1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Stratigraphic Forwar Modeling was used to simulate the initial spatial‐temporal distribution of organic matter in the Late Cretaceous and Cenozoic intervals in the greater Levant Basin. The results are in good agreement with geochemical source rock data from Cyprus, Lebanon and the ESM.

, Abstract

Stratigraphic forward modelling was used to simulate the deposition of Upper Cretaceous, Eocene and Oligo‐Miocene source rocks in the Eastern Mediterranean Sea and, thus, obtain a process‐based 3D prediction of the quantity and quality distribution of organic matter (OM) in the respective intervals.

Upper Cretaceous and Eocene models support the idea of an upwelling‐related source rock formation along the Levant Margin and the Eratosthenes Seamount (ESM). Along the margin, source rock facies form a narrow band of 50 km parallel to the palaeo shelf break, with high total organic carbon (TOC) contents of about 1% to 11%, and HI values of 300–500 mg HC/g TOC. On top of the ESM, TOC contents are mainly between 0.5% and 3% and HI values between 150 and 250 mg HC/g TOC. At both locations, TOC and HI values decrease rapidly towards the deeper parts of the basin. In the Oligo‐Miocene intervals, terrestrial OM makes up the highest contribution to the TOC content, as marine organic matter (OM) is diluted by high‐sedimentation rates. In general, TOC contents are low (<1%), but are distributed relatively homogenously throughout the whole basin, creating poor quality, but very thick source rock intervals of 1–2 km of cumulative thickness.

The incorporation of these source rock models into a classic petroleum system model could identify several zones of thermal maturation in the respective source rock intervals. Upper Cretaceous source rocks started petroleum generation in the late Palaeocene/early Eocene with peak generation between 20 and 15 Ma ca. 50 km offshore northern Lebanon. Southeast of the ESM, generation started in the early Eocene with peak generation between 18 and 15 Ma. Eocene source rocks started HC generation ca. 25 Ma ago between 50 and 100 km southeast of the ESM and reached the oil to wet gas window at present day. However, until today they have converted less than 20% of their initial kerogen. Although the Miocene source rocks are mostly immature, Oligocene source rocks lie within the oil window in the southern Levant Basin and reached the onset of the wet gas window in the northern Levant Basin. However, only 10%–20% of their initial kerogen have been transformed to date.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12497
2021-01-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12497.html?itemId=/content/journals/10.1111/bre.12497&mimeType=html&fmt=ahah

References

  1. Al‐Balushi, A. N., Neumaier, M., Fraser, A. J., & Jackson, C. A. (2016). The impact of the Messinian salinity crisis on the petroleum system of the Eastern Mediterranean: A critical assessment using 2D petroleum system modelling. Petroleum Geoscience, 22, 357–379. https://doi.org/10.1144/petgeo2016‐054
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and Application to Petroleum Play assessment, 3rd ed.. Chichester, West Sussex: John Wiley & Sons Ltd.
    [Google Scholar]
  3. Almogi‐Labin, A., Bein, A., & Sass, E. (1993). Late Cretaceous upwelling system along the southern Tethys margin (Israel): Interrelationship between productivity, bottom water environments, and organic matter preservation. Paleoceanography, 8, 671–690. https://doi.org/10.1029/93PA02197
    [Google Scholar]
  4. Barabasch, J., Ducros, M., Hawie, N., Daher, S. B., Nader, F. H., & Littke, R. (2019). Integrated 3D forward stratigraphic and petroleum system modeling of the Levant Basin, Eastern Mediterranean. Basin Research, 31, 228–252.
    [Google Scholar]
  5. Barrier, E., & Vrielynck, B. (2008). Atlas of Paleotectonic maps of the Middle East (MEBE Program). CCGM – CGMW. Atlas of 14 maps.
