1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Extensive 2D multichannel seismic (~17340 km) and well data provide an opportunity to investigate the source to sink processes and triggering factors of the Late Miocene sedimentary record in the Ulleung Basin, East Sea (Sea of Japan). The sedimentary succession of the basin comprises two distinct deep‐water depositional systems, which are characterised by stacked mass‐transport deposits (MTDs) and subsequent submarine fan. Individual MTDs spread downslope over areas as large as ~9000 km2 with NW–SE or N–S flow direction. The deep‐water fan consists of distributary channel‐lobe complexes (DLCs) that are 80 km wide and 140 km long. Two major tectonic periods driven by structural deformation characterised the Late Miocene deep‐water sedimentation growth. During early to middle Late Miocene (10.3–8.2 Ma), the MTDs were sourced from degraded fold triggered by slope oversteepening and seismicity on the southeastern basin margin, where the thrust‐and‐fold belt developed. In the middle to latest Late Miocene (8.2–6.3 Ma), the DLCs were fed by canyon‐channel systems on the southwestern basin margin, where the tectonic uplift of the anticline was active. Therefore, this study suggests that strike variation in shelf‐margin erosional and depositional processes were caused principally by the locations and timings of tectonic deformation.

,

This study suggests that strike variation in shelf‐margin erosional and depositional processes were caused principally by the locations and timings of tectonic deformation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12501
2021-03-15
2024-03-29
Loading full text...

Full text loading...

References

  1. Adeogba, A. A., McHargue, T. R., & Graham, S. A. (2005). Transient fan architecture and depositional controls from near‐surface 3‐D seismic data, Niger Delta Continental Slope. AAPG Bulletin, 89(5), 627–643. https://doi.org/10.1306/11200404025
    [Google Scholar]
  2. Alfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity‐driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002
    [Google Scholar]
  3. Alves, T. M., Strasser, M., & Moore, G. F. (2014). Erosional features as indicators of thrust fault activity (Nankai Trough, Japan). Marine Geology, 356, 5–18. https://doi.org/10.1016/j.margeo.2013.07.011
    [Google Scholar]
  4. Babonneau, N., Savoye, B., Cremer, M., & Klein, B. (2002). Morphology and architecture of the present canyon and channel system of the Zaire deep‐sea fan. Marine and Petroleum Geology, 19(4), 445–467. https://doi.org/10.1016/S0264‐8172(02)00009‐0
    [Google Scholar]
  5. Bahk, J.‐J., Kang, N. K., Yi, B.‐Y., Lee, S.‐H., Jeong, S.‐W., Urgeles, R., & Yoo, D.‐G. (2017). Sedimentary characteristics and processes of submarine mass‐transport deposits in the Ulleung Basin and their relations to seismic and sediment physical properties. Marine Geology, 393, 124–140. https://doi.org/10.1016/j.margeo.2017.05.010
    [Google Scholar]
  6. Beaubouef, R. T., & Friedmann, S. J. (2000). High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico: depositional models and reservoir analogs. In: P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, M. J.Styzen, & D. T.Lawrence (Eds.), Deep‐water reservoirs of the world (pp. 40–60). Gulf Coast Section SEPM 20th Annual Research Conference.
    [Google Scholar]
  7. Bouma, A. H., Normark, W. R., & Barnes, N. E. (1985). Submarine fans and related turbidite systems. New York, NY: Springer.
    [Google Scholar]
  8. Brackenridge, R. E., Nicholson, U., Sapiie, B., Stow, D., & Tappin, D. R. (2020). Indonesian Throughflow as a preconditioning mechanism for submarine landslides in the Makassar Strait. Geological Society, London, Special Publications, 500(1), 195–217. https://doi.org/10.1144/sp500‐2019‐171
    [Google Scholar]
  9. Byun, H. S. (1995). Cenozoic dinoflagellate cysts from the Pohang Basin and southern margin of the Ulleung Basin, Korea (PhD thesis). Daejeon, Republic of Korea: Chungnam National University.
