1887
Volume 33 Number 2
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Investigations of sandstone provenance often involve U–Pb dating and chemical/mineralogical investigations of detrital minerals that are stable in sediments. As most stable detrital minerals are from felsic–intermediate rocks, investigations of the only mafic–ultramafic mineral considered stable in sediments, chromian spinel (Cr‐spinel), can reveal contributions from mafic–ultramafic sources. Cr‐spinel chemical compositions are tied to petrogenesis, making it possible to identify the nature of, and differentiate between, potential sources. Earlier detrital Cr‐spinel studies have focused on major and minor element compositions, however, the advent of laser‐ablation analytical techniques now allow routine mineral trace element analyses. Here, we integrate major, minor and trace element compositions of detrital Cr‐spinel from sandstones with a well‐characterised provenance from the Triassic (Anisian to Early Norian) Snadd and De Geerdalen formations of the Barents Shelf. The analysed Cr‐spinel compositions are depleted in the major element cations Fe3+, Al and Mg and enriched in Cr and Fe2+. Relative to MORB chromite, the minor and trace element data show high concentrations of Zn, Co and Mn, low concentrations of Ni and Ga and variable concentrations of Ti, V and Sc. The major element compositions of the detrital Cr‐spinel are similar to ophiolite‐associated Cr‐spinel, while the trace element compositions indicate a more complex petrogenesis influenced by metamorphic alteration. The compositional variations between sample locations are small, suggesting similar source rocks for the detrital Cr‐spinel throughout the study area. The most likely sources of the Cr‐spinel grains are metamorphosed ophiolite complexes in the Uralian Orogen, in accordance with earlier provenance studies. The novel addition of trace element compositions to detrital Cr‐spinel studies adds significant source‐sensitive information.

,

Cr‐spinel from the Snadd and De Geerdalen formations are distinctly different from Cr‐spinel of the same depositional age to the east of the Uralian Orogen. Major element compositions of detrital Cr‐spinel in the Carnian Osipai Fm. north Siberia is consistent with Cr‐spinel from a large igneous province, while Snadd and De Geerdalen formation Cr‐spinel indicate a ophiolitic source. The addition of trace element compositional data of the Snadd and De Geerdalen formation Cr‐spinel, help identify a metamorphic alteration history of the detrital grains.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12502
2021-03-15
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12502.html?itemId=/content/journals/10.1111/bre.12502&mimeType=html&fmt=ahah

References

  1. Azizi, S. H. H., Rezaee, P., Jafarzadeh, M., Meinhold, G., Harami, S. R. M., & Masoodi, M. (2018). Evidence from detrital chrome spinel chemistry for a Paleo‐Tethyan intra‐oceanic island‐arc provenance recorded in Triassic sandstones of the Nakhlak Group, Central Iran. Journal of African Earth Sciences, 143, 242–252. https://doi.org/10.1016/j.jafrearsci.2018.03.006
    [Google Scholar]
  2. Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302. https://doi.org/10.1093/petrology/42.12.2279
    [Google Scholar]
  3. Bónová, K., Mikuš, T., & Bóna, J. (2018). Is Cr‐spinel geochemistry enough for solving the provenance dilemma? Case study from the palaeogene sandstones of the Western Carpathians (Eastern Slovakia). Minerals, 8, 543. https://doi.org/10.3390/min8120543
    [Google Scholar]
  4. Bue, E. P., & Andresen, A. (2014). Constraining depositional models in the Barents Sea region using detrital zircon U‐Pb data from mesozoic sediments in Svalbard. Geological Society, London, Special Publications, 386, 261–279. https://doi.org/10.1144/SP386.14
    [Google Scholar]
  5. Bugge, T., Elvebakk, G., Fanavoll, S., Mangerud, G., Smelror, M., Weiss, H. M., … Nilsen, K. (2002). Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Marine and Petroleum Geology, 19, 13–37. https://doi.org/10.1016/S0264‐8172(01)00051‐4
    [Google Scholar]
  6. Colás, V., González‐Jiménez, J. M., Griffin, W. L., Fanlo, I., Gervilla, F., O'Reilly, S. Y., … Proenza, J. A. (2014). Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 389, 137–152. https://doi.org/10.1016/j.chemgeo.2014.10.001
    [Google Scholar]
  7. Cookenboo, H., Bustin, R., & Wilks, K. (1997). Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance; Implications for orogeny in the Canadian Cordillera. Journal of Sedimentary Research, 67, 116–123.