  6. Bartov, Y., Steinitz, G., Eyal, M., & Eyal, Y. (1980). Sinistral movement along the Gulf of Aqaba—its age and relation to the opening of the Red Sea. Nature, 285, 220. https://doi.org/10.1038/285220a0
    [Google Scholar]
  7. Betts, J. N., & Holland, H. D. (1991). The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Global and Planetary Change, 97, 5–18. https://doi.org/10.1016/0921‐8181(91)90123‐E
    [Google Scholar]
  8. Bou Daher, S., Ducros, M., Michel, P., Hawie, N., Nader, F. H., & Littke, R. (2016). 3D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arabian Journal of Geosciences, 9, 440. https://doi.org/10.1007/s12517‐016‐2455‐1
    [Google Scholar]
  9. Bou Daher, S., Nader, F. H., Müller, C., & Littke, R. (2015). Geochemical and petrographic characterization of Campanian‐Lower Maastrichtian calcareous petroleum source rocks of Hasbayya. South Lebanon, Marine and Petroleum Geology, 64, 304–323. https://doi.org/10.1016/j.marpetgeo.2015.03.009
    [Google Scholar]
  10. Bou Daher, S., Nader, F. H., Strauss, H., & Littke, R. (2014). Depositional environment and source‐rock characterization of organic‐matter rich Upper Santonian‐Upper Campanian carbonates, northern Lebanon. Journal of Petroleum Geology, 37, 5–24.
    [Google Scholar]
  11. Bruneau, B., Chauveau, B., Baudin, F., & Moretti, I. (2017). 3D stratigraphic forward numerical modelling approach for prediction of organic‐rich deposits and their heterogeneities. Marine and Petroleum Geology, 82, 1–20. https://doi.org/10.1016/j.marpetgeo.2017.01.018
    [Google Scholar]
  12. Burgess, P. M., Lammers, H., van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12), 1883–1901. https://doi.org/10.1306/06260605081
    [Google Scholar]
  13. Burnham et al.,Burnham Burnham, A. K., Peters, K. E., & Schenk, O. (2016). Evolution of vitrinite reflectance models. (abs).Alberta, Canada: AAPG Annual Convention and Exhibition, Calgary. June 19‐22, 2016.
    [Google Scholar]
  14. Chauveau, B., Granjeon, D., & Huc, A. Y. (2013). Depositional Model of Marine Organic Matter Coupled With a Stratigraphic Forward Numerical Model (DIONISOS): Application to the Devonian Marcellus Formation (Abstr.). in: AAPG Hedberg Conference Petroleum Systems: Modeling the Past, Planning the Future abstracts. American Association of Petroleum Geologists.
  15. Dai, A., & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudal ans seasonal variations. Journal of Hydrometerology, 3, 660–687.
    [Google Scholar]
  16. Eastwell, D., Hodgson, N., & Rodriguez, K. (2018). Source rock characterization in frontier basins–a global approach. First Break, 36, 53–60.
    [Google Scholar]
  17. Einsele, G., Chough, S. K., & Shiki, T. (1996). Depositional events and their records—an introduction. Sedimentary Geology, 104, 1–9. https://doi.org/10.1016/0037‐0738(95)00117‐4
    [Google Scholar]
  18. Emeis, K. C., Robertson, A. H. F., Richter, C. et al (1996) Proc. ODP, Init. Repts., 160: College Station, TX (Ocean Drilling Program).
