1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Subsidence analysis study for several Triassic carbonate platforms from the eastern Northern Calcareous Alps shows that salt expulsion allowed for the growth of thick isolated depocentres (>1.5 km) at rates faster than those tectonic subsidence alone can provide. Our results, in addition to independent regional geological evidence, argue against previous models of thick‐skinned extension controlling accommodation space. Differential sedimentary loading and stretching of the salt layer can explain the development of the Triassic isolated carbonate platforms in the Northern Calcareous Alps, with salt expulsion being proportional to the growth potential of the carbonate producers. Aside of topographic loads, early diageneses of carbonates allow for the density inversion between sediment and salt, with differential loading by carbonate aggradation leading to a self‐sustained feedback cycle of density‐driven and gradient load subsidence; stretching of the salt layer and extensional deformation of its overburden, as constrained by cross‐section restoration, also contributed to diapir initiation and salt expulsion. Our model can: (a) explain the occurrence of isolated Middle Triassic carbonate platforms in the eastern Northern Calcareous Alps, and (b) differentiate between accommodation space controlled by (local) salt expulsion and by (regional) tectonic subsidence. The Triassic Neo‐Tethys shelf of the studied area constituted therefore a . This contribution and methods herein can also be applied to other carbonate platform systems developed on salt basins, especially where the transition from rift to drift remains unclear.

,

Subsidence and growth rates of the Triassic units compared to subsidence mechanisms based on Schlager (1981). The accumulation rate of stratigraphic units is displayed in comparison to the derived total subsidence curve. Two kinds of units can be individuated based on their total subsidence curves: one group for which accommodation space was driven by thermal subsidence, and a second group falling above the thermal subsidence curve, indicating subsidence rates requiring salt expulsion in addition to cooling.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12500
2021-03-15
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.). Chichester, West Susex, UK: Wiley‐Blackwell.
    [Google Scholar]
  2. Aubrecht, R., Sýkora, M., Uher, P., Li, X.‐H., Yang, Y.‐H., Putiš, M., & Plašienka, D. (2017). Provenance of the Lunz Formation (Carnian) in the Western Carpathians, Slovakia: Heavy mineral study and in situ LA–ICP–MS U‐Pb detrital zircon dating. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 233–253. https://doi.org/10.1016/j.palaeo.2017.02.004
    [Google Scholar]
  3. Bathurst, R. G. C. (1983). Early diagenesis of carbonate sediments.In A.Parker, & B. W.Sellwood (Eds.), Sediment diagenesis. NATO ASI Series (Series C: Mathematical and Physical Sciences) (Vol. 115). Dordrecht, the Netherlands: Springer.
    [Google Scholar]
  4. Baxter, K., Cooper, G. T., Hill, K. C., & O`Brien, G. W. (1999). Late Jurassic subsidence and passive margin evolution in the Vulcan Sub‐basin, north‐west Australia: Constraints from basin modelling. Basin Research, 11, 97–111. https://doi.org/10.1046/j.1365‐2117.1999.00088.x
    [Google Scholar]
  5. Bechstädt, T., & Mostler, H. (1974).Mikrofazies und Mikrofauna mitteltriadischer Beckensedimente der Nördlichen Kalkalkpen Tirols: Geologisch‐Paläontologische Mitteilungen Innsbruck (Vol. 4, pp. 1–74).
  6. Bechtel, A., Rünstler, H., Gawlick, H. J., & Gratzer, R. (2005).Depositional environment of the latest Gutenstein Formation (late Lower Anisian) from the Rabenkogel (Salzkammergut area, Austria), as deduced from hydrocarbon biomarker composition. J. Alp. Geol., Mitt. Ges. Geol. Bergbaustud. Österr. 47, 159–167.
  7. Behrens, M. (1972).Schwermineralverteilungen und Sedimentstrukturen in den Lunzer Schichten (Kam, Trias, Österreich): Jahrbuch Der Geologischen Bundesanstalt. (Vol. 116, pp. 51–83).
  8. Berra, F., & Carminati, E. (2009). Subsidence history from backstripping analysis of the Permo‐Mesozoic succession of the Central Southern Alps (Northern Italy). Basin Research, 22, 952–975.
    [Google Scholar]
  9. Bertran, G., & Milton, N. (1989). Reconstructing basin evolution from sedimentary thickness: The importance of paleobathymetric control, with reference to the North Sea. Basin Research, 1, 247–257.
