1887
Volume 33, Issue 2
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Syn‐rift successions contain both prolific organic‐rich and coarse‐grained rocks, but these rocks are usually studied independently. Thus, the interplay among organic matter deposition, tectonics and sediment supply is not commonly assessed. In this study, we use well logs, Total Organic Carbon (TOC) content, biostratigraphy and seismic data from the SW Barents Sea to unravel the variability of organic‐rich successions and its interaction with potential reservoir rocks in areas affected by active normal faulting versus tectonically stable areas. Four Transgressive‐Regressive (T‐R) sequences were defined for the Middle to Upper Jurassic Fuglen Formation and for the organic‐rich Upper Jurassic to lowermost Cretaceous Hekkingen Formation. Three TOC trends, controlled by palaeobathymetric variations, and organic matter dilution, were identified within the two main organic‐rich sequences (sequences 2 and 3): (a) wells with the highest TOC values (>10 wt %) at the base of the succession; (b) wells with the highest TOC values at the top of the succession and (c) wells with high TOC values at the base and top of the succession. Our interpretation indicates that fault activity controlled the TOC trends in two different ways: Firstly, by creating a sharp topographic contrast‐triggering hyperpycnal flows, and shallowing the footwalls, where higher oxygen content and less developed stratified waters lowered organic matter preservation. Secondly, by significantly increasing the input of clastic material, which inherently led to dilution of organic matter and resulted in lower TOC values (<6 wt %). We interpret that sand deposition was controlled by the size and geomorphology of the sediment source areas. The western part of the study area (i.e. the Loppa High) was characterized by uplifted footwall islands and localized sands along their flanks, whereas the southern part (i.e. the Finnmark Platform) constituted a larger sediment source area for the Volgian age. This work has implications for a better understanding of the distribution of reservoir and source rocks in active rift basins.

,

Palaeobathymetric variations and organic matter dilution controlling TOC trends. (a) Tectonically stable areas or areas affected by minor faulting. (b) Area affected by active normal faults.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12504
2021-03-15
2021-04-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12504.html?itemId=/content/journals/10.1111/bre.12504&mimeType=html&fmt=ahah

References

  1. Abouelresh, M. O., & Slatt, R. M. (2012). Lithofacies and sequence stratigraphy of the Barnett shale in east‐central fort worth basin, texasgeohorizon. AAPG Bulletin, 96, 1–22.
    [Google Scholar]
  2. Århus, N. (1991). The transition from deposition of condensed carbonates to dark claystones in the Lower Cretaceous succession of the Southwestern Barents Sea. Norsk Geologisk Tidsskrift, 71, 259.
    [Google Scholar]
  3. Berglund, L., Augustson, J., Færseth, R., Gjelberg, J., & Ramberg‐Moe, H. (1986) The Evolution of the Hammerfest Basin. In: A. M. Spencer (Ed.) Habitat of Hydrocarbons on the Norwegian Continental Shelf. Norwegian Pet. Soc. Graham Trotman, 319–338.
    [Google Scholar]
  4. Blaich, O. A., Tsikalas, F., & Faleide, J. I. (2017). New insights into the tectono‐stratigraphic evolution of the southern Stappen high and its transition to Bjørnøya Basin, Sw Barents Sea. Marine and Petroleum Geology, 85, 89–105. https://doi.org/10.1016/j.marpetgeo.2017.04.015
    [Google Scholar]
  5. Bohacs, K. M., Grabowski, G. J., Carroll, A. R., Mankiewicz, P. J., Miskell‐Gerhardt, K. J., Schwalbach, J. R., …Simo, J. A. (2005). Production, destruction, and dilution—the many paths to source‐rock development. The Deposition of Organic‐Carbon‐Rich Sediments: Models, Mechanisms, and Consequences. N. B. Harris. SEPM Society for Sedimentary Geology, 82, 61–101.
    [Google Scholar]
  6. Bowker, K. A., & Grace, T. (2010). The downside of using GR to determine TOC content: An example from the Marcellus Shale in SE West Virginia. Critical assessment of shale resource plays: Presented at AAPG Hedberg Research Conference
  7. Braut, T. I.(2018). Middle to Upper Jurassic Depositional Setting in the Hammerfest Basin, Southwestern Barents Sea. Master thesis, University of Stavanger, 106.
