Range, E., & Koster, E. (1987). Inclined heterolithic stratification – Terminology, Description, Interpretation and Significance. Sedimentary Geology, 53, 123–179. https://doi.org/10.1016/S0037‐0738(87)80006‐4
    [Google Scholar]
  117. Traverse, A. (1988). Paleopalynology (p. 600). New York: Academic Press.
    [Google Scholar]
  118. Traverse, A. (2007). Paleopalynology. Dordrecht: Springer, p. 813.
    [Google Scholar]
  119. Vasquez, M., Altenberger, U., Romer, R., Sudo, M., & Moreno‐Trujillo, J. (2010). Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous: Influence of previous tectonic processes. Journal of South America Earth Sciences, 29, 171–186. https://doi.org/10.1016/j.jsames.2009.02.003
    [Google Scholar]
  120. Velandia, F. (2018). Cinemática de las fallas mayores del Macizo de Santander – énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga: Bogotá. Tesis de Doctorado: Universidad Nacional de Colombia.
    [Google Scholar]
  121. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  122. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  123. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  124. Villamil, T. (1999). Campanian‐Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela: Palaeogeography. Palaeoclimatology, Palaeoecology, 153, 239–275. https://doi.org/10.1016/S0031‐0182(99)00075‐9
    [Google Scholar]
  125. Ward, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H., & Gómez, E. (1973). Memoria explicativa de la Geología de los cuadrángulos H‐12 Bucaramanga y H‐13 Pamplona. Departamento De Santander: Boletín Geológico Ingeominas, 21(1–3), 132.
    [Google Scholar]
  126. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms and aberrations in global climate 65 M.a. to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
  127. Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., … Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008
    [Google Scholar]
  128. Zavala, C., Ponce, J., Arcuri, M., Drittanti, D., Freije, H., & Asensio, M. (2006). Anciente lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west‐central Argentina. Journal of Sedimentary Research, 76, 41–59. https://doi.org/10.2110/jsr.2006.12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12496
Loading
/content/journals/10.1111/bre.12496
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): northern Andes; onset of deformation; Palaeocene; provenance; synorogenic basins

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error