1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

The Greater Caucasus may constitute a natural example of early continental collision. New detrital zircon U‐Pb geochronology data, together with published Cenozoic stratigraphy and structural data from the Greater Caucasus, suggests collision began in the Late Miocene to Pliocene, leading to diachronous changes in deformation and sedimentation in the orogen and associated basins.

, Abstract

The Greater Caucasus orogen on the southern margin of Eurasia is hypothesized to be a young collisional system and may present an opportunity to probe the structural, sedimentary and geodynamic effects of continental collision. We present detrital zircon U‐Pb age data from the Caucasus region that constrain changes in sediment routing and source exposure during the late Cenozoic convergence and collision between the Greater Caucasus orogen and the Lesser Caucasus, an arc terrane on the lower plate of the system. During Oligocene to Middle Miocene time, following the initiation of deformation within the Greater Caucasus, marine sandstones and shales were deposited between the Greater and Lesser Caucasus, and detrital zircon age data suggest no mixing of Greater Caucasus and Lesser Caucasus detritus. During Middle to Late Miocene time, Greater Caucasus detritus was deposited onto the Lesser Caucasus basin margin, and terrestrial, largely conglomeratic, sedimentation began between the Greater and Lesser Caucasus. Around 5.3 Ma, upper plate exhumation rates increased and shortening migrated to pro‐ and retro‐wedge fold‐thrust belts, coinciding with the initiation of foreland basin erosion. Sediment composition, provenance and structural data from the orogen together suggest the existence of a wide (230–280 km) marine basin that was progressively closed during Oligocene to Late Miocene time, probably by subduction/lithospheric underthrusting beneath the Greater Caucasus, followed by initiation of collision between the Lesser Caucasus arc terrane and the Greater Caucasus in Late Miocene to Pliocene time. The pace of the transition from hypothesized subduction to collision in the Caucasus is consistent with predictions from numerical modeling for a system with moderate convergence rates (<13 mm/yr) and hot lower plate continental lithosphere. Basement crystallization histories implied by our detrital zircon age data suggest the presence of two pre‐Jurassic sutures between stable Eurasia and the Lesser Caucasus, which likely guided later deformation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12499
2021-03-15
2024-04-19
Loading full text...

Full text loading...

References

  1. Abdel‐Rahman, A. F. M., & Doig, R. (1987). The Rb‐Sr geochronological evolution of the Ras Gharib segment of the northern Nubian Shield. Journal of the Geological Society, 144, 577–586.
    [Google Scholar]
  2. Abdullayev, N. R., Weber, J., van Baak, C. G., Aliyeva, E., Leslie, C., Riley, G. W., … Kislitsiyn, R. (2018). Detrital zircon and apatite constraints on depositional ages, sedimentation rates and provenance: Pliocene Productive Series, South Caspian Basin, Azerbaijan. Basin Research, 30, 835–862.
    [Google Scholar]
  3. Adamia, S., Alania, V., Chabukiani, A., Kutelia, Z., & Sadradze, N. (2011). Great Caucasus (Cavcasioni): A long‐lived north‐Tethyan back‐arc basin. Turkish Journal of Earth Sciences, 20, 611–628.
    [Google Scholar]
  4. Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., & Gventsadze, A. (2011). Geology of the Caucasus: A review. Turkish Journal of Earth Sciences, 20, 489–544.
    [Google Scholar]
  5. Adamia, S. A., Chkhotua, T., Kekelia, M., Lordkipanidze, M., Shavishvili, I., & Zakariadze, G. (1981). Tectonics of the Caucasus and adjoining regions: Implications for the evolution of the Tethys ocean. Journal of Structural Geology, 3, 437–447.
    [Google Scholar]
  6. Aghamalyan, V. (1998). The crystalline basement of Armenia (PhD thesis). Institute of Geological Sciences, National Academy of Sciences of Armenia, Yerevan (in Russian).
    [Google Scholar]
  7. Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2016). Geosciences of Azerbaijan (Vol. 1). Heidelberg: Springer.
    [Google Scholar]
  8. Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23, TC2008.
    [Google Scholar]
  9. Allen, M. B., & Armstrong, H. A. (2008). Arabia‐Eurasia collision and the forcing of mid‐Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 52–58.
    [Google Scholar]
  10. Allen, M. B., Morton, A. C., Fanning, C. M., Ismail‐Zadeh, A. J., & Kroonenberg, S. B. (2006). Zircon age constraints on sediment provenance in the Caspian region. Journal of the Geological Society, 163, 647–655.
    [Google Scholar]
  11. Asch, K. (2005). IGME 5000: 1 : 5 Million International Geological Map of Europe and Adjacent Areas. Hannover: BGR.
    [Google Scholar]
  12. Austermann, J., & Iaffaldano, G. (2013). The role of the Zagros orogeny in slowing down Arabia‐Eurasia convergence since 5 Ma. Tectonics, 32, 351–363.
    [Google Scholar]
  13. Avdeev, B., & Niemi, N. A. (2011). Rapid Pliocene exhumation of the Central Greater Caucasus constrained by low‐temperature thermochronometry. Tectonics, 30, TC2009.
    [Google Scholar]
  14. Avigad, D., Kolodner, K., McWilliams, M., Persing, H., & Weissbrod, T. (2003). Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology, 31, 227–230.
    [Google Scholar]
  15. Axen, G. J., Lam, P. S., Grove, M., Stockli, D. F., & Hassanzadeh, J. (2001). Exhumation of the west‐central Alborz Mountains, Iran, Caspian subsidence, and collision‐related tectonics. Geology, 29, 559–562.
    [Google Scholar]
  16. Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli, D. F., … Tabatabaei, S. H. (2011). Arabia‐Eurasia continental collision: Insights from late Tertiary foreland‐basin evolution in the Alborz Mountains, northern Iran. Bulletin, 123, 106–131.