  8. Bugge, T., Elvebakk, G., Fanavoll, S., Mangerud, G., Smelror, M., Weiss, H. M., … Nilsen, K. (2002). Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Marine and Petroleum Geology, 19, 13–37. https://doi.org/10.1016/S0264‐8172(01)00051‐4
    [Google Scholar]
  9. Catuneanu, O., Abreu, V., Bhattacharya, J., Blum, M., Dalrymple, R., Eriksson, P., … Gibling, M. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  10. Chiarella, D., Longhitano, S. G., Mosdell, W., & Telesca, D. (2020). Sedimentology and facies analysis of ancient sand ridges: Jurassic Rogn Formation, trøndelag platform, Offshore Norway. Marine and Petroleum Geology, 112, 104082. https://doi.org/10.1016/j.marpetgeo.2019.104082
    [Google Scholar]
  11. Clark, S.,Glorstad‐Clark, E.,Faleide, J., Schmid, D., Hartz, E., & Fjeldskaar, W. (2014). Southwest Barents Sea rift basin evolution: comparing results from backstripping and time‐forward modelling. Basin Research, 26, 550–566. https://doi.org/10.1111/bre.12039
    [Google Scholar]
  12. Costa, L. I., & Davey, R. J. (1992). Dinoflagellate cysts of the Cretaceous system. In A. J.Powell (Ed.), A stratigraphic index of dinoflagellate cysts (pp. 99–131). London: Chapman and Hall, 99–131.
    [Google Scholar]
  13. Creaney, S., & Passey, Q. R. (1993). Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bulletin, 77, 386–401.
    [Google Scholar]
  14. Dalland, A., Worsley, D., & Ofstad, K. (1988). A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore Norway North of 62 N. NPD Bulletin., 4, 67.
    [Google Scholar]
  15. Davies, S. J., & Elliott, T. (1996). Spectral gamma ray characterization of high resolution sequence stratigraphy: examples from upper Carboniferous fluvio‐deltaic systems, County Clare, Ireland. Geological Society, London, Special Publications, 104, 25–35. https://doi.org/10.1144/GSL.SP.1996.104.01.03
    [Google Scholar]
  16. Demaison, G. J., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. AAPG Bulletin, 64, 1179–1209.
    [Google Scholar]
  17. Embry, A. (2009). Practical sequence stratigraphy. Canadian Society of Petroleum Geologists, 81, 79. www.cspg.org
    [Google Scholar]
  18. Emery, D., & Myers, K. (2009). Sequence stratigraphy (p. 264). Oxford: John Wiley & Sons.
    [Google Scholar]
  19. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the South‐Western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10, 186–214. https://doi.org/10.1016/0264‐8172(93)90104‐Z
    [Google Scholar]
  20. Faleide, T. S., Midtkandal, I., Planke, S., Corseri, R., Faleide, J. I., Serck, C. S., & Nystuen, J. P. (2019). Characterisation and development of early cretaceous shelf platform deposition and faulting in the hoop area, southwestern barents sea‐constrained by high‐resolution seismic data. Norwegian Journal of Geology, 99, 1–20. https://doi.org/10.17850/njg99‐3‐7
    [Google Scholar]
  21. Gabrielsen, R. H., Kyrkjebø, R., Faleide, J. I., Fjeldskaar, W., & Kjennerud, T. (2001). The Cretaceous post‐rift basin configuration of the Northern North Sea. Petroleum Geoscience, 7, 137–154. https://doi.org/10.1144/petgeo.7.2.137
    [Google Scholar]
  22. Georgiev, S. V., Stein, H. J., Hannah, J. L., Xu, G., Bingen, B., & Weiss, H. M. (2017). Timing, duration, and causes for Late Jurassic‐Early Cretaceous anoxia in the Barents Sea. Earth and Planetary Science Letters, 461, 151–162. https://doi.org/10.1016/j.epsl.2016.12.035
    [Google Scholar]
  23. Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., & Yamasaki, T. (2014). Crustal and basin evolution of the southwestern Barents Sea: from caledonian orogeny to continental breakup. Tectonics, 33, 347–373. https://doi.org/10.1002/2013TC003439
    [Google Scholar]
  24. Glørstad‐Clark, E.(2010). Basin analysis in the western Barents Sea area: the interplay between accommodation space and depositional systems. PhD Thesis. University of Oslo, 212.