    [Google Scholar]
  10. Bond, G., Kominz, M., Steckler, M. S., & Grotzinger, J. P. (1989). Role of thermal subsidence, flexure, and eustasy in the evolution of early Paleozoic passive‐margin carbonate platforms. In P. D.Crevello, J. L.Wilson, J. F.Sarg, & J. F.Read (Eds.), Controls on carbonate platforms and basin development (pp. 39–61). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.89.44
    [Google Scholar]
  11. Bosellini, A., Lobitzer, H., Brandner, R., & Resch, W. (1980).The Complex Basins of the Calcareous Alps and Palaeomargins: Abhandlungen der Geologischen Bundesanstalt. (Vol. 34, pp. 287–325).
  12. Bosellini, A., Neri, C., & Stefani, M. (1996).Introduzione alla Geologia delle Dolomiti. Società Geologica Italiana, 78ª Riunione Estiva San Cassiano (BZ). 9–62.
  13. Brandner, R. (1984). Meeresspiegelschwankungen und Tektonik in der Trias der NW‐Tethys: Jb. Geol. B.‐A. (Vol. 126, pp. 435–475).
  14. Brandner, R., & Resch, W. (1981).Reef development in the Middle Triassic (Ladinian and Cordevolian) of the Northern Limestone Alps near Innsbruck, Austria. SEPM Spec. Publ., 30: 203–231, 27 Abb., Tulsa.
  15. Bryda, G., van Husen, D., Kreuss, O., Koukal, V., Moser, M., Pavlik, W., …Slapansky, P. (2013). Geologische Karte der Republik Österreich 1:50000. Sheet 101 Eisenerz. Wien 2013.
  16. Cassinis, G., Elter, G., Rau, A., & Tongiorgi, M. (1979).Verrucano: A tectofacies of the Alpine‐Mediterranean Southern Europe. Memorie Della Società Geological Italiana.20, 135–149.
  17. Channell, J. E. T., Brandner, R., Spieler, A., & Stoner, J. S. (1992). Paleomagnetism and paleogeography of the Northern Calcareous Alps (Austria). Tectonics, 11, 792–810. https://doi.org/10.1029/91TC03089
    [Google Scholar]
  18. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2020). The ICS international chronostratigraphic chart. Episodes, 36, 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
    [Google Scholar]
  19. Decarlis, A., Manatschal, G., Haupert, I., & Masini, E. (2015). The tectono‐stratigraphic evolution of distal, hyperextended magma poor conjugate rifted margins: Examples from the Alpine Tethys and Newfoundland‐Iberia. Marine and Petroleum Geology, 68A, 54–72. https://doi.org/10.1016/j.marpetgeo.2015.08.005
    [Google Scholar]
  20. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 389–404. https://doi.org/10.1016/0264‐8172(92)90050‐O
    [Google Scholar]
  21. Friedman, G. M. (1964). Early diagenesis and lithification in carbonate sediments. Journal of Sedimentary Research, 34, 777–813.
    [Google Scholar]
  22. Gawlick, H. J., & Missoni, S. (2015). Middle Triassic radiolarite pebbles in the Middle Jurassic Hallstatt Mélange of the Eastern Alps: Implications for Triassic‐Jurassic geodynamic and paleogeographic reconstructions of the western Tethyan realm. Facies, 61(3), 13. https://doi.org/10.1007/s10347‐015‐0439‐3
    [Google Scholar]
  23. Gawlick, H. J., & Missoni, S. (2019). Middle‐Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine‐Carpathian‐Dinaridic Mountain Range. Gondwana Research, 74, 144–172. https://doi.org/10.1016/j.gr.2019.03.003
    [Google Scholar]
  24. Goldhammer, R. K. (1997). Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sediment Research, 67, 26–35.
    [Google Scholar]
  25. Golebiowski, R. (1991). Becken und Riffe der Alpinen Obertrias. – Lithostratigraphie und Biofazies der Kössener Formation. In D.Nagel, & G.Rabeder (Eds.), Exkursionen im Jungpaläozoikum und Mesozoikum Österreichs (pp. 79–119). Wien, Austria: Österreichische Paläontologische Gesellschaft.