    [Google Scholar]
  17. Banks, C. J., Robinson, A. G., & Williams, M. P. (1997). Structure and regional tectonics of the Achara‐Trialet fold belt and the adjacent Rioni and Kartli foreland basins, Republic of Georgia. In A. G.Robinson (Ed.), AAPG Memoir 68: Regional and petroleum geology of the Black Sea and surrounding region (pp. 331–346).
    [Google Scholar]
  18. Beaumont, C., Ellis, S., Hamilton, J., & Fullsack, P. (1996). Mechanical model for subduction‐collision tectonics of Alpine‐type compressional orogens. Geology, 24, 675–678.
    [Google Scholar]
  19. Belov, A. (1981). Tectonic evolution of the Alpine folded domain in Paleozoic. Proceeding of Geological Institute of Academy of Sciences of the USSR, 347, 1–212 (in Russian).
    [Google Scholar]
  20. Belov, A., Somin, M., & Adamiya, S. A. (1978). Precambrian and Paleozoic of the Caucasus (brief synthesis). Jahrbuch fur Geologie und Mineralogie, 121, 155–175.
    [Google Scholar]
  21. Bochud, M. (2011). Tectonics of the Eastern Greater Caucasus in Azerbaijan. Departement de geosciences, sciences de la terre, Universite de Fribourg.
    [Google Scholar]
  22. Bogdanova, S., Bingen, B., Gorbatschev, R., Kheraskova, T., Kozlov, V., Puchkov, V., & Volozh, Y. A. (2008). The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160, 23–45.
    [Google Scholar]
  23. Burbank, D. W. (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680–683.
    [Google Scholar]
  24. Carter, D. J., Audley‐Charles, M. G., & Barber, A. (1976). Stratigraphical analysis of island arc‐continental margin collision in eastern Indonesia. Journal of the Geological Society, 132, 179–198.
    [Google Scholar]
  25. Chemenda, A. I., Mattauer, M., & Bokun, A. N. (1996). Continental subduction and a mechanism for exhumation of high‐pressure metamorphic rocks: New modelling and field data from Oman. Earth and Planetary Science Letters, 143, 173–182.
    [Google Scholar]
  26. Chung, S. L., Chu, M. F., Zhang, Y., Xie, Y., Lo, C. H., Lee, T. Y., … Wang, Y., (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post‐collisional magmatism. Earth‐Science Reviews, 68, 173–196.
    [Google Scholar]
  27. Copley, A., & Jackson, J. (2006). Active tectonics of the Turkish‐Iranian plateau. Tectonics, 25, TC6006.
    [Google Scholar]
  28. Cowgill, E., Forte, A. M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., … Godoladze, T. (2016). Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance. Tectonics, 35, 2918–2947.
    [Google Scholar]
  29. Cowgill, E., Niemi, N. A., Forte, A. M., Trexler, C. C. (2018). Reply to comment by Vincent et al. Tectonics, 37, 1017–1028.
    [Google Scholar]
  30. Şengör, A. C. (1976). Collision of irregular continental margins: Implications for foreland deformation of Alpine‐type orogens. Geology, 4, 779–782.
    [Google Scholar]
  31. DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of Cretaceous‐Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227, 313–330.
    [Google Scholar]
  32. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  33. DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics, 33, 824–849.
    [Google Scholar]
  34. Dewey, J., Helman, M., Knott, S., Turco, E., & Hutton, D. (1989). Kinematics of the western Mediterranean. Geological society (Vol. 45, pp. 265–283). London, UK: Special Publications.
    [Google Scholar]
  35. Dewey, J., & Mange, M. (1999). Petrography of Ordovician and Silurian sediments in the western Irish Caledonides: Tracers of a short‐lived Ordovician continent‐arc collision orogeny and the evolution of the Laurentian Appalachian‐Caledonian margin. Geological society (Vol. 164, pp. 55–107). London, UK: Special Publications.
    [Google Scholar]
  36. Dilek, Y., Imamverdiyev, N., & Altunkaynak, Ş. (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri‐Arabian region: Collision‐induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52, 536–578.
    [Google Scholar]
  37. Ding, L., Kapp, P., & Wan, X. (2005). Paleocene‐Eocene record of ophiolite obduction and initial India‐Asia collision, south central Tibet. Tectonics, 24, TC3001.
    [Google Scholar]
  38. Dotduev, S. (1986). On the nappe structure of the Greater Caucasus. Geotektonika, 20, 94–106.
    [Google Scholar]
  39. Duffy, B., Quigley, M., Harris, R., & Ring, U. (2013). Arc‐parallel extrusion of the Timor sector of the Banda arc‐continent collision. Tectonics, 32, 641–660.
    [Google Scholar]
  40. Duretz, T., Gerya, T. V., & May, D. A. (2011). Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics, 502, 244–256.
    [Google Scholar]
  41. Duretz, T., Schmalholz, S., & Gerya, T. (2012). Dynamics of slab detachment. Geochemistry, Geophysics, Geosystems, 13, Q03020.
    [Google Scholar]
  42. Dzhanelidze, A., & Kandelaki, N. (1957). Geological map of the USSR, Caucasus series sheet K‐38‐XIII, scale 1:200,000. Ministry of Geology and Mineral Protection 1369 USSR, Moscow.
    [Google Scholar]
  43. Edilashvili, V. (1957). Geological map of the USSR, Caucasus series sheet K‐38‐XXII, scale 1:200,000. Ministry of Geology and Mineral Protection USSR, Moscow.
    [Google Scholar]
  44. Edmond, J. (1992). Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258, 1594–1597.
    [Google Scholar]
  45. England, P., & Houseman, G. (1986). Finite strain calculations of continental deformation: 2. Comparison with the India‐Asia collision zone. Journal of Geophysical Research: Solid Earth, 91, 3664–3676.