  25. Goesten, M., & Nelson, P. (1992) Draugen Field‐Norway North Sea Basin, Haltenbanken Area. In: Structural Traps VI (Ed. By Foster N.H. & Beaumont E.A.). AAPG, 37–54.
    [Google Scholar]
  26. Grundvåg, S. A., Marin, D., Kairanov, B., Śliwińska, K. K., Nøhr‐Hansen, H., Jelby, M. E., … Olaussen, S. (2017). The Lower Cretaceous succession of the northwestern barents shelf: onshore and offshore correlations. Marine and Petroleum Geology, 86, 834–857. https://doi.org/10.1016/j.marpetgeo.2017.06.036
    [Google Scholar]
  27. Haq, B. U. (2017). Jurassic sea‐level variations: a reappraisal. GSA Today, 28, 4–10.
    [Google Scholar]
  28. Helleren, S., Marín, D., Ohm, S., Augustsson, C., & Escalona, A. (2020). Why does not lithology correlate with gamma‐ray spikes in the shaley source rocks of the Upper Jurassic Alge Member (southwestern Barents Sea)?Marine and Petroleum Geology, 121, 104623–https://doi.org/10.1016/j.marpetgeo.2020.104623
    [Google Scholar]
  29. Hemmesch, N. T., Harris, N. B., Mnich, C. A., & Selby, D. (2014). A sequence‐stratigraphic framework for the upper Devonian woodford shale, permian basin, west texassequence stratigraphy, woodford shale, permian basin, Texas. AAPG Bulletin, 98, 23–47.
    [Google Scholar]
  30. Henriksen, E., Ryseth, A., Larssen, G., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. (2011). Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. Geological Society, London, Memoirs, 35, 163–195.
    [Google Scholar]
  31. Herbin, J. P., Fernandez‐Martinez, J. L., Geyssant, J. R., Albani, A. E., Deconinck, J. F., Proust, J. N., … Vidier, J. P. (1995). Sequence stratigraphy of source rocks applied to the study of the Kimmeridgian/Tithonian in the North‐West European Shelf (Dorset/Uk, Yorkshire/Uk and Boulonnais/France). Marine and Petroleum Geology, 12, 177–194. https://doi.org/10.1016/0264‐8172(95)92838‐N
    [Google Scholar]
  32. Huc, A., le Fournier, J., Vandenbroucke, M., & Bessereau, G. (1990) Northern Lake Tanganyika–an Example of Organic Sedimentation in an Anoxic Rift Lake: Chapter 10. In: Lacustrine Basin Exploration: Case Studies and Modern Analogs (Ed. by Katz B.J) AAPG Memoirs, 50, 169–185.
    [Google Scholar]
  33. Hunt, J. M. (1995). Petroleum geochemistry and geology (p. 743). New York: Freeman.
    [Google Scholar]
  34. Indrevær, K., Gabrielsen, R. H., & Faleide, J. I. (2017). Early Cretaceous synrift uplift and tectonic inversion in the Loppa high area, southwestern Barents sea, Norwegian shelf. Journal of the Geological Society, 174, 242–254. https://doi.org/10.1144/jgs2016‐066
    [Google Scholar]
  35. Josefsen, O.(2019). Origin of anticline structure in the southern Hammerfest Basin and their impact in sedimentation and coarse‐grained distribution. Master thesis. University of Stavanger, 81 p.