    [Google Scholar]
  8. Droop, G. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431–435.
    [Google Scholar]
  9. Duparc, Q., Dare, S. A., Cousineau, P. A., & Goutier, J. (2016). Magnetite chemistry as a provenance indicator in archean metamorphosed sedimentary rocks. Journal of Sedimentary Research, 86, 542–563. https://doi.org/10.2110/jsr.2016.36
    [Google Scholar]
  10. Dupuis, C., & Beaudoin, G. (2011). Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46, 319–335. https://doi.org/10.1007/s00126‐011‐0334‐y
    [Google Scholar]
  11. Evans, B. W., & Frost, B. R. (1976). Chrome‐spinel in progressive metamorphism—A preliminary analysis. In T. N.Irvine (Eds.), Chromium: Its physicochemical behavior and petrologic significance (pp. 959–972). Pergamon. https://doi.org/10.1016/B978‐0‐08‐019954‐2.50020‐2
    [Google Scholar]
  12. Fanlo, I., Gervilla, F., Colás, V., & Subías, I. (2015). Zn‐, Mn‐and Co‐rich chromian spinels from the Bou‐Azzer mining district (Marocco): Constraints on their relationship with the mineralizing process. Ore Geology Reviews, 71, 82–98.
    [Google Scholar]
  13. Fleming, E. J., Flowerdew, M. J., Smyth, H. R., Scott, R. A., Morton, A. C., Omma, J. E., … Whitehouse, M. J. (2016). Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Marine and Petroleum Geology, 78, 516–535. https://doi.org/10.1016/j.marpetgeo.2016.10.005
    [Google Scholar]
  14. Flowerdew, M. J., Fleming, E. J., Morton, A. C., Frei, D., Chew, D. M., & Daly, J. S. (2019). Assessing mineral fertility and bias in sedimentary provenance studies: Examples from the Barents Shelf. Geological Society, London, Special Publications, 484(SP484), 411. https://doi.org/10.1144/SP484.11
    [Google Scholar]
  15. Garuti, G., Pushkarev, E. V., Thalhammer, O. A., & Zaccarini, F. (2012). Chromitites of the Urals (part 1): Overview of chromite mineral chemistry and geo‐tectonic setting. Ofioliti, 37, 27–53.
    [Google Scholar]
  16. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27, 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  17. González‐Jiménez, J. M., Camprubí, A., Colás, V., Griffin, W. L., Proenza, J. A., O'Reilly, S. Y., … Talavera, C. (2017). The recycling of chromitites in ophiolites from southwestern North America. Lithos, 294, 53–72. https://doi.org/10.1016/j.lithos.2017.09.020
    [Google Scholar]
  18. González‐Jiménez, J. M., Griffin, W. L., Proenza, J. A., Gervilla, F., O'Reilly, S. Y., Akbulut, M., … Arai, S. (2014). Chromitites in ophiolites: How, where, when, why? Part II. The Crystallization of Chromitites. Lithos, 189, 140–158. https://doi.org/10.1016/j.lithos.2013.09.008
    [Google Scholar]
  19. González‐Jiménez, J. M., Locmelis, M., Belousova, E., Griffin, W. L., Gervilla, F., Kerestedjian, T. N., … Sergeeva, I. (2015). Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Research, 27, 555–574. https://doi.org/10.1016/j.gr.2013.09.020
    [Google Scholar]
  20. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., … Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35, 271–281.
    [Google Scholar]
  21. Hölttä, P., Balagansky, V., Garde, A. A., Mertanen, S., Peltonen, P., Slabunov, A., … Whitehouse, M. (2008). Archean of Greenland and Fennoscandia. Episodes, 31, 13–19. https://doi.org/10.18814/epiiugs/2008/v31i1/003
    [Google Scholar]
  22. Irvine, T. (1965). Chromian spinel as a petrogenetic indicator: Part 1. Theory. Canadian Journal of Earth Sciences, 2, 648–672. https://doi.org/10.1139/e65‐046
    [Google Scholar]
  23. Ivanov, A. V., Demonterova, E. I., Savatenkov, V. M., Perepelov, A. B., Ryabov, V. V., & Shevko, A. Y. (2018). Late Triassic (Carnian) lamproites from Noril'sk, polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton. Lithos, 296, 67–78. https://doi.org/10.1016/j.lithos.2017.10.021
    [Google Scholar]
  24. Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M., …Woodhead, J. D. (2006). MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems, 7, Q02008.