    [Google Scholar]
  26. Granado, P., Roca, E., Strauss, P., Pelz, K., & Muñoz, J. A. (2019). Structural styles in fold‐and‐thrust belts involving early salt structures: The Northern Calcareous Alps (Austria). Geology, 47(1), 51–54. https://doi.org/10.1130/G45281.1
    [Google Scholar]
  27. Granado, P., Urgeles, R., Sábat, F., Albert‐Villanueva, E., Roca, E., Muñoz, J. A., … Gambini, R. (2016). Geodynamical framework and hydrocarbon plays of a salt giant: The North Western Mediterranean Basin. Petroleum Geoscience, 22, 309–321. https://doi.org/10.1144/petgeo2015‐084
    [Google Scholar]
  28. Haas, J., Kovàcs, S., Krystyn, L., & Lein, R. (1995). Significance of Late Permian‐Triassic facies zones in terrane reconstructions in the Alpine‐North Pannonian domain. Tectonophysics, 242, 19–40. https://doi.org/10.1016/0040‐1951(94)00157‐5
    [Google Scholar]
  29. Hahn, F. F. (1912). Versuch zu einer Gliederung der austroalpinen Masse westlich der österreichischen Traun.Verh. k.k. geol. Reichsanst., 1912/15, 337–344, Wien.
  30. Hahn, F. F. (1913). Grundzüge des Baues der nördlichen Kalkalpen zwischen Inn und Enns. Teil I und II.Mitt. Geol. Ges. Wien, 6(1913), 238–357 u. 374–501, Wien.
  31. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling. Berlin, Heidelberg, Germany: Springer. https://doi.org/10.1007/978‐3‐540‐72318‐9
    [Google Scholar]
  32. Hattori, K. E., Loukcks, R. G., & Kerans, C. (2019). Stratal architecture of a halocinetically controlled path reef complex and implications for reservoir quality: A case study from the Aptian James Limestone in the Fairway Field, East Texas Basin. Sedimentary Geology, 387, 87–103.
    [Google Scholar]
  33. Hornung, T., & Brandner, R. (2005). Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): Local black shale events controlled by regional tectonics, climatic change and plate tectonics. Facies, 51,475–494.
    [Google Scholar]
  34. Hornung, T., Krystin, L., & Brandner, R. (2007). A Tethys‐wide mid‐Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)?Journal of Asian Earth Sciences, 30, 285–302. https://doi.org/10.1016/j.jseaes.2006.10.001
    [Google Scholar]
  35. Hudec, M., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 8, 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  36. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. GSA Bulletin, 121, 201–221. https://doi.org/10.1130/B26275.1
    [Google Scholar]
  37. Jackson, C.‐A.‐L., Duffy, O. B., Fernandez, N., Dooley, T. P., Hudec, M. R., Jackson, M. P. A., & Burg, G. (2019). The stratigraphic record of minibasin subsidence, Precaspian Basin, Kazakhstan. Basin Research, 61(1), 570–625. https://doi.org/10.1111/bre.12393
    [Google Scholar]
  38. Jackson, C.‐A.‐L., & Stewart, S. A.(2017). Significance of Zechstein Supergroup salt on the UK and Norwegian continental shelves: A review. In J. I.Soto, J. F.Finch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic margins. Tectonics and hydrocarbon potential (pp. 467–479). Amsterdam, the Netherlands: Elsevier. Chapter 21.
    [Google Scholar]
  39. Jackson, M. P. A., & Harrison, J. C. (2006). An allochthonous salt canopy on Axel Heiberg Island, Sverdrup Basin, Arctic Canada. Geology, 34, 1045–1048.
    [Google Scholar]
  40. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics. Principles and practice (p. 498). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  41. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28(4). https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  42. Karlo, J. F., van Buchem, F. S. P., Moen, J., & Milroy, K. (2014). Triassic‐age salt tectonics of the Central North Sea. Interpretation, 2(4), SM19–SM28. https://doi.org/10.1190/INT‐2014‐0032.1
    [Google Scholar]
  43. Kozur, H. (1991). The evolution of the Meliata‐Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 109–135.
    [Google Scholar]
  44. Krainer, K., & Stingl, V. (1986).Alluviale Schuttfächersedimente im Ostalpinen Perm am Beispiel der Präbichlschichten an der Typuslokalität bei Eisenerz/Steiermark (Österreich): Mitteilungen Der Österreichischen Geologischen Gesellschaft. (Vol. 78, pp. 231–249).