  10. Carvajal, C. R., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34(8), 665–668. https://doi.org/10.1130/g22505.1
    [Google Scholar]
  11. Chaytor, J. D., ten Brink, U. S., Solow, A. R., & Andrews, B. D. (2009). Size distribution of submarine landslides along the U.S. Atlantic margin. Marine Geology, 264(1), 16–27. https://doi.org/10.1016/j.margeo.2008.08.007
    [Google Scholar]
  12. Chough, S. K., & Barg, E. (1987). Tectonic history of Ulleung basin margin, East Sea (Sea of Japan). Geology, 15(1), 45–48. https://doi.org/10.1130/0091‐7613(1987)15<45:Thoubm>2.0.Co;2
    [Google Scholar]
  13. Chough, S. K., & Lee, K. E. (1992). Multi‐stage volcanism in the Ulleung Back‐arc Basin, East Sea (Sea of Japan). Island Arc, 1(1), 32–39. https://doi.org/10.1111/j.1440‐1738.1992.tb00055.x
    [Google Scholar]
  14. Clark, I. R., & Cartwright, J. A. (2009). Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea. Marine and Petroleum Geology, 26(8), 1465–1482. https://doi.org/10.1016/j.marpetgeo.2009.05.004
    [Google Scholar]
  15. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939–942. https://doi.org/10.1130/g31081.1
    [Google Scholar]
  16. Covault, J. A., Normark, W. R., Romans, B. W., & Graham, S. A. (2007). Highstand fans in the California borderland: The overlooked deep‐water depositional systems. Geology, 35(9), 783–786. https://doi.org/10.1130/g23800a.1
    [Google Scholar]
  17. Cukur, D., Kim, S.‐P., Kong, G.‐S., Bahk, J.‐J., Horozal, S., Um, I.‐K., … Kim, J.‐K. (2016). Geophysical evidence and inferred triggering factors of submarine landslides on the western continental margin of the Ulleung Basin, East Sea. Geo‐Marine Letters, 36(6), 425–444. https://doi.org/10.1007/s00367‐016‐0463‐5
    [Google Scholar]
  18. Cullis, S., Colombera, L., Patacci, M., & McCaffrey, W. D. (2018). Hierarchical classifications of the sedimentary architecture of deep‐marine depositional systems. Earth‐Science Reviews, 179, 38–71. https://doi.org/10.1016/j.earscirev.2018.01.016
    [Google Scholar]
  19. Festa, A., Ogata, K., Pini, G. A., Dilek, Y., & Codegone, G. (2015). Late Oligocene–early Miocene olistostromes (sedimentary mélanges) as tectono‐stratigraphic constraints to the geodynamic evolution of the exhumed Ligurian accretionary complex (Northern Apennines, NW Italy). International Geology Review, 57(5–8), 540–562. https://doi.org/10.1080/00206814.2014.931260
    [Google Scholar]
  20. Frey Martínez, J., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17(1), 83–108. https://doi.org/10.1111/j.1365‐2117.2005.00255.x
    [Google Scholar]
  21. Frey‐Martínez, J., Cartwright, J., & James, D. (2006). Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology, 23(5), 585–604. https://doi.org/10.1016/j.marpetgeo.2006.04.002
    [Google Scholar]
  22. Galloway, W. E., Dingus, W. F., & Paige, R. E. (1991). Seismic and Depositional Facies of Paleocene‐Eocene Wilcox Group Submarine Canyon Fills, Northwest Gulf Coast, U.S.A. In P.Weimer, & M. H.Link (Eds.), Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems, (pp. 247–271). New York, NY: Springer.