  19. Eyal, Y. (2011). The Syrian Arc Fold System: Age and rate of folding. Geophysical Research Abstracts, 13.
    [Google Scholar]
  20. Froidl, F., Zieger, L., Mahlstedt, N., & Littke, R. (2020). Comparison of single‐and multi‐ramp bulk kinetics for a natural maturity series of Westphalian coals: Implications for modelling petroleum generation. International Journal of Coal Geology, 219, 103378. https://doi.org/10.1016/j.coal.2019.103378
    [Google Scholar]
  21. Galindo‐Zaldivar, J., Nieto, L., Robertson, A., & Woodside, J. (2001). Recent tectonics of Eratosthenes Seamount: An example of seamount deformation during incipient continental collision. Geo‐Marine Letters, 20, 233–242. https://doi.org/10.1007/s003670000059
    [Google Scholar]
  22. Gardosh, M. A., & Druckman, Y. (2006). Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. Geological Society, London, Special Publications, 260, 201–227. https://doi.org/10.1144/GSL.SP.2006.260.01.09
    [Google Scholar]
  23. Gardosh, M., Druckman, Y., Buchbinder, B., & Calvo, R. (2008). The Oligo‐Miocene deepwater system of the Levant basin. Geological Survey of Israel, 33, 1–73.
    [Google Scholar]
  24. Gatt, P. A., & Glyas, J. G. (2012). Climatic controls on facies in Palaeogene Mediterranean subtropical carbonate platforms. Petroleum Geoscience, 18, 355–367. https://doi.org/10.1144/1354‐079311‐032
    [Google Scholar]
  25. Gawthorpe, R. L., Hardy, S., & Ritchie, B. (2003). Numerical modelling of depositional sequences in half‐graben rift basins. Sedimentology, 50(1), 169–185. https://doi.org/10.1046/j.1365‐3091.2003.00543.x
    [Google Scholar]
  26. Ghalayini, R., Daniel, J. M., Homberg, C., Nader, F. H., & Comstock, J. E. (2014). Impact of Cenozoic strike‐slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics, 33(11), 2121–2142. https://doi.org/10.1002/2014TC003574
    [Google Scholar]
  27. Grabowski, E., Letelier, R. M., Laws, E. A., & Karl, D. M. (2019). Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nature Communications, 10, 1–9. https://doi.org/10.1038/s41467‐019‐09772‐z
    [Google Scholar]
  28. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling.
  29. Granot, R. (2016). Palaeozoic oceanic crust preserved beneath the eastern Mediterranean. Nature Geoscience, 9, 701–705. https://doi.org/10.1038/ngeo2784
    [Google Scholar]
  30. Grohmann, S., Fietz, S. W., Littke, R., Daher, S. B., Romero‐Sarmiento, M. F., Nader, F. H., & Baudin, F. (2018). Source rock characterization of mesozoic to cenozoic organic matter rich marls and shales of the Eratosthenes Seamount, Eastern Mediterranean Sea. Oil & Gas Science and Technology‐Revue d’IFP Energies Nouvelles, 73, 49. https://doi.org/10.2516/ogst/2018036
    [Google Scholar]
  31. Grohmann, S., Romero‐Sarmiento, M. F., Nader, F. H., Baudin, F., & Littke, R. (2019). Geochemical and petrographic investigation of Triassic and Late Miocene organic‐rich intervals from onshore Cyprus, Eastern Mediterranean. International Journal of Coal Geology, 209, 94–116. https://doi.org/10.1016/j.coal.2019.05.001
    [Google Scholar]
  32. Hall, J., Calon, T. J., Aksu, A. E., & Meade, S. R. (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, eastern Mediterranean Sea. Marine Geology, 221, 261–297. https://doi.org/10.1016/j.margeo.2005.03.007
    [Google Scholar]
  33. Halstenberg, D. (2014). Reconstruction of Tectonic Paleo‐Heat Flow for the Levantine Basin (Eastern Mediterranean) ‐ Implications for Basin and Petroleum System Modelling. M.Sc. Thesis, RWTH Aachen University.
  34. Haq, B. U., Hardenbol, J., & Vail, P. R. (1988). Mesozoic and Cenozoic chronostratigraphy and cycles of sea‐level change. SEPM Special Publications, 42, 71–107.