    [Google Scholar]
  46. Ershov, A. V., Brunet, M. F., Nikishin, A. M., Bolotov, S. N., Nazarevich, B. P., & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history and synthesis of subsidence models. Sedimentary Geology, 156, 95–118.
    [Google Scholar]
  47. Faccenda, M., Minelli, G., & Gerya, T. (2009). Coupled and decoupled regimes of continental collision: Numerical modeling. Earth and Planetary Science Letters, 278, 337–349.
    [Google Scholar]
  48. Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J., & Amini, A. (2008). Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics, 451, 170–185.
    [Google Scholar]
  49. Fitzgerald, P. G., Roeske, S. M., Benowitz, J. A., Riccio, S. J., Perry, S. E., & Armstrong, P. A. (2014). Alternating asymmetric topography of the Alaska range along the strike slip Denali fault: Strain partitioning and lithospheric control across a terrane suture zone. Tectonics, 33, 1519–1533.
    [Google Scholar]
  50. Förster, H. J., Forster, A., Oberhansli, R., & Stromeyer, D. (2010). Lithospheric composition and thermal structure of the Arabian Shield in Jordan. Tectonophysics, 481, 29–37.
    [Google Scholar]
  51. Forte, A., Cowgill, E., Bernardin, T., Kreylos, O., & Hamann, B. (2010). Late Cenozoic deformation of the Kura fold‐thrust belt, southern Greater Caucasus. Geological Society of America Bulletin, 122, 465–486.
    [Google Scholar]
  52. Forte, A. M., & Cowgill, E. (2013). Late Cenozoic base‐level variations of the Caspian Sea: A review of its history and proposed driving mechanisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 392–407.
    [Google Scholar]
  53. Forte, A. M., Cowgill, E., Murtuzayev, I., Kangarli, T., & Stoica, M. (2013). Structural geometries and magnitude of shortening in the eastern Kura fold‐thrust belt, Azerbaijan: Implications for the development of the Greater CaucasusMountains. Tectonics, 32, 688–717.
    [Google Scholar]
  54. Forte, A. M., Cowgill, E., & Whipple, K. X. (2014). Transition from a singly vergent to doubly vergent wedge in a young orogen: The Greater Caucasus. Tectonics, 33, 2077–2101.
    [Google Scholar]
  55. Galoyan, G., Rolland, Y., Sosson, M., Corsini, M., Billo, S., Verati, C., & Melkonyan, R. (2009). Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic back‐arc opening and hot spot event between the South Armenian Block and Eurasia. Journal of Asian Earth Sciences, 34, 135–153.
    [Google Scholar]
  56. Gamkrelidze, I. P., & Shengelia, D. M. (2007). Pre‐Alpine geodynamics of the Caucasus, suprasubduction regional metamorphism and granitoid magmatism. Bulletin of the Georgian National Academy of Sciences, 175, 57–65.
    [Google Scholar]
  57. Gamkrelidze, P., & Kakhazdze, I. (1959). Geological map of the USSR, Caucasus series sheet K‐38‐VII, scale 1:200,000. Ministry of Geology and Mineral Protection USSR, Moscow.
    [Google Scholar]
  58. Garzanti, E., Baud, A., & Mascle, G. (1987). Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1, 297–312.
    [Google Scholar]
  59. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3).
    [Google Scholar]
  60. Göğüş, O. H., & Pysklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36, 723–726.
    [Google Scholar]
  61. Green, T., Abdullayev, N., Hossack, J., Riley, G., & Roberts, A. M. (2009). Sedimentation and subsidence in the south Caspian Basin, Azerbaijan. Geological society (Vol. 312, pp. 241–260). London, UK: Special Publications.
    [Google Scholar]
  62. Gürer, D., & van Hinsbergen, D. J. (2019). Diachronous demise of the Neotethys Ocean as a driver for non‐cylindrical orogenesis in Anatolia. Tectonophysics, 760, 95–106.
    [Google Scholar]
  63. Hess, J., Aretz, J., Gurbanov, A., Emmermann, R., & Lippolt, H. (1995). Subduction related Jurassic andesites in the northern Great Caucasus. Geologische Rundschau, 84, 319–333.
    [Google Scholar]
  64. Hinds, D., Aliyeva, E., Allen, M., Davies, C., Kroonenberg, S., Simmons, M., & Vincent, S. (2004). Sedimentation in a discharge dominated fluvial‐lacustrine system: The Neogene Productive Series of the South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 21, 613–638.
    [Google Scholar]
  65. Höhndorf, A., Meinhold, K., & Vail, J. (1994). Geochronology of anorogenic igneous complexes in the Sudan: Isotopic investigations in North Kordofan, the Nubian Desert and the Red Sea Hills. Journal of African Earth Sciences, 19, 3–15.
    [Google Scholar]
  66. Horton, B., Hassanzadeh, J., Stockli, D., Axen, G., Gillis, R., Guest, B., … Grove, M. (2008). Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451, 97–122.
    [Google Scholar]
  67. Hu, X., Garzanti, E., Moore, T., & Raffi, I. (2015). Direct stratigraphic dating of India‐Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 ma). Geology, 43, 859–862.
    [Google Scholar]
  68. Hu, X., Sinclair, H. D., Wang, J., Jiang, H., & Wu, F. (2012). Late Cretaceous‐Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India‐Asia initial collision. Basin Research, 24, 520–543.
    [Google Scholar]
  69. Hudson, S. M., Johnson, C. L., Efendiyeva, M. A., Rowe, H. D., Feyzullayev, A. A., & Aliyev, C. S. (2008). Stratigraphy and geochemical characterization of the Oligocene. Miocene Maikop series: Implications for the paleogeography of Eastern Azerbaijan. Tectonophysics, 451, 40–55.