  45. Krystyn, L., & Lein, R. (1996).Triassische Becken‐ und Plattformsedimente der östlichen Kalkalpen: Berichte Der Geologischen Bundesanstalt. (Vol. 33, pp. 1–23).
  46. Krystyn, L., Lein, R., & Richoz, S. (2008). Der Gamsstein: Werden und Vergehen einer Wettersteinkalk‐Plattform. PANGEO 2008. Fieldtrip Guide. Journal of Alpine Geology, 49, 157–172.
    [Google Scholar]
  47. Kukla, P. A., Strozyk, F., & Mohriak, W. U. (2018). South Atlantic salt basins – Witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57. https://doi.org/10.1016/j.gr.2017.03.012
    [Google Scholar]
  48. Lee, E. Y., Novotny, J., & Wagreich, M. (2019). Subsidence analysis and visualization: For sedimentary basin analysis and modelling. SpringerBriefs in Petroleum Geoscience and Engineering (1st ed., p. 68). Springer.
    [Google Scholar]
  49. Lein, R. (1987). Evolution of the Northern Calcareous Alps during Triassic times. In H.Flügel, & P.Faupl (Eds.), Geodynamics of the Eastern Alps (pp. 85–102). Wien, Austria: Deuticke.
    [Google Scholar]
  50. Lein, R., Krystyn, L., Richoz, S., & Lieberman, H. (2012). Middle Triassic platform/basin transition along the Alpine passive continental margin facing the Tethys Ocean – The Gamsstein: The rise and fall of a Wetterstein Limestone Platform (Styria, Austria). Journal of Alpine Geology, 54, 471–498.
    [Google Scholar]
  51. Leitner, C., Gross, D., Friedl, G., Genser, J., & Neubauer, F. (2020). Sandstone diagenesis in a halite deposit, from surface to high‐grade diagenesis (Haselgebirge Formation, Eastern Alps). Sedimentary Geology, 399. https://doi.org/10.1016/j.sedgeo.2020.105614
    [Google Scholar]
  52. Leitner, C., Neubauer, F., Urai, J. L., & Schoenherr, J. (2011). Structure and evolution of a rocksalt‐mudrock‐tectonite: The Haselgebirge in the Northern Calcareous Alps. Journal of Structural Geology, 33, 970–984. https://doi.org/10.1016/j.jsg.2011.02.008
    [Google Scholar]
  53. Leitner, C., & Spötl, C. (2017). The eastern Alps: Multistage development of extremely deformed evaporites. In J. I.Soto, J. F.Finch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic margins. Tectonics and hydrocarbon potential (pp. 467–479). Amsterdam, the Netherlands: Elsevier. Chapter 21.
    [Google Scholar]
  54. Leitner, C., Weismaier, S., Köster, M. H., Gilg, H. A., Finger, F., & Neubauer, F. (2017). Alpine halite‐mudstone‐polyhalite tectonites: Sedimentology and early diagenesis of evaporites in an ancient rift setting (Haselgebirge Formation, eastern Alps). Geological Society of America Bulletin, 129(11‐12), 1537–1553. https://doi.org/10.1130/B31747.1
    [Google Scholar]
  55. Linzer, H. G., Ratschbacher, L., & Frisch, W. (1995). Transpressional collision structures in the upper crust: The fold‐thrust belt of the Northern Calcareous Alps. Tectonophysics, 242, 41–61. https://doi.org/10.1016/0040‐1951(94)00152‐Y
    [Google Scholar]
  56. Liro, L., & Coen, R. (1995). Salt deformation history and postsalt structural trends, offshore southern Gabon, West Africa. In M.Jackson, D.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (pp. 323–331) AAPG Memoir 65.
    [Google Scholar]
  57. López‐Mir, B., Muñoz, J. A., & García‐Senz, J. (2014). Restoration of basins driven by extension and salt tectonics: Example from the Cotiella Basin in the central Pyrenees. Journal of Structural Geology, 69, 147–162.