    [Google Scholar]
  35. Hawie, N., Deschamps, R., Granjeon, D., Nader, F. H., Gorini, C., Müller, C., … Baudin, F. (2015). Multi‐scale constraints of sediment source to sink systems in frontier basins: A forward stratigraphic modelling case study of the Levant region. Basin Research, 29, 418–445. https://doi.org/10.1111/bre.12156
    [Google Scholar]
  36. Hawie, N., Deschamps, R., Nader, F. H., Gorini, C., Müller, C., Desmares, D., … Baudin, F. (2013). Sedimentological and stratigraphic evolution of northern Lebanon since the Late Cretaceous: Implications for the Levant margin and basin. Arabian Journal of Geosciences, 7, 1323–1349. https://doi.org/10.1007/s12517‐013‐0914‐5
    [Google Scholar]
  37. Hawie, N., Gorini, C., Deschamps, R., Nader, F. H., Montadert, L., Granjeon, D., & Baudin, F. (2013). Tectono‐stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410. https://doi.org/10.1016/j.marpetgeo.2013.08.004
    [Google Scholar]
  38. Honjo, S., Manganini, S. J., Krishfield, R. A., & Francois, R. (2008). Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Progress in Oceanography, 76, 217–285. https://doi.org/10.1016/j.pocean.2007.11.003
    [Google Scholar]
  39. Hunt, J. M. (1967). The Origin of Petroleum in Carbonate Rocksk11. In G. V.Chillingar, H. J.Bissel, & R. W.Fairbridge (Eds.), Developments in Sedimentology, Vol. 9 (pp. 225–251)., Carbonate Rocks Physical and Chemical Aspects Amsterdam: Elsevier.
    [Google Scholar]
  40. Inati, L., Lecomte, J. C., Zeyen, H., Nader, F. H., Adelinet, M., Rahhal, M. E., & Sursock, A. (2018). Crustal configuration in the northern Levant basin based on seismic interpretation and numerical modeling. Marine and Petroleum Geology, 93, 182–204. https://doi.org/10.1016/j.marpetgeo.2018.03.011
    [Google Scholar]
  41. Inati, L., Zeyen, H., Nader, F. H., Adelinet, M., Sursock, A., Rahhal, M. E., & Roure, F. (2016). Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach. Tectonophysics, 693, 143–156. https://doi.org/10.1016/j.tecto.2016.10.030
    [Google Scholar]
  42. Lalli, C., & Parsons, T. R. (1997). Biological oceanography: An introduction. Elsevier., 68.
    [Google Scholar]
  43. Lutz, R., Littke, R., Gerling, P., & Bönnemann, C. (2004). 2D numerical modelling of hydrocarbon generation in subducted sediments at the active continental margin of Costa Rica. Marine and Petroleum Geology, 21, 753–766. https://doi.org/10.1016/j.marpetgeo.2004.03.005
    [Google Scholar]
  44. Mann, U., & Zweigel, J. (2008). Modeling source‐rock distribution and quality variations: The organic facies modelling approach. Special Publications of the International Association of Sedimentologists, 40, 139–274.
    [Google Scholar]
  45. Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: Carbon cycling in the northeast Pacific. Deep‐Sea Research, 34, 267–285. https://doi.org/10.1016/0198‐0149(87)90086‐0
    [Google Scholar]
  46. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  47. Montadert, L., Nicolaides, S., Semb, P. H., & Lie, Ø. (2014). Petroleum Systems Offshore Cyprus. In L.Marlow, C.Kendall, & L.Yose (Eds.), AAPG Special Volumes Memoir 160: Petroleum systems of the Tethyan region (pp. 301–334). Tulsa, OK: AAPG.
    [Google Scholar]
  48. Mulder, T., & Syvitski, J. P. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103, 285–299. https://doi.org/10.1086/629747
    [Google Scholar]
  49. Nader, F. H. (2014). Insights into the petroleum prospectivity of Lebanon. In L.Marlow, C.Kendall, & L.Yose (Eds.), AAPG Special Volumes Memoir 160: petroleum systems of the Tethyan region (pp. 241–278). Tulsa,OK: AAPG.
    [Google Scholar]
  50. Nielsen, S. B., Clausen, O. R., & McGregor, E. (2017). Basin% Ro: A vitrinite reflectance model derived from basin and laboratory data. Basin Research, 29, 515–536.