    [Google Scholar]
  23. Gamboa, D., Alves, T., Cartwright, J., & Terrinha, P. (2010). MTD distribution on a ‘passive’ continental margin: The Espírito Santo Basin (SE Brazil) during the Palaeogene. Marine and Petroleum Geology, 27(7), 1311–1324. https://doi.org/10.1016/j.marpetgeo.2010.05.008
    [Google Scholar]
  24. Gee, M. J. R., Uy, H. S., Warren, J., Morley, C. K., & Lambiase, J. J. (2007). The Brunei slide: A giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data. Marine Geology, 246(1), 9–23. https://doi.org/10.1016/j.margeo.2007.07.009
    [Google Scholar]
  25. Georgiopoulou, A., Krastel, S., Finch, N., Zehn, K., McCarron, S., Huvenne, V. A. I., … Shannon, P. M. (2019). On the Timing and nature of the multiple phases of slope instability on Eastern Rockall Bank, Northeast Atlantic. Geochemistry, Geophysics, Geosystems, 20(2), 594–613. https://doi.org/10.1029/2018gc007674
    [Google Scholar]
  26. Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., & Zhang, J. (2011). The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28(9), 1690–1702. https://doi.org/10.1016/j.marpetgeo.2011.06.005
    [Google Scholar]
  27. Hampton, M. A., Lee, H. J., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34(1), 33–59. https://doi.org/10.1029/95rg03287
    [Google Scholar]
  28. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
    [Google Scholar]
  29. He, Y., Zhong, G., Wang, L., & Kuang, Z. (2014). Characteristics and occurrence of submarine canyon‐associated landslides in the middle of the northern continental slope, South China Sea. Marine and Petroleum Geology, 57, 546–560. https://doi.org/10.1016/j.marpetgeo.2014.07.003
    [Google Scholar]
  30. Heiniö, P., & Davies, R. J. (2006). Degradation of compressional fold belts: Deep‐water Niger Delta. AAPG Bulletin, 90(5), 753–770. https://doi.org/10.1306/11210505090
    [Google Scholar]
  31. Hodgson, D. M., Brooks, H. L., Ortiz‐Karpf, A., Spychala, Y., Lee, D. R., & Jackson, C.‐A.‐L. (2018). Entrainment and abrasion of megaclasts during submarine landsliding and their impact on flow behaviour. Geological Society, London, Special Publications, 477(1), 223–240. https://doi.org/10.1144/sp477.26
    [Google Scholar]
  32. Horozal, S., Bahk, J.‐J., Lee, S. H., Cukur, D., Urgeles, R., Kim, G. Y., … Kim, J.‐H. (2019). Mass‐wasting processes along the margins of the Ulleung Basin, East Sea: Insights from multichannel seismic reflection and multibeam echosounder data. Geological Society, London, Special Publications, 477(1), 107–119. https://doi.org/10.1144/sp477.18
    [Google Scholar]
  33. Horozal, S., Bahk, J. J., Lee, S. H., Urgeles, R., Kim, S. P., Kim, G. Y., … Kim, J. H. (2016). Late Neogene‐Quaternary submarine mass wasting along the margins of the Ulleung Basin, East Sea: Geomorphologic controls and geohazard potential. Quaternary International, 392, 69–98. https://doi.org/10.1016/j.quaint.2015.06.056
    [Google Scholar]
  34. Horozal, S., Bahk, J.‐J., Urgeles, R., Kim, G. Y., Cukur, D., Kim, S.‐P., … Kim, J.‐H. (2017). Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Marine and Petroleum Geology, 80, 171–191. https://doi.org/10.1016/j.marpetgeo.2016.12.001
    [Google Scholar]
  35. Ingle, J. C.Jr. (1992). Subsidence of the Japan Sea: stratigraphic evidence from ODP sites and onshore sections. In K.Tamaki, K.Suyehiro, & J.Allen (Eds.), Proceedings of ocean drilling program, scientific results (pp. 1197–1218). College Station, TX: Ocean Drilling Program 127/128.
    [Google Scholar]
  36. Jackson, C. A. L., & Johnson, H. D. (2009). Sustained turbidity currents and their interaction with debrite‐related topography; Labuan Island, offshore NW Borneo, Malaysia. Sedimentary Geology, 219(1), 77–96. https://doi.org/10.1016/j.sedgeo.2009.04.008
    [Google Scholar]
  37. Jolivet, L., & Tamaki, K. (1992). Neogene kinematics in the Japan Sea region and volcanic activity of the Northeast Japan Arc. In K.Tamaki, K.Suyehiro, & J.Allen (Eds.), Proceedings of Ocean Drilling Program, scientific results (pp. 1311–1331). College Station, TX, Ocean Drilling Program 127/128.