    [Google Scholar]
  70. Hurford, A., Fitch, F., & Clarke, A. (1984). Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geological Magazine, 121, 269–277.
    [Google Scholar]
  71. Jagoutz, O., Macdonald, F. A., & Royden, L. (2016). Low‐latitude arc.continent collision as a driver for global cooling. Proceedings of the National Academy of Sciences, 113, 4935–4940.
    [Google Scholar]
  72. Johnson, M. (2002). Shortening budgets and the role of continental subduction during the India‐Asia collision. Earth‐Science Reviews, 59, 101–123.
    [Google Scholar]
  73. Johnson, P. R. (2014). An expanding Arabian‐Nubian Shield geochronologic and isotopic dataset: Defining limits and confirming the tectonic setting of a Neoproterozoic accretionary orogen. The Open Geology Journal, 8, 3–33.
    [Google Scholar]
  74. Johnson, P. R., & Woldehaimanot, B. (2003). Development of the Arabian‐Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geological society (Vol. 206, pp. 289–325). London, UK: Special Publications.
    [Google Scholar]
  75. Jones, R., & Simmons, M. (1997). A review of the stratigraphy of eastern Paratethys (Oligocene‐Holocene), with particular emphasis on the Black Sea, in Regional and Petroleum Geology of the Black Sea and SurroundingRegions. In A.Robinson (Ed.), American Association of Petroleum Geologists Memoir (Vol. 68, pp. 39–52).
    [Google Scholar]
  76. Jones, R. R., & Tanner, P. G. (1995). Strain partitioning in transpression zones. Journal of Structural Geology, 17, 793–802.
    [Google Scholar]
  77. Kadirov, F., Floyd, M., Alizadeh, A., Guliev, I., Reilinger, R., Kuleli, S., … Toksoz, M. N. (2012). Kinematics of the eastern Caucasus near Baku, Azerbaijan. Natural Hazards, 63, 997–1006.
    [Google Scholar]
  78. Kadirov, F., Floyd, M., Reilinger, R., Alizadeh, A. A., Guliyev, I., Mammadov, S., & Safarov, R. (2015). Active geodynamics of the Caucasus region: Implications for earthquake hazards in Azerbaijan. Proceedings of Azerbaijan National Academy of Sciences, The Sciences of Earth, 3, 3–17.
    [Google Scholar]
  79. Kangarli, T., Kadirov, F., Yetirmishli, G., Aliyev, F., Kazimova, S., Aliyev, M., Safarov, R., … Vahabov, U. (2018). Recent geodynamics, active faults and earthquake focal mechanisms of the zone of pseudosubduction interaction between the Northern and Southern caucasus microplates in the southern slope of the Greater Caucasus (Azerbaijan). Geodynamics & Tectonophysics, 9, 1099–1126.
    [Google Scholar]
  80. Karig, D. E., & Sharman, G. F. (1975). Subduction and accretion in trenches. Geological Society of America Bulletin, 86, 377–389.
    [Google Scholar]
  81. Keskin, M., Pearce, J. A., & Mitchell, J. (1998). Volcano‐stratigraphy and geochemistry of collision‐related volcanism on the Erzurum. Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research, 85, 355–404.
    [Google Scholar]
  82. Khain, V. (1975). Structure and main stages in the tectono‐magmatic development of the Caucasus: An attempt at geodynamic interpretation. American Journal of Science, 275, 131–156.
    [Google Scholar]
  83. Khain, V., Gadjiev, A., & Kengerli, T. (2007). Tectonic origin of the Apsheron threshold in the Caspian Sea. In Doklady earth sciences (p. 552). Dordrecht: Springer Nature BV.
    [Google Scholar]
  84. Khain, V., & Shardanov, A. (1960). Geological map of the USSR, Caucasus series sheet K‐39‐XXV, scale 1:200,000. Ministry of Geology and Mineral Protection USSR, Moscow.
    [Google Scholar]
  85. Klootwijk, C., Conaghan, P., & Powell, C. M. (1985). The Himalayan Arc: Large‐scale continental subduction, oroclinal bending and back‐arc spreading. Earth and Planetary Science Letters, 75, 167–183.
    [Google Scholar]
  86. Knapp, C. C., Knapp, J. H., & Connor, J. A. (2004). Crustal‐scale structure of the South Caspian Basin revealed by deep seismic reflection profiling. Marine and Petroleum Geology, 21, 1073–1081.
    [Google Scholar]
  87. Knipper, A., & Khain, E. (1980). Structural position of ophiolites of the Caucasus. Ofioliti, 2, 297–314.
    [Google Scholar]
  88. Kopp, M. (1985). Age and nature of deformations of sediments comprising the Lagich syncline (southeastern Caucasus). Geologiya, 40, 25–34.
    [Google Scholar]
  89. Kopp, M., & Shcherba, I. (1985). Late Alpine development of the east Caucasus. Geotectonics, 19, 497–507.
    [Google Scholar]
  90. Koshnaw, R. I., Stockli, D. F., & Schlunegger, F. (2019). Timing of the Arabia‐Eurasia continental collision: Evidence from detrital zircon U‐Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology, 47, 47–50.
    [Google Scholar]
  91. Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F. J., & Wilson, D. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652.
    [Google Scholar]
  92. Krijgsman, W., Stoica, M., Vasiliev, I., & Popov, V. (2010). Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 290, 183–191.
    [Google Scholar]
  93. Lallemand, S. E., Malavieille, J., & Calassou, S. (1992). Effects of oceanic ridge subduction on accretionary wedges: Experimental modeling and marine observations. Tectonics, 11, 1301–1313.
    [Google Scholar]
  94. Lee, T. Y., & Lawver, L. A. (1995). Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251, 85–138.
    [Google Scholar]
  95. Lipman, P. W., Bogatikov, O., Tsvetkov, A., Gazis, C., Gurbanov, A. G., Hon, K., … Marchev, P. (1993). 2.8‐Ma ash‐flow caldera at Chegem River in the northern CaucasusMountains (Russia), contemporaneous granites, and associated ore deposits. Journal of Volcanology and Geothermal Research, 57, 85–124.