    [Google Scholar]
  25. Kamenetsky, V. S., Crawford, A. J., & Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr‐spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671. https://doi.org/10.1093/petrology/42.4.655
    [Google Scholar]
  26. Khudoley, A. K., Sobolev, N. N., Petrov, E. O., Ershova, V. B., Makariev, A. A., Makarieva, E. V., … Sobolev, P. O. (2019). A reconnaissance provenance study of Triassic‐Jurassic clastic rocks of the Russian Barents Sea. GFF, 144, 263–271. https://doi.org/10.1080/11035897.2019.1621372
    [Google Scholar]
  27. Klausen, T. G., Müller, R., Slama, J., & Helland‐Hansen, W. (2017). Evidence for Late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea. Lithosphere, 9, 14–28. https://doi.org/10.1130/L556.1
    [Google Scholar]
  28. Klausen, T. G., Nyberg, B., & Helland‐Hansen, W. (2019). The largest delta plain in earth’s history. Geology, 47, 470–474. https://doi.org/10.1130/G45507.1
    [Google Scholar]
  29. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  30. Letnikova, E., Izokh, A., Nikolenko, E., Pokhilenko, N., Shelestov, V., Hilen, G., & Lobanov, S. (2014). Late Triassic high‐potassium trachitic volcanism of the northeast of the Siberian platform: Evidence in the sedimentary record. Doklady Earth Sciences, Springer, 459, 1344–1347. https://doi.org/10.1134/S1028334X14110221
    [Google Scholar]
  31. Lundschien, B. A., Høy, T., & Mørk, A. (2014). Triassic hydrocarbon potential in the northern Barents Sea; Integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin, 11, 3–20.
    [Google Scholar]
  32. Midwinter, D., Hadlari, T., Davis, W., Dewing, K., & Arnott, R. (2016). Dual provenance signatures of the Triassic northern Laurentian margin from detrital‐zircon U‐Pb and Hf‐isotope analysis of Triassic‐Jurassic strata in the Sverdrup Basin. Lithosphere, 8, 668–683. https://doi.org/10.1130/L517.1
    [Google Scholar]
  33. Miller, E. L., Soloviev, A. V., Prokopiev, A. V., Toro, J., Harris, D., Kuzmichev, A. B., & Gehrels, G. E. (2013). Triassic river systems and the paleo‐pacific margin of northwestern Pangea. Gondwana Research, 23, 1631–1645. https://doi.org/10.1016/j.gr.2012.08.015
    [Google Scholar]
  34. Moore, A. C., & Qvale, H. (1977). Three varieties of alpine‐type ultramafic rocks in the Norwegian Caledonides and basal gnesis complex. Lithos, 10, 149–161. https://doi.org/10.1016/0024‐4937(77)90042‐1
    [Google Scholar]
  35. Mørk, A., Knarud, R., & Worsley, D. (1982) Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In A. F.Embry, & H. R.Balkwill (Eds.), Arctic geology and geophysics (pp. 371–398). Canadian Society of Petroleum geology.
    [Google Scholar]
  36. Mørk, M. B. E. (1999). Compositional variations and provenance of Triassic sandstones from the Barents Shelf. Journal of Sedimentary Research, 69, 690–710. https://doi.org/10.2110/jsr.69.690
    [Google Scholar]
  37. Mørk, M. B. E. (2013). Diagenesis and quartz cement distribution of low‐permeability Upper Triassic‐Middle Jurassic reservoir sandstones, Longyearbyen CO2 lab well site in Svalbard, Norway. AAPG Bulletin, 97, 577–596. https://doi.org/10.1306/10031211193
    [Google Scholar]
  38. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29. https://doi.org/10.1016/S0037‐0738(98)00118‐3
    [Google Scholar]
  39. Nikolenko, E., Logvinova, A., Izokh, A., Afanas’ev, V., Oleynikov, O., & Biller, A. Y. (2018). Cr‐spinel assemblage from the Upper Triassic gritstones of the northeastern Siberian platform. Russian Geology and Geophysics, 59, 1348–1364. https://doi.org/10.1016/j.rgg.2018.09.011
    [Google Scholar]