    [Google Scholar]
  38. Jolivet, L., Tamaki, K., & Fournier, M. (1994). Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research: Solid Earth, 99(B11), 22237–22259. https://doi.org/10.1029/93jb03463
    [Google Scholar]
  39. Kim, G.‐B., Yoon, S.‐H., Kim, S.‐S., & So, B.‐D. (2018). Transition from buckling to subduction on strike‐slip continental margins: Evidence from the East Sea (Japan Sea). Geology, 46(7), 603–606. https://doi.org/10.1130/g40305.1
    [Google Scholar]
  40. Kim, K.‐J., Yoo, D.‐G., Kang, N.‐K., & Yi, B.‐Y. (2020). Tectonostratigraphic framework and depositional history of the deepwater Ulleung Basin, East Sea/Sea of Japan. Basin Research, 32(4), 613–635. https://doi.org/10.1111/bre.12386
    [Google Scholar]
  41. Kim, W., Cheong, D., & Kendall, C. G. S. C. (2007). Effects of in‐phase and out‐of‐phase sediment supply responses to tectonic movement on the sequence development in the late Tertiary Southern Ulleung Basin, East (Japan) Sea. Computers & Geosciences, 33(3), 299–310. https://doi.org/10.1016/j.cageo.2006.08.001
    [Google Scholar]
  42. Kolla, V., Bourges, P., Urruty, J.‐M., & Safa, P. (2001). Evolution of deep‐water tertiary sinuous channels offshore angola (West Africa) and implications for reservoir architecture. AAPG Bulletin, 85(8), 1373–1405. https://doi.org/10.1306/8626cac3‐173b‐11d7‐8645000102c1865d
    [Google Scholar]
  43. Kolla, V., & Coumes, F. (1987). Morphology, Internal Structure, Seismic Stratigraphy, and Sedimentation of Indus Fan1. AAPG Bulletin, 71(6), 650–677. https://doi.org/10.1306/94887889‐1704‐11d7‐8645000102c1865d
    [Google Scholar]
  44. Korea Institute of Energy and Resources (KIER)
    Korea Institute of Energy and Resources (KIER) (1982). Petroleum Resources Potential in the Continental Shelf of Korea (Block 6 and Blocks 2, 4 and 5). Korea Institute of Energy and Resources. Research Report, [in Korean with English abstract]
  45. Lee, G. H., & Kim, B. (2002). Infill history of the Ulleung Basin, East Sea (Sea of Japan) and implications on source rocks and hydrocarbons. Marine and Petroleum Geology, 19(7), 829–845. https://doi.org/10.1016/S0264‐8172(02)00106‐X
    [Google Scholar]
  46. Lee, G. H., Kim, H. J., Han, S. J., & Kim, D. C. (2001). Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back‐arc basin. Marine and Petroleum Geology, 18(5), 615–634. https://doi.org/10.1016/S0264‐8172(01)00016‐2
    [Google Scholar]
  47. Lee, G. H., & Suk, B.‐C. (1998). Latest Neogene‐Quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan). Marine Geology, 146(1), 205–224. https://doi.org/10.1016/S0025‐3227(97)00123‐0
    [Google Scholar]
  48. Lee, G. H., Yoon, Y., Nam, B. H., Lim, H., Kim, Y.‐S., Kim, H. J., & Lee, K. (2011). Structural evolution of the southwestern margin of the Ulleung Basin, East Sea (Japan Sea) and tectonic implications. Tectonophysics, 502(3), 293–307. https://doi.org/10.1016/j.tecto.2011.01.015
    [Google Scholar]
  49. Lee, H. Y. (1994). Neogene Foraminifera Biostratigraphy of the Southern Margin of the Ulleung Basin, East Sea (Phd thesis). Seoul, Republic of Korea: Seoul National University.