    [Google Scholar]
  58. Lukeneder, S., Lukeneder, A., Harzhauser, M., Islamoğlu, Y., Krystyn, L., & Lein, R. (2012). A delayed carbonate factory breakdown during the Tethyan‐wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey). Facies, 58, 279–296. https://doi.org/10.1007/s10347‐011‐0279‐8
    [Google Scholar]
  59. Mandl, G. W. (1984). Zur Trias des Hallstätter Faziesraumes – ein Modell am Beispiel Salzkammergut (Nördliche Kalkalpen, Österreich). Mitt. Ges. Geol. Bergbaustud., 30/31, pp. 133–176.
  60. Mandl, G. W. (2000). The Alpine sector of the Tethyan shelf ‐ examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitteilungen Der Österreichischen Geologischen Gesellschaft (Vol. 92, pp. 61–77).
  61. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  62. McRoberts, C. A., Krystyn, L., & Shea, A. (2008). Rhaetian (Late Triassic) Monotis (Bivalvia: Pectinoida): From the eastern Northern Calcareous Alps (Austria) and the end‐Norian Crisis in pelagic faunas. Palaeontology, 51, 721–735. https://doi.org/10.1111/j.1475‐4983.2008.00776.x
    [Google Scholar]
  63. Merino, O. A., Della Porta, G., Kenter, J., Verwer, K., Harris, P., Adams, E., … Corrochano, D. (2012). Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): Influence of tectonics, eustacy and carbonate production. Sedimentology, 59, 118–155. https://doi.org/10.1111/j.1365‐3091.2011.01232.x
    [Google Scholar]
  64. Miall, A. D. (2000). Principles of sedimentary basin analysis (3rd. ed., p. 616). New York: Springer‐Verlag.
    [Google Scholar]
  65. Mohn, G., Manatschal, G., Müntener, O., Beltrando, M., & Masini, E. (2010). Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. International Journal of Earth Sciences, 99, 75–101.
    [Google Scholar]
  66. Mohr, M., Kukla, P. A., Urai, J. L., & Bresser, G. (2005). Multiphase salt tectonic evolution in NW Germany: Seismic interpretation and retro‐deformation. International Journal of Earth Science, 94, 917–940. https://doi.org/10.1007/s00531‐005‐0039‐5
    [Google Scholar]
  67. Moragas, M., Vergés, J., Saura, E., Martín‐Martín, J., Messager, G., Merino‐Tomé, Ó., … Hunt, D. W. (2018). Jurassic rifting to post‐rift subsidence analysis in the Central High Atlas and its relation to salt diapirism. Basin Research, 30, 336–362. https://doi.org/10.1111/bre.12223
    [Google Scholar]
  68. Moser, M., & Tanzberger, A. (2015). Mikrofacies und Stratigrafie des Gamssteines (Palfau, Steiermark).Jahrbuch Der Geologischen Bundesanstalt, 155, 235–263.
  69. Mostler, H., & Roßner, R. (1984). Mikrofazies und Palökologie der höheren Werfener Schichten (Untertrias) der Nördlichen Kalkalpen. Facies, 10, 87–143. https://doi.org/10.1007/BF02536689
    [Google Scholar]
  70. Mueller, S., Krystyn, L., & Kürschner, W. M. (2016). Climate variability during the Carnian Pluvial Phase – A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 198–211. https://doi.org/10.1016/j.palaeo.2015.06.008
    [Google Scholar]
  71. Neubauer, R., Genser, J., & Handler, R. (2000).The Eastern Alps: Results of a two‐stage collision process. Mitteilungen Der Österreichischen Geologischen Gesellschaft, 92, 117–134.
  72. Nittel, P. (2006). Beiträge zur Stratigraphie und Mikropaläontologie der Mitteltrias der Innsbrucker Nordkette (Nördliche Kalkalpen, Austria). Geo. Alp, 3: 93–145, 12 Taf., 18 Abb., Innsbruck.
  73. Oberhauser, R. (1980). Der geologische Aufbau Österreichs (p. 701). XIX. Wien/New York: Springer.
    [Google Scholar]
  74. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2016). A concise geologic time scale 2016. Amsterdam, Netherlands: Elsevier.