  40. Pagé, P., & Barnes, S. J. (2009). Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104, 997–1018.
    [Google Scholar]
  41. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518. https://doi.org/10.1039/c1ja10172b
    [Google Scholar]
  42. Priyatkina, N., Collins, W. J., Khudoley, A., Zastrozhnov, D., Ershova, V., Chamberlain, K., … Proskurnin, V. (2017). The proterozoic evolution of northern Siberian Craton margin: A comparison of U‐Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. International Geology Review, 59, 1632–1656. https://doi.org/10.1080/00206814.2017.1289341
    [Google Scholar]
  43. Puchkov, V. N. (2009). The evolution of the Uralian Orogen. Geological Society, London, Special Publications, 327, 161–195. https://doi.org/10.1144/SP327.9
    [Google Scholar]
  44. Riis, F., Lundschien, B. A., Høy, T., Mørk, A., & Mørk, M. B. E. (2008). Evolution of the Triassic Shelf in the northern Barents Sea region. Polar Research, 27, 318–338. https://doi.org/10.1111/j.1751‐8369.2008.00086.x
    [Google Scholar]
  45. Rui, H., Jiao, J., Xia, M., Yang, J., & Xia, Z. (2019). Origin of chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and geochemical evidence. Journal of Earth Science, 30, 476–493. https://doi.org/10.1007/s12583‐019‐1227‐8
    [Google Scholar]
  46. Säntti, J., Kontinen, A., Sorjonen‐Ward, P., Johanson, B., & Pakkanen, L. (2006). Metamorphism and chromite in serpentinized and carbonate‐silica‐altered peridotites of the Paleoproterozoic Outokumpu‐Jormua Ophiolite Belt, Eastern Finland. International Geology Review, 48, 494–546. https://doi.org/10.2747/0020‐6814.48.6.494
    [Google Scholar]
  47. Soloviev, A., Zaionchek, A., Suprunenko, O., Brekke, H., Faleide, J., Rozhkova, D., … Hourigan, J. (2015). Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb LA‐ICP‐MS dating of the detrital zircon from well Severnaya. Lithology Mineral Resources, 50, 102–116. https://doi.org/10.1134/S0024490215020054
    [Google Scholar]
  48. Sømme, T., Doré, A., Lundin, E., & Tørudbakken, B. (2018). Triassic‐paleogene paleogeography of the Arctic: Implications for sediment routing and basin fill. AAPG Bulletin, 102, 2481–2517. https://doi.org/10.1306/05111817254
    [Google Scholar]
  49. Stensland, H., Auset, M., Elvebakk, G., & Mørk, M. B. E. (2013).Palaeosols and Eogenesis of Triassic Sediments from Shallow Cores at the Bjarmeland Platform and in the Nordkapp Basin, Southwestern Barents Sea. Abstract and Poster, Norsk Geologisk Forenings Landsmøte i Oslo.
  50. Suita, M. T. D. F., & Strieder, A. J. J. (1996). Cr‐spinels from Brazilian mafic‐ultramafic complexes: Metamorphic modifications. International Geology Review, 38, 245–267. https://doi.org/10.1080/00206819709465333
    [Google Scholar]
  51. Vigran, J. O., Mangerud, G., Mørk, A., & Hochuli, P. A. (2014). Palynology and geology of the Triassic Succession of Svalbard and the Barents Sea. Geological Survey of Norway Special Publication, 14, 270.
    [Google Scholar]
  52. Zhang, X., Pease, V., Carter, A., Kostuychenko, S., Suleymanov, A., & Scott, R. (2017). Timing of exhumation and deformation across the Taimyr fold‐thrust belt: Insights from apatite fission track dating and balanced cross‐sections. Geological Society, London, Special Publications, 460(SP460), 463. https://doi.org/10.1144/SP460.3
    [Google Scholar]
  53. Zhang, X., Pease, V., Carter, A., & Scott, R. (2017). Reconstructing Palaeozoic and Mesozoic tectonic evolution of Novaya Zemlya: Combing geochronology and thermochronology. Geological Society, London, Special Publications, 460(SP460), 413. https://doi.org/10.1144/SP460.13
    [Google Scholar]
  54. Zhang, X., Pease, V., Skogseid, J., & Wohlgemuth‐Ueberwasser, C. (2016). Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U‐Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula. Bulletin, 128, 29–46.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12502
Loading
/content/journals/10.1111/bre.12502
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error