    [Google Scholar]
  96. Madanipour, S., Ehlers, T. A., Yassaghi, A., & Enkelmann, E. (2017). Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U‐Th/He thermochronometry: Evidence for the Arabia‐Eurasia collision in the NW Iranian Plateau. Tectonics, 36, 1538–1561.
    [Google Scholar]
  97. Malkowski, M. A., Schwartz, T. M., Sharman, G. R., Sickmann, Z. T., & Graham, S. A. (2017). Stratigraphic and provenance variations in the early evolution of the Magallanes‐Austral foreland basin: Implications for the role of longitudinal versus transverse sediment dispersal during arc‐continent collision. Bulletin, 129, 349–371.
    [Google Scholar]
  98. Mangino, S., & Priestley, K. (1998). The crustal structure of the southern Caspian region. Geophysical Journal International, 133, 630–648.
    [Google Scholar]
  99. Mayringer, F., Treloar, P. J., Gerdes, A., Finger, F., & Shengelia, D. (2011). New age data from the Dzirula massif, Georgia: Implications for the evolution of the Caucasian Variscides. American Journal of Science, 311, 404–441.
    [Google Scholar]
  100. McQuarrie, N., Stock, J., Verdel, C., & Wernicke, B. (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letters, 30, 2036.
    [Google Scholar]
  101. Mekhtiev, S., Gorin, V., Agabekov, M., & Voronin, M. (1962). Geological map of the USSR, Caucasus series sheet K‐39‐XXXII, scale 1:200,000. Ministry of Geology and Mineral Protection USSR, Moscow.
    [Google Scholar]
  102. Mellors, R., Jackson, J., Myers, S., Gok, R., Priestley, K., Yetirmishli, G., & Godoladze, T. (2012). Deep earthquakes beneath the Northern Caucasus: Evidence of active or recent subduction in western Asia. Bulletin of the Seismological Society of America, 102, 862–866.
    [Google Scholar]
  103. Mengel, K., Borsuk, A., Gurbanov, A., Wedepohl, K., Baumann, A., & Hoefs, J. (1987). Origin of spilitic rocks from the southern slope of the Greater Caucasus. Lithos, 20, 115–133.
    [Google Scholar]
  104. Molnar, P., Boos, W. R., & Battisti, D. S. (2010). Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38, 77–102.
    [Google Scholar]
  105. Morton, A., Allen, M., Simmons, M., Spathopoulos, F., Still, J., Hinds, D., & Kroonenberg, S. (2003). Provenance patterns in a neotectonic basin: Pliocene and Quaternary sediment supply to the South Caspian. Basin Research, 15, 321–337.
    [Google Scholar]
  106. Mumladze, T., Forte, A. M., Cowgill, E. S., Trexler, C. C., Niemi, N. A., Yíkílmaz, M. B., & Kellogg, L. H. (2015). Subducted, detached, and torn slabs beneath the Greater Caucasus. GeoResJ, 5, 36–46.
    [Google Scholar]
  107. Najman, Y., Appel, E., Boudagher‐Fadel, M., Bown, P., Carter, A., Garzanti, E., Parrish, R. (2010). Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115, B12416.
    [Google Scholar]
  108. Nalivkin, D. (1976). Geologic Map of the Caucasus (in Russian). scale 1: 500,000. Ministry of Geology, USSR, Moscow.
    [Google Scholar]
  109. Nance, R. D., Murphy, J. B., & Santosh, M. (2014). The supercontinent cycle: A retrospective essay. Gondwana Research, 25, 4–29.
    [Google Scholar]
  110. Natal’in, B. A., & Şengör, A. C. (2005). Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre‐history of the Palaeo‐Tethyan closure. Tectonophysics, 404, 175–202.
    [Google Scholar]
  111. Nazarevich, B., Nazarevich, I., & Shvydko, N. (1986). The Upper Triassic Nogai volcano sedimentary formation of Eastern Fore‐Caucasus: Composition, constitution, and relations to earlierand later‐formed volcanics. The Formations of Sedimentary Basins. Nauka, Moscow (In Russian), 67‐86.
    [Google Scholar]
  112. Nikishin, A. M., Okay, A. I., Tuysuz, O., Demirer, A., Amelin, N., & Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology, 59, 638–655.
    [Google Scholar]
  113. Patriat, P., & Achache, J. (1984). India‐Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311, 615.
    [Google Scholar]
  114. Perchuk, A., & Philippot, P. (1997). Rapid cooling and exhumation of eclogitic rocks from the Great Caucasus, Russia. Journal of Metamorphic Geology, 15, 299–310.
    [Google Scholar]
  115. Philip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161, 1–21.
    [Google Scholar]
  116. Philippot, P., Blichert‐Toft, J., Perchuk, A., Costa, S., & Gerasimov, V. (2001). Lu–Hf and Ar‐Ar chronometry supports extreme rate of subduction zone metamorphism deduced from geospeedometry. Tectonophysics, 342, 23–38.
    [Google Scholar]
  117. Pirouz, M., Avouac, J. P., Hassanzadeh, J., Kirschvink, J. L., & Bahroudi, A. (2017). Early Neogene foreland of the Zagros, implications for the initial closure of the Neo‐Tethys and kinematics of crustal shortening. Earth and Planetary Science Letters, 477, 168–182.
    [Google Scholar]
  118. Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., & Magyar, I. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 91–106.
    [Google Scholar]
  119. Pullen, A., Ibáñez‐Mejía, M., Gehrels, G. E., Ibáñez‐Mejía, J. C., & Pecha, M. (2014). What happens when n= 1000? Creating large‐n geochronological datasets with LA‐ICP‐MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29(6), 971–980.