    [Google Scholar]
  75. Ortner, H., Reiter, F., & Brandner, R. (2006). Kinematics of the Inntal shear zone–sub‐Tauern ramp fault system and the interpretation of the TRANSALP seismic section, Eastern Alps, Austria. Tectonophysics, 414, 241–258. https://doi.org/10.1016/j.tecto.2005.10.017
    [Google Scholar]
  76. Peel, F. (2014). How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics, 630, 222–235. https://doi.org/10.1016/j.tecto.2014.05.027
    [Google Scholar]
  77. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from iberia‐newfoundland: A new point of view. International Journal of Earth Sciences, 98, 1581–1597. https://doi.org/10.1007/s00531‐008‐0337‐9
    [Google Scholar]
  78. Peron‐Pinvidic, G., Manatschal, G., & “IMAGinING RIFTING” Workshop Participants . (2019). Rifted margins: State of the art and future challenges. Frontiers in Earth Science, 7, 218. https://doi.org/10.3389/feart.2019.00218
    [Google Scholar]
  79. Pilcher, R. S., Kilsdonk, B., & Trude, J. (2011). Primary basins and their boundaries in the deep‐water northern Gulf of Mexico: Origin, trap types, and petroleum system implications. AAPG Bulletin, 95(2), 219–240. https://doi.org/10.1306/06301010004
    [Google Scholar]
  80. Piros, O., Mandl, G., Lein, R., Pavlik, W., Berczi‐Makk, A., Siblik, M., & Lobitzer, H. (1991).Dasycladaceen‐Assoziationen aus triadischen Seichtwasserkarbonaten des Ostabschnittes der Nördlichen Kalkalpen. In H.Lobitzer, & G.Császár; Geologische Bundesanstalt (Austria: 1945) (Eds.), Jubiläumsschrift 20 Jahre geologische Zusammenarbeit (Vol. 2). Österreich‐Ungarn, Wien: Geologische Bundesanstalt.
    [Google Scholar]
  81. Quirk, D. G., Hertle, M., Jeppesen, J. W., Raven, M., Mohriak, W. U., Kann, D. J., Mendes, M. P. (2013). Rifting, subsidence and continental break‐up above a mantle plume in the Central South Atlantic. In W. U.Mohriak, A.Daforth, P. J.Post, D. E.Brown, G.Tari, M.Nemčok, & S. T.Sinha (Eds.), Conjugate margins (p. 369). London: Geological Society, London, Special Publication. https://doi.org/10.1144/SP369.20
    [Google Scholar]
  82. Richoz, S., & Krystyn, L. (2015). The Upper Triassic events recorded in platform and basin of the Austrian Alps. The Triassic/Jurassic GSSP and Norian/Rhaetian GSSP Candidate: Berichte Der Geologischen Bundesanstalt. (Vol. 111, pp. 75–136).
  83. Richoz, S., van de Schootbrugge, B., Pross, J., Püttmann, W., Quan, T. M., Lindström, S., … Wignall, P. B. (2012). Hydrogen sulphide poisoning of shallow seas following the end‐Triassic extinction. Nature Geoscience, 5(9), 662–667. https://doi.org/10.1038/ngeo1539
    [Google Scholar]
  84. Roca, E., Muñoz, J. A., Ferrer, O., & Ellouz, N. (2011). The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics, 30, TC2001. https://doi.org/10.1029/2010TC002735
    [Google Scholar]
  85. Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R., & Nalpas, T. (2002). Kinematics of a growth/raft system on the West African margin using 3‐D restoration. Journal of Structural Geology, 24, 783–796.
    [Google Scholar]
  86. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154–182. https://doi.org/10.1111/bre.12043
    [Google Scholar]
  87. Rowan, M. (2019). Conundrums in loading‐driven salt movement. Journal of Structural Geology, 125, 256–261.
    [Google Scholar]
  88. Rowan, M. G., & Vendeville, B. C. (2006). Foldbelts with early salt withdrawal and diapirism: Physical models and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia. Marine and Petroleum Geology, 23, 871–891.
    [Google Scholar]
  89. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82, 1055–1082.
    [Google Scholar]
  90. Rüffer, T., & Bechstädt, T. (1998). Triassic sequence stratigraphy in the western part of the Northern Calcareous Alps (Austria). In P.‐C.de Graciansky, J.Hardenbol, T.Jacquin, & P. R.Vail (Eds.), Mesozoic and cenozoic sequence stratigraphy of european basins (pp. 751–781). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.98.60
    [Google Scholar]
  91. Ruttner, A. W., & Schnabel, W. (1988).Geologische Karte der Republik Österreich: Blatt Nr 71 Ybbsitz: Verlag der Geologischen Bundesanstalt Geologische Karte der Republik Österreich 1:50.000 Geologische Karte.