  36. Kairanov, B., Marín, D., Escalona, A., & Cardozo, N. (2019). Growth and linkage of a basin‐bounding fault system: insights from the Early Cretaceous evolution of the Northern Polhem Subplatform, SW Barents Sea. Journal of Structural Geology, 124, 182–196. https://doi.org/10.1016/j.jsg.2019.04.014
    [Google Scholar]
  37. Katz, B. J. (1995). A survey of rift basin source rocks. Geological Society, London, Special Publications, 80, 213–240. https://doi.org/10.1144/GSL.SP.1995.080.01.11
    [Google Scholar]
  38. Khan, S. A., Ansari, K. G. M. T., & Lyla, P. S. (2012). Organic matter content of sediments in continental shelf area of southeast coast of India. Environmental Monitoring and Assessment, 184, 7247–7256. https://doi.org/10.1007/s10661‐011‐2494‐8
    [Google Scholar]
  39. Klausen, T. G., Müller, R., Poyatos‐Moré, M., Olaussen, S., & Stueland, E. (2019). Tectonic, provenance and sedimentological controls on reservoir characteristics in the Upper Triassic‐Middle Jurassic Realgrunnen Subgroup, Sw Barents Sea. Geological Society, London, Special Publications, 495, 2018‐2165. https://doi.org/10.1144/SP495‐2018‐165
    [Google Scholar]
  40. Koevoets, M. J., Hammer, Ø., Olaussen, S., Senger, K., & Smelror, M. (2018). Integrating subsurface and outcrop data of the Middle Jurassic to Lower cretaceous Agardhfjellet formation in central Spitsbergen. Norwegian Journal of Geology, 98, 1–34. https://doi.org/10.17850/njg98‐4‐01
    [Google Scholar]
  41. Lash, G. G. (2016). Hyperpycnal transport of carbonaceous sediment‐example from the upper Devonian Rhinestreet shale, Western New York, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 29–43. https://doi.org/10.1016/j.palaeo.2016.06.035
    [Google Scholar]
  42. Leith, T., Weiss, H., Mørk, A., Elvebakk, G., Embry, A., Brooks, P., … Verba, M. (1993). Mesozoic hydrocarbon source‐rocks of the Arctic region. In T. O.Vorren, E.Bergsager, Ø. A.Dahl‐Stamnes, E.Holter, B.Johansen, E.Lie & T. B.Lund (Eds.), Norwegian petroleum society special publications (Vol. 2, pp. 1–25). Elsevier.
    [Google Scholar]
  43. Lerch, B., Karlsen, D., Matapour, Z., Seland, R., & Backer‐Owe, K. (2016). Organic geochemistry of barents sea petroleum: thermal maturity and alteration and mixing processes in oils and condensates. Journal of Petroleum Geology, 39, 125–148. https://doi.org/10.1111/jpg.12637
    [Google Scholar]
  44. Lerch, B., Karlsen, D. A., Thieβen, O., Abay, T. B., van Soelen, E. E., Kürschner, W. M., … Backer‐Owe, K. (2018). Investigations on the use of triaromatic dimethylcholesteroids as age‐specific biomarkers in bitumens and oils from arctic Norway. Organic Geochemistry, 122, 1–16. https://doi.org/10.1016/j.orggeochem.2018.04.011
    [Google Scholar]
  45. Løseth, H., Wensaas, L., & Gading, M. (2011b). Deformation structures in organic‐rich shales. AAPG Bulletin, 95, 729–747. https://doi.org/10.1306/09271010052
    [Google Scholar]
  46. Løseth, H., Wensaas, L., Gading, M., Duffaut, K., & Springer, M. (2011a). Can hydrocarbon source rocks be identified on seismic data?Geology, 39, 1167–1170. https://doi.org/10.1130/G32328.1
    [Google Scholar]
  47. Macquaker, J., & Gawthorpe, R. (1993). Mudstone lithofacies in the kimmeridge clay formation, Wessex Basin, Southern England; implications for the origin and controls of the distribution of mudstones. Journal of Sedimentary Research, 63, 1129–1143.
    [Google Scholar]
  48. Marín, D., Escalona, A., Grundvåg, S.‐A., Nøhr‐Hansen, H., & Kairanov, B. (2018a). Effects of adjacent fault systems on drainage patterns and evolution of uplifted rift shoulders: the Lower Cretaceous in the Loppa high, Southwestern Barents Sea. Marine and Petroleum Geology, 94, 212–229. https://doi.org/10.1016/j.marpetgeo.2018.04.009
    [Google Scholar]
  49. Marín, D., Escalona, A., Grundvåg, S.‐A., Olaussen, S., Sandvik, S., & Śliwińska, K. K. (2018b). Unravelling key controls on the rift climax to post‐rift fill of marine rift basins: insights from 3d seismic analysis of the Lower Cretaceous of the Hammerfest Basin, Sw Barents Sea. Basin Research, 30, 587–612. https://doi.org/10.1111/bre.12266
    [Google Scholar]
  50. Marín, D., Escalona, A., Śliwińska, K. K., Nøhr‐Hansen, H., & Mordasova, A. (2017). Sequence stratigraphy and lateral variability of Lower Cretaceous Clinoforms in the Southwestern Barents Sea. AAPG Bull., 101, 1487–1517.