    [Google Scholar]
  120. Pusok, A., & Kaus, B. J. (2015). Development of topography in 3‐D continental‐collision models. Geochemistry, Geophysics, Geosystems, 16, 1378–1400.
    [Google Scholar]
  121. Raines, M. K., Hubbard, S. M., Kukulski, R. B., Leier, A. L., & Gehrels, G. E. (2013). Sediment dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada. Geological Society of America Bulletin, 125, 741–755.
    [Google Scholar]
  122. Regard, V., Faccenna, C., Martinod, J., Bellier, O., & Thomas, J. C. (2003). From subduction to collision: Control of deep processes on the evolution of convergent plate boundary. Journal of Geophysical Research: Solid Earth, 108, 2208.
    [Google Scholar]
  123. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., … Nadariya, M. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, B05411.
    [Google Scholar]
  124. Rolland, Y., Hassig, M., Bosch, D., Meijers, M., Sosson, M., Bruguier, O., … Sadradze, N. (2016). A review of the plate convergence history of the East Anatolia‐Transcaucasus region during the Variscan: Insights from the Georgian basement and its connection to the Eastern Pontides. Journal of Geodynamics, 96, 131–145.
    [Google Scholar]
  125. Rolland, Y., Perincek, D., Kaymakci, N., Sosson, M., Barrier, E., & Avagyan, A. (2012). Evidence for 80.75 Ma subduction jump during Anatolide‐Tauride‐Armenian block accretion and 48 Ma Arabia‐Eurasia collision in Lesser Caucasus‐East Anatolia. Journal of Geodynamics, 56, 76–85.
    [Google Scholar]
  126. Rolland, Y., Sosson, M., Adamia, S., & Sadradze, N. (2011). Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating. Gondwana Research, 20, 798–815.
    [Google Scholar]
  127. Ruban, D. (2007). Major Paleozoic‐Mesozoic unconformities in the Greater Caucasus and their tectonic re‐interpretation: A synthesis. GeoActa, 6, 91–102.
    [Google Scholar]
  128. Ruban, D. (2013). The Greater Caucasus‐A Galatian or Hanseatic terrane: Comment on ‘the formation of pangea’ by GM Stampfli, C. Hochard, C. Verard, C. Wilhem and J. von Raumer. Tectonophysics, 593, 1–19.
    [Google Scholar]
  129. Ruban, D. A., Zerfass, H., & Yang, W. (2007). A new hypothesis on the position of the Greater Caucasus Terrane in the Late Palaeozoic‐Early Mesozoic based on palaeontologic and lithologic data. Trabajos de Geologia, 27, 19–27.
    [Google Scholar]
  130. Rusmore, M. E., Gehrels, G., & Woodsworth, G. (2001). Southern continuation of the Coast shear zone and Paleocene strain partitioning in British Columbia‐southeast Alaska. Geological Society of America Bulletin, 113, 961–975.
    [Google Scholar]
  131. Sahakyan, L., Bosch, D., Sosson, M., Avagyan, A., Galoyan, G., Rolland, Y., … Vardanyan, S. (2017). Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. Geological society (Vol. 428, pp. 73–98). London, UK: Special Publications.
    [Google Scholar]
  132. Saintot, A., Brunet, M. F., Yakovlev, F., Sebrier, M., Stephenson, R., Ershov, A., & McCann, T. (2006) The Mesozoic‐Cenozoic tectonic evolution of the Greater Caucasus. Geological society (Vol. 32, 277–289). London, Memoirs.
    [Google Scholar]
  133. Saintot, A., Stephenson, R. A., Stovba, S., Brunet, M. F., Yegorova, T., & Starostenko, V. (2006). The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian‐Early Palaeozoic to the Early Cretaceous. Geological society (Vol. 32, pp. 481–505). London, Memoirs.
    [Google Scholar]
  134. Şengör, A., & Kidd, W. (1979). Post‐collisional tectonics of the Turkish‐Iranian plateau and a comparison with Tibet. Tectonophysics, 55, 361–376.
    [Google Scholar]
  135. Şengör, A., Ozeren, S., Genc, T., & Zor, E. (2003). East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters, 30, 8045.
    [Google Scholar]
  136. Şengör, A., & Yílmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.
    [Google Scholar]
  137. Şengör, A., Yílmaz, Y., & Sungurlu, O. (1984). Tectonics of the Mediterranean Cimmerides: Nature and evolution of the western termination of Palaeo‐Tethys. Geological society (Vol. 17, pp. 77–112). London, UK: Special Publications.
    [Google Scholar]
  138. Şengör, A. C. (1984). The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Papers, 195, 1–74.
    [Google Scholar]
  139. Sengupta, S., Corfu, F., McNutt, R., & Paul, D. (1996). Mesoarchaean crustal history of the eastern Indian craton: Sm‐Nd and U‐Pb isotopic evidence. Precambrian Research, 77, 17–22.
    [Google Scholar]
  140. Shimazaki, H., & Shinomoto, S. (2010). Kernel bandwidth optimization in spike rate estimation. Journal of Computational Neuroscience, 29, 171–182.
    [Google Scholar]
  141. Sholpo, V. (1978). Alpine Geodynamics of the Greater Caucasus (in Russian) (p. 176). Moscow, Russia: Nedra
    [Google Scholar]
  142. Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). New York, London: CRC Press.
    [Google Scholar]
  143. Skobeltsyn, G., Mellors, R., Gok, R., Turkelli, N., Yetirmishli, G., & Sandvol, E. (2014). Upper mantle S wave velocity structure of the East Anatolian‐Caucasus region. Tectonics, 33, 207–221.