  50. Leslie, S. C., & Mann, P. (2016). Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea. Earth and Planetary Science Letters, 449, 382–394. https://doi.org/10.1016/j.epsl.2016.05.040
    [Google Scholar]
  51. Lopez, M. (2001). Architecture and depositional pattern of the Quaternary deep‐sea fan of the Amazon. Marine and Petroleum Geology, 18(4), 479–486. https://doi.org/10.1016/S0264‐8172(00)00071‐4
    [Google Scholar]
  52. McAdoo, B. G., Pratson, L. F., & Orange, D. L. (2000). Submarine landslide geomorphology, US continental slope. Marine Geology, 169(1), 103–136. https://doi.org/10.1016/S0025‐3227(00)00050‐5
    [Google Scholar]
  53. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298. /10.1126/science.1116412
    [Google Scholar]
  54. Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24(2), 40–53. https://doi.org/10.5670/oceanog.2011.26
    [Google Scholar]
  55. Mitchum, R. M.Jr. (1985). Seismic Stratigraphic Expression of Submarine Fans. In O. R.Berg, & D. G.Woolverton (Eds.), Seismic stratigraphy II: An integrated approach to hydrocarbon exploration, (Vol. 39, pp. 117–136). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  56. Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and Global changes of sea level, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic stratigraphy application to hydrocarbon exploration (Vol. 26, pp. 117–133). Tulsa, OK: American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  57. Moernaut, J., & De Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285(1), 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
    [Google Scholar]
  58. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98. /10.1111/j.1365‐2117.2007.00340.x
    [Google Scholar]
  59. Moscardelli, L., & Wood, L. (2016). Morphometry of mass‐transport deposits as a predictive tool. GSA Bulletin, 128(1–2), 47–80. https://doi.org/10.1130/b31221.1
    [Google Scholar]
  60. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90(7), 1059–1088. https://doi.org/10.1306/02210605052
    [Google Scholar]
  61. Mosher, D. C., Moscardelli, L., Shipp, R. C., Chaytor, J. D., Baxter, C. D. P., Lee, H. J., & Urgeles, R. (2010). Submarine mass movements and their consequences. Dordrecht, Netherlands: Springer.
    [Google Scholar]
  62. Mutii, E., Bernoulli, D., Lucchi, F. R., & Tinterri, R. (2009). Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins. Sedimentology, 56(1), 267–318. https://doi.org/10.1111/j.1365‐3091.2008.01019.x
    [Google Scholar]
  63. Mutti, E., & Normark, W. R. (1987). Comparing Examples of Modern and Ancient Turbidite Systems: Problems and Concepts. In J. K.Leggett, & G. G.Zuffa (Eds.), Marine clastic sedimentology: concepts and case studies (pp. 1–38). Dordrecht, Netherlands: Springer.
    [Google Scholar]
  64. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer, & H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–107). New York: Springer‐Verlag. https://doi.org/10.1007/978‐1‐4684‐8276‐8
    [Google Scholar]
  65. Nichols, G. (2009). Sedimentology and stratigraphy. London, UK: John Wiley & Sons.
    [Google Scholar]
  66. Normark, W. R., & Carlson, P. R. (2003). Giant submarine canyons: Is size any clue to their importance in the rock record?GSA Special Papers, 370, 175–190. https://doi.org/10.1130/0‐8137‐2370‐1.175
    [Google Scholar]
  67. Nugraha, H. D., Jackson, C.‐A.‐L., Johnson, H. D., Hodgson, D. M., & Reeve, M. T. (2019). Tectonic and oceanographic process interactions archived in Late Cretaceous to Present deep‐marine stratigraphy on the Exmouth Plateau, offshore NW Australia. Basin Research, 31(3), 405–430. https://doi.org/10.1111/bre.12328
    [Google Scholar]
  68. Olafiranye, K., Jackson, C. A. L., & Hodgson, D. M. (2013). The role of tectonics and mass‐transport complex emplacement on upper slope stratigraphic evolution: A 3D seismic case study from offshore Angola. Marine and Petroleum Geology, 44, 196–216. https://doi.org/10.1016/j.marpetgeo.2013.02.016
    [Google Scholar]
  69. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C.‐A.‐L., & McCaffrey, W. D. (2018). Mass‐transport complexes as markers of deep‐water fold‐and‐thrust belt evolution: Insights from the southern Magdalena fan, offshore Colombia. Basin Research, 30(S1), 65–88. https://doi.org/10.1111/bre.12208
    [Google Scholar]
  70. Ortiz‐Karpf, A., Hodgson, D. M., & McCaffrey, W. D. (2015). The role of mass‐transport complexes in controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin: The Magdalena Fan, offshore Colombia. Marine and Petroleum Geology, 64, 58–75. https://doi.org/10.1016/j.marpetgeo.2015.01.005
    [Google Scholar]
  71. Park, S. J. (1998). Stratal patterns in the southwestern margin of Ulleung back‐arc basin: A sequence stratigraphic analysis (PhD thesis). Seoul, Republic of Korea: Seoul National University.