    [Google Scholar]
  51. Martins‐Neto, M. A., & Catuneanu, O. (2010). Rift sequence stratigraphy. Marine and Petroleum Geology, 27, 247–253. https://doi.org/10.1016/j.marpetgeo.2009.08.001
    [Google Scholar]
  52. Miller, K. G., Mountain, G. S., Browning, J. V., Katz, M. E.,Monteverde, D., Sugarman, P. J., … Hodgson, D. (2013). Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf. Geosphere, 9, 1236–1256. https://doi.org/10.1130/GES00884.1
    [Google Scholar]
  53. Mitchum, R. Jr, Vail, P., & Sangree, J. (1977) Seismic stratigraphy and global changes of sea level: Part 6. stratigraphic interpretation of seismic reflection patterns in depositional sequences: Section 2. In: Application of Seismic Reflection Configuration to Stratigraphic Interpretation (Ed. by Payton C.E.) AAPG Memoirs, 26, 117–133.
    [Google Scholar]
  54. Mørk, A., Dallmann, W., Dypvik, H., Johannessen, E., Larssen, G., Nagy, J., … Worsley, D. (1999). Mesozoic Lithostratigraphy. Lithostratigraphic lexicon of Svalbard. Upper Palaeozoic to Quaternary bedrock. In W. K.Dallmann (Ed.), Review and recommendations for nomenclature use (pp. 127–214). Tromsø: Norwegian Polar Institute.
    [Google Scholar]
  55. Mulrooney, M. J., Leutscher, J., & Braathen, A. (2017). A 3d structural analysis of the Goliat field, Barents Sea, Norway. Marine and Petroleum Geology, 86, 192–212. https://doi.org/10.1016/j.marpetgeo.2017.05.038
    [Google Scholar]
  56. Mulrooney, M. J., Rismyhr, B., Yenwongfai, H. D., Leutscher, J., Olaussen, S., & Braathen, A. (2018). Impacts of small‐scale faults on continental to coastal plain deposition: evidence from the Realgrunnen Subgroup in the Goliat field, Southwest Barents Sea, Norway. Marine and Petroleum Geology, 95, 276–302. https://doi.org/10.1016/j.marpetgeo.2018.04.023
    [Google Scholar]
  57. Myers, K. J., & Wignall, P. B. (1987). Understanding Jurassic Organic‐Rich Mudrocks—New Concepts Using Gamma‐Ray Spectrometry and Palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Marine Clastic Sedimentology (Ed. by Legget J.K., & Zuffa G.G.), 172–189. Springer.
  58. Nagy, J., Reolid, M., & Rodríguez‐Tovar, F. J. (2009). Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Research, 28, 214–221. https://doi.org/10.1111/j.1751‐8369.2009.00112.x
    [Google Scholar]
  59. Nøhr‐Hansen, H. (1993). Dinoflagellate cyst stratigraphy of the barremian to Albian, Lower Cretaceous, North‐East Greenland. Grønlands Geologiske Undersøgelse Bulletin, 166, 171.
    [Google Scholar]
  60. NPD
    NPD (2020) Norwegian Petroleum Directorate Factpages. Retrieved from http://factpages.npd.no/factpages/Default.aspx?culture=en
  61. Ohm, S. E., Karlsen, D. A., & Austin, T. (2008). Geochemically driven exploration models in uplifted areas: Examples from the norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223. https://doi.org/10.1306/06180808028
    [Google Scholar]
  62. Olaussen, S., Larssen, G. B., Helland‐Hansen, W., Johannessen, E. P., Nøttvedt, A., Riis, F., … Worsley, D. (2018). Mesozoic strata of Kong Karls Land, Svalbard, Norway; a link to the northern Barents Sea basins and platforms. Norwegian Journal of Geology, 98, 1–69.
    [Google Scholar]
  63. Passey, Q., Creaney, S., Kulla, J., Moretti, F., & Stroud, J. (1990). A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74, 1777–1794.
    [Google Scholar]
  64. Paxton, S. T., Aufill, M., Cruse, A. M., Puckette, J. O., Hurst, D. D., & Samson, T. (2007). Use of spectral gamma ray profiles for discriminating depositional and stratigraphic successions in upper devonian‐lower mississippian gas shale intervals. GSA Denver Annual Meeting: North America.