    [Google Scholar]
  144. Sobornov, K. O. (1994). Structure and petroleum potential of the Dagestan thrust belt, northeastern Caucasus, Russia. Bulletin of Canadian Petroleum Geology, 42, 352–364.
    [Google Scholar]
  145. Sobornov, K. O. (1996). Lateral variations in structural styles of tectonic wedging in the northeastern Caucasus, Russia. Bulletin of Canadian Petroleum Geology, 44, 385–399.
    [Google Scholar]
  146. Sokhadze, G., Floyd, M., Godoladze, T., King, R., Cowgill, E., Javakhishvili, Z., … Reilinger, R. (2018). Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser‐Greater Caucasus continental collision. Earth and Planetary Science Letters, 481, 154–161.
    [Google Scholar]
  147. Somin, M. L. (2011). Pre‐Jurassic basement of the Greater Caucasus: Brief overview. Turkish Journal of Earth Sciences, 20, 545–610.
    [Google Scholar]
  148. Soria, J., Fernandez, J., & Viseras, C. (1999). Late Miocene stratigraphy and palaeo geographic evolution of the intramontane Guadix Basin (Central Betic Cordillera, Spain): Implications for an Atlantic‐Mediterranean connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 255–266.
    [Google Scholar]
  149. Sosson, M., Rolland, Y., Muller, C., Danelian, T., Melkonyan, R., Kekelia, S., … Galoyan, G. (2010). Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geological society (Vol. 340, pp. 329–352). London, UK: Special Publications.
    [Google Scholar]
  150. Stampfli, G., Hochard, C., Verard, C., & Wilhem, C. (2013). The formation of Pangea. Tectonophysics, 593, 1–19.
    [Google Scholar]
  151. Stampfli, G. M. (2013). Response to the comments on “the formation of Pangea" by DA Ruban. Tectonophysics, 608, 1445–1447.
    [Google Scholar]
  152. Stampfli, G. M., & Borel, G. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17–33.
    [Google Scholar]
  153. Stern, R. J., & Johnson, P. (2010). Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth‐Science Reviews, 101, 29–67.
    [Google Scholar]
  154. Tate, G. W., McQuarrie, N., van Hinsbergen, D. J., Bakker, R. R., Harris, R., & Jiang, H. (2015). Australia going down under: Quantifying continental subduction during arccontinent accretion in Timor‐Leste. Geosphere, 11, 1860–1883.
    [Google Scholar]
  155. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc‐continent collision in Taiwan. Tectonophysics, 183, 57–76.
    [Google Scholar]
  156. Topuz, G., Candan, O., Zack, T., & Yílmaz, A. (2017). East Anatolian plateau constructed over a continental basement: No evidence for the East Anatolian accretionary complex. Geology, 45, 791–794.
    [Google Scholar]
  157. Toussaint, G., Burov, E., & Avouac, J. P. (2004). Tectonic evolution of a continental collision zone: A thermomechanical numerical model. Tectonics, 23, TC6003.
    [Google Scholar]
  158. Toussaint, G., Burov, E., & Jolivet, L. (2004). Continental plate collision: Unstable vs. stable slab dynamics. Geology, 32, 33–36.
    [Google Scholar]
  159. Trexler, C. C. (2018). Structural Investigations of the Tectonic History of the Western Greater Caucasus Mountains. Republic of Georgia: University of California, Davis.
    [Google Scholar]
  160. Tricart, P. (1984). From passive margin to continental collision; a tectonic scenario for the Western Alps. American Journal of Science, 284, 97–120.
    [Google Scholar]
  161. Tye, A., Wolf, A., & Niemi, N. (2019). Bayesian population correlation: A probabilistic approach to inferring and comparing population distributions for detrital zircon ages. Chemical Geology, 518, 67–78.
    [Google Scholar]
  162. van Baak, C. G., Grothe, A., Richards, K., Stoica, M., Aliyeva, E., Davies, G. R., … Krijgsman, W. (2019). Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations. Global and Planetary Change, 174, 153–163.
    [Google Scholar]
  163. van Baak, C. G., Krijgsman, W., Magyar, I., Sztano, O., Golovina, L. A., Grothe, A., … Radionova, E. P. (2017). Paratethys response to the Messinian salinity crisis. Earth‐Science Reviews, 172, 193–223.
    [Google Scholar]
  164. van Baak, C. G., Radionova, E. P., Golovina, L. A., Raffi, I., Kuiper, K. F., Vasiliev, I., & Krijgsman, W. (2015). Messinian events in the Black Sea. Terra Nova, 27, 433–441.
    [Google Scholar]
  165. van der Boon, A., van Hinsbergen, D., Rezaeian, M., Gurer, D., Honarmand, M., Pastor‐Galan, D., … Langereis, C. (2018). Quantifying Arabia‐Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth and Planetary Science Letters, 482, 454–469.
    [Google Scholar]
  166. van Der Boon, A., Kuiper, K., Villa, G., Renema, W., Meijers, M., Langereis, C., … Krijgsman, W. (2017). Onset of Maikop sedimentation and cessation of Eocene arc volcanism in the Talysh Mountains, Azerbaijan. Geological society (Vol. 428, pp. 145–169). London, UK: Special Publications.
    [Google Scholar]
  167. van Hinsbergen, D. J., Lippert, P. C., Dupont‐Nivet, G., McQuarrie, N., Doubrovine, P. V., Spakman, W., & Torsvik, T. H. (2012). Greater India Basin hypothesis and a two‐stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences, 109, 7659–7664.
    [Google Scholar]
  168. van Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M., MaüCtenco, L. C., Maffione, M., Vissers, R. L., … Spakman, W., (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229.
    [Google Scholar]
  169. Vasey, D., Cowgill, E., Roeske, S., Niemi, N., Godoladze, T., Skhirtladze, I., & Gogoladze, S. (2020). Evolution of the Greater Caucasus basement and formation of the Main Caucasus Thrust Georgia. Tectonics, e2019TC005828.).