  72. Park, Y., Yoo, D., Kang, N., & Yi, B. (2019). Origin and evolution of stacked cut‐and‐fill structures on the southwestern margin of the Ulleung Basin, East Sea (Japan Sea). Journal of Sedimentary Research, 89(7), 679–700. https://doi.org/10.2110/jsr.2019.36
    [Google Scholar]
  73. Pérez, L. F., Bohoyo, F., Hernández‐Molina, F. J., Casas, D., Galindo‐Zaldívar, J., Ruano, P., & Maldonado, A. (2016). Tectonic activity evolution of the Scotia‐Antarctic Plate boundary from mass transport deposit analysis. Journal of Geophysical Research: Solid Earth, 121(4), 2216–2234. https://doi.org/10.1002/2015jb012622
    [Google Scholar]
  74. Pickering, K. T., & Corregidor, J. (2005). Mass‐Transport Complexes (MTCs) and tectonic control on basin‐floor submarine fans, middle eocene, south spanish pyrenees. Journal of Sedimentary Research, 75(5), 761–783. https://doi.org/10.2110/jsr.2005.062
    [Google Scholar]
  75. Piper, D. J. W., & Normark, W. R. (2001). Sandy fans‐from Amazon to Hueneme and beyond. AAPG Bulletin, 85(8), 1407–1438. https://doi.org/10.1306/8626cacd‐173b‐11d7‐8645000102c1865d
    [Google Scholar]
  76. Piper, D. J. W., & Normark, W. R. (2009). Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. Journal of Sedimentary Research, 79(6), 347–362. https://doi.org/10.2110/jsr.2009.046
    [Google Scholar]
  77. Posamentier, H. W., & Erskine, R. D. (1991). Seismic Expression and Recognition Criteria of Ancient Submarine Fans. In P.Weimer, & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 197–222). New York, NY: Springer.
    [Google Scholar]
  78. Posamentier, H. W., Jervey, M. T., Vail, P. R. et al (1988). Eustatic controls on clastic deposition I ‐ Conceptual framework. In C. K.Wilgus (Ed.), Sea‐level changes: An integrated approach (109–124). Tulsa, OK: SEPM Special Publications No 42.
    [Google Scholar]
  79. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73(3), 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  80. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. SEPM, Special Publication, 96, 7–38.
    [Google Scholar]
  81. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82(5), 701–728.
    [Google Scholar]
  82. Reading, H. G., & Richards, M. (1994). Turbidite systems in deep‐water basin margins classified by grain size and feeder system. AAPG Bulletin, 78(5), 792–822.
    [Google Scholar]
  83. Sangree, J. B., & Widmier, J. M. (1977). Seismic stratigraphy and Global changes of sea level, Part 9: Seismic interpretation of clastic depositional facies. In C. E.Payton (Ed.), Seismic stratigraphy application to hydrocarbon exploration. American Association of Petroleum Geologists Memoir 26, 165–184.
    [Google Scholar]
  84. Scholz, N. A., Riedel, M., Bahk, J. J., Yoo, D. G., & Ryu, B. J. (2012). Mass transport deposits and gas hydrate occurrences in the Ulleung Basin, East Sea – Part 1: Mapping sedimentation patterns using seismic coherency. Marine and Petroleum Geology, 35(1), 91–104. https://doi.org/10.1016/j.marpetgeo.2012.03.004
    [Google Scholar]
  85. Schwenk, T., Spieß, V., Breitzke, M., & Hübscher, C. (2005). The architecture and evolution of the Middle Bengal Fan in vicinity of the active channel–levee system imaged by high‐resolution seismic data. Marine and Petroleum Geology, 22(5), 637–656. https://doi.org/10.1016/j.marpetgeo.2005.01.007
    [Google Scholar]
  86. Shanmugam, G., & Moiola, R. J. (1988). Submarine fans: Characteristics, models, classification, and reservoir potential. Earth‐Science Reviews, 24(6), 383–428. https://doi.org/10.1016/0012‐8252(88)90064‐5
    [Google Scholar]
  87. Son, M., Song, C. W., Kim, M.‐C., Cheon, Y., Cho, H., & Sohn, Y. K. (2015). Miocene tectonic evolution of the basins and fault systems, SE Korea: Dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, 172(5), 664–680. https://doi.org/10.1144/jgs2014‐079
    [Google Scholar]
  88. Sprague, A. R. G., Garfield, T. R., Goulding, F. J., Beaubouef, R. T., Sullivan, M. D., Rossen, C., Mellere, D. (2005). Integrated Slope Channel Depositional Models: the Key to Successful Prediction of Reservoir Presence and Quality in Offshore West Africa. CIPM, cuarto E‐Exitep 2005, February 20–23, 2005, Veracruz, Mexico, pp. 1–13.