  92. Saura, E., Ardèvol, L., Teixell, A., & Vergés, J. (2016). Rising and falling diapirs, shifting depocenters and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics, 35, 638–662. https://doi.org/10.1002/2015TC004001
    [Google Scholar]
  93. Schlager, W. (1981). The paradox of drowned reefs and carbonate Platforms. Geological Society of America Bulletin, 92, 197–211. https://doi.org/10.1130/0016‐7606(1981)92<197:TPODRA>2.0.CO;2
    [Google Scholar]
  94. Schlager, W. (2007a). Carbonate sedimentology and sequence stratigraphy: Tulsa, Okla., SEPM Concepts in Sedimentology and Paleontology (Vol. 8).
  95. Schlager, W. (2007b). Microbes into atolls ‐ Triassic carbonate production and accumulation in the Dolomites. Bulletin Fuer Angewandte Geologie, 12, 17–22.
    [Google Scholar]
  96. Schlager, W., & Schöllnberger, W. (1974).Das Prinzip stratigraphischer Wenden in der Schichtfolge der Nördlicher Kalkalpen. Mitteilungen Der Österreichischen Gesellschaft, 66/67, 165–193.
  97. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., & Ustaszewski, K. (2008). The Alpine‐Carpathian‐Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
    [Google Scholar]
  98. Schmoker, J. W., & Halley, R. B. (1982). Carbonate porosity versus depth: A predictable relation for South Florida. AAPG Bulletin, 66, 2561–2570.
    [Google Scholar]
  99. Schnabel, W., Fuchs, G., Matura, A., Bryda, G., Egger, J., Krenmayer, H. G., …Scharbert, S.(2002). Geologische Karte von Niederösterreich 1:200.000 mit Legende und Kurzerlaaeuterung. 3B1, Vienna, Geol.B.A.2 sheets.
  100. Schörn, A., Neubauer, F., Genser, J., & Bernroider, M. (2013). The Haselgebirge evaporite mélange in central Northern Calcareous Alps (Austria): Part of the Permian to Lower Triassic rift of the Meliata ocean?Tectonophysics, 583, 28–48.
    [Google Scholar]
  101. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid‐cretaceous subsidence of the Central North Sea basin. Journal of Geophysical Research, 85(B7), 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  102. Soto, J. I., Finch, J. F., & Tari, G. (2017). Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic margins. Tectonics and hydrocarbon potential. Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  103. Spötl, C. (1988a). Sedimentologisch‐fazielle Analyse tektonisierter Evaporitserien ‐ Eine Fallstudie am Beispiel des Alpinen Haselgebirges (Permoskyth, Nördliche Kalkalpen). Geol. Paläont. Mitt. Innsbruck, 15, 59–69.
  104. Spötl, C. (1988b). Schwefelisotopendatierungen und fazielle Entwicklung permoskythischer Anhydrite in den Salzbergbauen von Dürrenberg/Hallein und Hallstatt (Österreich).Mitt. Ges. Geol. Bergbaustud. Österr., 34/35, 209–229.
  105. Spötl, C., & Hasenhüttl, C. (1998). Thermal History of an evaporitic Mélange in the Northern Calcareous Alps (Austria): A Reconnaissance Illite ‘crystallinity’ and Reflectance Study. Geologische Rundschau, 87, 449–460.
    [Google Scholar]
  106. Stapel, G., Cloetingh, S., & Pronk, B. (1996). Quantitative subsidence analysis of the Mesozoic evolution of the Lusitanian basin (Western Iberian margin). Tectonophysics, 266, 493–507. https://doi.org/10.1016/S0040‐1951(96)00203‐X
    [Google Scholar]
  107. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41, 1–13. https://doi.org/10.1016/0012‐821X(78)90036‐5
    [Google Scholar]
  108. Stüwe, K. (2007). Geodynamics of the lithosphere: An introduction (2nd ed., p. 493). Berlin Heidelberg: Springer‐Verlag.