    [Google Scholar]
  51. Papadimitriou, N., Gorini, C., Nader, F. H., Deschamps, R., Symeou, V., & Lecomte, J. C. (2018). Tectono‐stratigraphic evolution of the western margin of the Levant Basin (offshore Cyprus). Marine and Petroleum Geology, 91, 683–705. https://doi.org/10.1016/j.marpetgeo.2018.02.006
    [Google Scholar]
  52. Pearce, J. A., & Robinson, P. T. (2010). The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research, 18, 60–81. https://doi.org/10.1016/j.gr.2009.12.003
    [Google Scholar]
  53. Rasoul, M. A., & Khaled, A. (2019). Integrated Study on Oligocene Sediments and Petroleum Systems of the Offshore Eastern Nile Delta, Egypt. 81st EAGE Conference and Exhibition 2019.
  54. Robertson, A. H. (1998a). Mesozoic‐Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. Proceedings of the Ocean Drilling Program, Scientific Results, 160, 723–782.
    [Google Scholar]
  55. Robertson, A. H. F. (1998b). Miocene shallow‐water carbonates on the Eratosthenes Seamount, easternmost Mediterranean Sea, in: Proceedings of the Ocean Drilling Program. Scientific Results (Vol. 160), Ocean Drilling Program. 419–436.
  56. Robertson, A. H. F., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic‐Neogene evolution of neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18, 381–404. https://doi.org/10.1144/petgeo2011‐091
    [Google Scholar]
  57. Schneider, F., Dubille, M., & Montadert, L. (2016). Modeling of microbial gas generation: Application to the eastern Mediterranean “Biogenic Play”. Geologica Acta, 14, 403–417.
    [Google Scholar]
  58. Segev, A., & Rybakov, M. (2010). Effects of Cretaceous plume and convergence, and Early Tertiary tectonomagmatic quiescence on the central and southern Levant continental margin. Journal of Geological Society, 167, 731–749. https://doi.org/10.1144/0016‐76492009‐118
    [Google Scholar]
  59. Shaaban, F., Lutz, R., Littke, R., Bueker, C., & Odisho, K. (2006). Source‐rock evaluation and basin modeling in NE Egypt (NE Nile Delata and northern Sinai). Journal of Petroleum Geology, 29, 103–124.
    [Google Scholar]
  60. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  61. Symeou, V., Homberg, C., Nader, F. H., Darnault, R., Lecomte, J. C., & Papadimitriou, N. (2018). Longitudinal and temporal evolution of the tectonic style along the Cyprus Arc system, assessed through 2‐D reflection seismic interpretation. Tectonics, 37, 30–47. https://doi.org/10.1002/2017TC004667
    [Google Scholar]
  62. Tassy, A., Crouzy, E., Gorini, C., & Rubino, J. L. (2015). Mesozoic carbonate‐siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean). EGU General Assembly Conference Abstracts (Vol. 17).
  63. Ten Haven, H. L., Littke, R., Rullkötter, J., Stein, R., & Welte, D. H. (1990). Accumulation rates and composition of organic matter in late Cenozoic sediments underlying the active upwelling area off Peru. In E.Suess, & R.Von Huene et al. Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 112, pp. 591–606).
    [Google Scholar]
  64. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence. Berlin: Springer.
    [Google Scholar]
  65. Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research: Solid Earth, 99(B6), 12229–12243.
    [Google Scholar]
  66. Tyson, R. V. (1995). Palynological kerogen classification. Sedimentary Organic Matter, 1, (pp. 341–365). Dordrecht: Springer.
    [Google Scholar]
  67. Wygrala, B. (1989). Integrated study of an oil field in the southern Po basin, northern Italy. (No. FZJ‐2014‐03033). Publikationen vor 2000.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12497
Loading
/content/journals/10.1111/bre.12497
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error