  89. Sweet, M. L., & Blum, M. D. (2016). Connections between fluvial to shallow marine environments and submarine canyons: implications for sediment transfer to deep water. Journal of Sedimentary Research, 86(10), 1147–1162. https://doi.org/10.2110/jsr.2016.64
    [Google Scholar]
  90. Taira, A. (2001). Tectonic evolution of the Japanese Island arc system. Annual Review of Earth and Planetary Sciences, 29(1), 109–134. https://doi.org/10.1146/annurev.earth.29.1.109
    [Google Scholar]
  91. Tamaki, K., Suyehiro, K., Allan, J., Ingle, J. C.Jr, & Pisciotto, K. A. (1992). Tectonic synthesis and implications of Japan Sea ODP drilling. In K.Tamaki, K.Suyehiro, & J.Allen (Eds.), Proceedings of Ocean Drilling Program, scientific results (pp. 1333–1348). College Station, TX: Ocean Drilling Program 127/128.
    [Google Scholar]
  92. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a Mass Transport Complex on the northwest slope of Little Bahama Bank (Bahamas): Relations between off‐bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317, 9–26. https://doi.org/10.1016/j.sedgeo.2014.10.003
    [Google Scholar]
  93. Trincardi, F., & Argnani, A. (1990). Gela submarine slide: A major basin‐wide event in the plio‐quaternary foredeep of Sicily. Geo‐Marine Letters, 10(1), 13–21. https://doi.org/10.1007/BF02431017
    [Google Scholar]
  94. Vail, P. R. (1987). Seismic stratigraphy interpretation procedure. In A. W.Bally (Ed.), Atlas of seismic stratigraphy (Vol. 27, pp. 1–10). Tulsa, OK: American Association of Petroleum Geologists, Studies in Geology.
    [Google Scholar]
  95. Vail, P. R., Mitchum, R.Jr, & Thompson, S.III. (1977). Seismic Stratigraphy and Global Changes of Sea Level: Part 4. Global Cycles of Relative Changes of Sea Level: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. In C. E.Payton (Ed.), Seismic stratigraphy applications to hydrocarbon Exploration. American Association of Petroleum Geologists Memoir 26, 83–97.
    [Google Scholar]
  96. Vinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008
    [Google Scholar]
  97. Weimer, P. (1990). Sequence stratigraphy, facies geometries, and depositional history of the Mississippi Fan, Gulf of Mexico1. AAPG Bulletin, 74(4), 425–453. https://doi.org/10.1306/0c9b2321‐1710‐11d7‐8645000102c1865d
    [Google Scholar]
  98. Weimer, P., & Link, M. H. (1991). Seismic facies and sedimentary processes of submarine fans and turbidite systems. New York, NY: Springer‐Verlag.
    [Google Scholar]
  99. Yoo, D.‐G., Kim, K.‐J., Kang, N.‐K., Yi, B.‐Y., & Cho, M.‐H. (2017). Plio‐Quaternary seismic stratigraphy and depositional history of the Ulleung Basin, East Sea: Association with debris‐flow activity. Quaternary International, 459, 69–88. https://doi.org/10.1016/j.quaint.2017.06.040
    [Google Scholar]
  100. Yoon, S. H., Sohn, Y. K., & Chough, S. K. (2014). Tectonic, sedimentary, and volcanic evolution of a back‐arc basin in the East Sea (Sea of Japan). Marine Geology, 352, 70–88. https://doi.org/10.1016/j.margeo.2014.03.004
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12501
Loading
/content/journals/10.1111/bre.12501
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error