    [Google Scholar]
  109. Teixell, A., Barnolas, A., Rosales, I., & Arboleya, M.‐L. (2017). Structural and facies architecture of a diapir‐related carbonate minibasins (lower and middle Jurassic, High Atlas, Morocco). MPG, 81, 334–360. https://doi.org/10.1016/j.marpetgeo.2017.01.003
    [Google Scholar]
  110. Tollmann, A. (1976a)Analyse des klassischen nordalpinen Mesozoikums: Wien, Deuticke, 580 p.
  111. Tollmann, A. (1976b). Der Bau der Nördlichen Kalkalpen: Wien, Deuticke. 449 p.
  112. Tollmann, A. (1985). Geologie von Österreich, Bd. II: Außerzentralalpiner Anteil. – 710 p., Wien (Deuticke).
  113. Tollmann, A. (1987). Late Jurassic/Neocomian gravitational tectonics in the Northern Calcareous Alps in Austria. In H. W.Flügel, & R.Faupl (Eds.), Geodynamics of the eastern Alps (pp. 112–125). Wien, Austria: Deuticke.
    [Google Scholar]
  114. Tollmann, A., & Faupl, P. (1972).Alpiner Verrucano im Semmering‐ und Wechselgebiet.Verhandlungen Der Geologische Bundesanstalt, 1972,107–118.
  115. Tucker, M. E., Wrigth, V. P., & Dickson, J. A. D. (1990). Carbonate sedimentology (p. 468). Oxford: Blackwell Science Ltd.
    [Google Scholar]
  116. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay Pyrenees. Tectonics, 33, 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  117. Unternehr, P., Péron‐Pinvidic, G., Manatschal, G., & Sutra, E. (2010). Hyper‐extended crust in the South Atlantic: In search of a model. Petroleum Geoscience, 16(3), 207–215. https://doi.org/10.1144/1354‐079309‐904
    [Google Scholar]
  118. van Wees, J. D., Stephenson, R. A., Stovba, S. M., & Shymanovskyi, V. A. (1996). Tectonic variation in the Dniepr‐Donets Basin from automated modelling of backstripped subsidence curves. Tectonophysics, 268, 257–280. https://doi.org/10.1016/S0040‐1951(96)00233‐8
    [Google Scholar]
  119. Vendeville, B., & Jackson, M. P. A. (1992). The fall of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9, 354–371. https://doi.org/10.1016/0264‐8172(92)90048‐J
    [Google Scholar]
  120. Vendeville, B., Jackson, M. P. A., & Weijemars, R. (1993). Rates of salt flow in passive diapirs and their source layers. In J. M.Armentrout, R.Bloch, H. C.Olson & B. F.Perkins (Eds.), Rates of Geologic Processes, Tectonics, Sedimentation, Eustasy and Climate–Implications for Hydrocarbon Exploration. SEPM Society for Sedimentary Geology, (14, pp. 269–276). https://doi.org/10.5724/gcs.93.14.0269
    [Google Scholar]
  121. Wagreich, M. (2009).Stratigraphic constraints on climate control of Lower Cretaceous oceanic red beds in the Northern Calcareous Alps (Austria). In X.Hu, C.Wang, R. W.Scott, M.Wagreich, & L.Jansa (Eds.), Cretaceous oceanic red beds: Stratigraphy, composition, origins, and paleoceanographic and paleoclimatic significance (pp. 91–98). SEPM Special Publication.
    [Google Scholar]
  122. Warksitzka, M., Kley, J., & Kukowski, N. (2013). Salt diapirism driven by differential loading – Some insights from analogue modelling. Tectonophysics, 591, 83–97. https://doi.org/10.1016/j.tecto.2011.11.018
    [Google Scholar]
  123. Watts, A. B., & Ryan, W. B. F. (1976). Flexure of the lithosphere and continental margin basins. Tectonophysics, 36, 25–44. https://doi.org/10.1016/0040‐1951(76)90004‐4
    [Google Scholar]
  124. Wessely, G. (1992). The Calcareous Alps below the Vienna Basin in Austria and their structural and facial development in the Alpine‐Carpathian border zone. Geologica Carpathica, 43(6), 347–353.
    [Google Scholar]
  125. Wessely, G. (2006). Geologie von Niederösterreich (p. 416). Wien, Austria: Geologische Bundesanstalt. ISBN 3‐85316‐23‐9.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12500
Loading
/content/journals/10.1111/bre.12500
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): carbonates; Northern Calcareous Alps; salt tectonics; subsidence analysis

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error