    [Google Scholar]
  170. Vasiliev, I., Reichart, G. J., & Krijgsman, W. (2013). Impact of the Messinian Salinity Crisis on Black Sea hydrology: Insights from hydrogen isotopes analysis on biomarkers. Earth and Planetary Science Letters, 362, 272–282.
    [Google Scholar]
  171. Verdel, C., Wernicke, B. P., Hassanzadeh, J., & Guest, B. (2011). A Paleogene extensional arc flare‐up in Iran. Tectonics, 30, TC3008.
    [Google Scholar]
  172. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312, 190–194.
    [Google Scholar]
  173. Vincent, S. J., Braham, W., Lavrishchev, V. A., Maynard, J. R., & Harland, M. (2016). The formation and inversion of the western Greater Caucasus Basin and the uplift of the western Greater Caucasus: Implications for the wider Black Sea region. Tectonics, 35, 2948–2962.
    [Google Scholar]
  174. Vincent, S. J., Carter, A., Lavrishchev, V. A., Rice, S. P., Barabadze, T. G., & Hovius, N. (2011). The exhumation of the western Greater Caucasus: A thermochronometric study. Geological Magazine, 148, 1–21.
    [Google Scholar]
  175. Vincent, S. J., Davies, C. E., Richards, K., & Aliyeva, E. (2010). Contrasting Pliocene fluvial depositional systems within the rapidly subsiding South Caspian Basin; a case study of the palaeo‐Volga and palaeo‐Kura river systems in the Surakhany Suite, Upper Productive Series, onshore Azerbaijan. Marine and Petroleum Geology, 27, 2079–2106.
    [Google Scholar]
  176. Vincent, S. J., Hyden, F., & Braham, W. (2014). Along‐strike variations in the composition of sandstones derived from the uplifting western Greater Caucasus: Causes and implications for reservoir quality prediction in the Eastern Black Sea. Geological society (Vol. 386, 111–127). London, UK: Special Publications.
    [Google Scholar]
  177. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S., & Barabadze, T. G. (2007). Oligocene uplift of theWestern Greater Caucasus: An effect of initial Arabia‐Eurasia collision. Terra Nova, 19, 160–166.
    [Google Scholar]
  178. Vincent, S. J., Morton, A. C., Hyden, F., & Fanning, M. (2013). Insights from petrography, mineralogy and U‐Pb zircon geochronology into the provenance and reservoir potential of Cenozoic siliciclastic depositional systems supplying the northern margin of the Eastern Black Sea. Marine and Petroleum Geology, 45, 331–348.
    [Google Scholar]
  179. Vincent, S. J., Saintot, A., Mosar, J., Okay, A. I., & Nikishin, A. M. (2018). Comment on ‘relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance’ by Cowgill et al. (2016). Tectonics37, 1006–1016.
    [Google Scholar]
  180. Vincent, S. J., Somin, M. L., Carter, A., Vezzoli, G., Fox, M., & Vautravers, B. (2020). Testing models of Cenozoic exhumation in the western Greater Caucasus. Tectonics, 39(2), e2018TC005451.
    [Google Scholar]
  181. Voronin, M., Gavrilov, M., & Khain, V. (1959). Geological map of the USSR, Caucasus series sheet K‐39‐XXXI, scale 1:200,000. Ministry of Geology and Mineral Protection USSR, Moscow.
    [Google Scholar]
  182. Wang, C. Y., Campbell, I. H., Stepanov, A. S., Allen, C. M., & Burtsev, I. N. (2011). Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75, 1308–1345.
    [Google Scholar]
  183. Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L., Gehrels, G. E., & Yang, H. (2006). Detrital zircon provenance of the Late Triassic Songpan‐Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34, 97–100.
    [Google Scholar]
  184. Wu, F. Y., Ji, W. Q., Wang, J. G., Liu, C. Z., Chung, S. L., & Clift, P. D. (2014). Zircon U‐Pb and Hf isotopic constraints on the onset time of India‐Asia collision. American Journal of Science, 314, 548–579.
    [Google Scholar]
  185. Yílmaz, A., Adamia, S., & Yílmaz, H. (2014). Comparisons of the suture zones along a geotraverse from the Scythian Platform to the Arabian Platform. Geoscience Frontiers, 5, 855–875.
    [Google Scholar]
  186. Zagorevski, A., & van Staal, C. (2011). The record of Ordovician arc‐arc and arc‐continent collisions in the Canadian Appalachians during the closure of Iapetus. In Arc‐continent collision (pp. 341–371). Berlin, Heildelberg: Springer.
    [Google Scholar]
  187. Zakariadze, G. S., Dilek, Y., Adamia, S. A., Oberhansli, R., Karpenko, S., Bazylev, B., & Solovüfeva, N. (2007). Geochemistry and geochronology of the Neoproterozoic Pan‐African Transcaucasian Massif (Republic of Georgia) and implications for island arc evolution of the late Precambrian Arabian‐Nubian Shield. Gondwana Research, 11, 92–108.
    [Google Scholar]
  188. Zhuang, G., Najman, Y., Guillot, S., Roddaz, M., Antoine, P. O., Metais, G., … Solangi, S. H. (2015). Constraints on the collision and the pre‐collision tectonic configuration between India and Asia from detrital geochronology, ther mochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth and Planetary Science Letters, 432, 363–373.
    [Google Scholar]
  189. Zonenshain, L. P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back‐arc basins. Tectonophysics, 123, 181–211.
    [Google Scholar]
  190. Zubakov, V. (2001). History and causes of variations in the Caspian Sea level: The Miopliocene, 7.1.1.95 million years ago. Water Resources, 28, 249–256.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12499
Loading
/content/journals/10.1111/bre.12499
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Caucasus; collision; detrital zircon; provenance; Tethys

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error