    [Google Scholar]
  65. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society, London, Special Publications, 71(1), 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  66. Ravnås, R., & Steel, R. J. (1997). Contrasting styles of Late Jurassic syn‐rift turbidite sedimentation: a comparative study of the Magnus and Oseberg areas, Northern North Sea. Marine and Petroleum Geology, 14, 417–449. https://doi.org/10.1016/S0264‐8172(97)00010‐X
    [Google Scholar]
  67. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift basin successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  68. Rider, M. H. (1996). The geological interpretation of wireline logs, 2nd ed. Scotland: Whittles Publishing, 280 p.
    [Google Scholar]
  69. Riding, J. B. (1994). A taxonomic study of the Mesozoic dinoflagellate cysts Phallocysta elongata (Beju 1971) comb. nov., emend. nov. and Wallodinium cylindricum (Habib 1970) Duxbury 1983 emend. Nov. Palynology, 18, 11–22.
    [Google Scholar]
  70. Riding, J. B.,& Fensome, R. A. (2002). A review of Scriniodinium Klement 1957, Endoscrinium (Klement 1960) Vozzhennikova 1967 and related dinoflagellate cyst taxa. Palynology, 26, 5–33.
    [Google Scholar]
  71. Rismyhr, B., Bjærke, T., Olaussen, S., Mulrooney, M. J., & Senger, K. (2019). Facies, Palynostratigraphy and Sequence Stratigraphy of the Wilhelmøya Subgroup (Upper Triassic‐Middle Jurassic) in Western Central Spitsbergen, Svalbard. Norwegian Journal of Geology, 99, 35–64.
    [Google Scholar]
  72. Rojo, L. A., Cardozo, N., Escalona, A., & Koyi, H. (2019). Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bulletin, 103, 2177–2217.
    [Google Scholar]
  73. Sandvik, S.(2014). Description and comparison of lower cretaceous deposits from Svalbard and the southern Loppa high. Master thesis, University of Bergen, 135.
  74. Scott, A. S., & Ottesen, S. (2018) Tectono‐Stratigraphic Development of the Upper Jurassic in the Johan Sverdrup Field Area, Norwegian North Sea. In: Rift‐related coarse‐grained submarine fan reservoirs; the Brae Play, South Viking Graben, North Sea (Ed. By Turner C.C & Cronin B.T.), AAPG Memoirs, 115, 445–452.
    [Google Scholar]
  75. Serck, C. S., Faleide, J. I., Braathen, A., Kjølhamar, B., & Escalona, A. (2017). Jurassic to Early Cretaceous Basin Configuration(S) in the Fingerdjupet Subbasin, SW Barents Sea. Marine and Petroleum Geology, 86, 874–891. https://doi.org/10.1016/j.marpetgeo.2017.06.044
    [Google Scholar]
  76. Smelror, M., Below, R. et al (1993). Dinoflagellate biostratigraphy of the Toarcian to Lower Oxfordian (Jurassic) of the Barents Sea region. In T. O.Vorren (Ed.), Arctic geology and petroleum potential. NPF special publication 2 (pp. 495–513). Elsevier Scientific Publications.
    [Google Scholar]
  77. Smelror, M., & Dypvik, H. (2005). Marine microplankton biostratigraphy of the Volgian‐Ryazanian Boundary strata, western barents shelf. NGU Bulletin, 443, 61–69.
    [Google Scholar]
  78. Smelror, M., Mørk, A., Mørk, M. B. E., Weiss, H. M., & Løseth, H. (2001). Middle Jurassic‐Lower Cretaceous transgressive‐regressive sequences and facies distribution off Northern Nordland and Troms, Norway. Norwegian Petroleum Society Special Publications, 10, 211–232.
    [Google Scholar]
  79. Sund, T., Skarpnes, O., Jensen, L. N., & Larsen, R. M. (1986). Tectonic development and hydrocarbon potential offshore Troms, Northern Norway. In: Future Petroleum Provinces of the World (Ed. by Halbouty M.T.), AAPG Memoirs, 40, 615–627.
    [Google Scholar]
  80. Surlyk, F. (1991). Sequence stratigraphy of the Jurassic‐lowermost Cretaceous of East Greenland. AAPG Bulletin, 75, 1468–1488.
    [Google Scholar]
  81. Tissot, B., & Welte, D. (1984). Petroleum Formation and Occurrence. Berlin Heidelberg: Springer. 702 p.
    [Google Scholar]
  82. Turner, C. C., & Hooper, R. J. (2018). Gravity‐Driven Versus Inversion Origins for Upper Jurassic Trapping Structures of the Brae Fields, South Viking Graben, Uk North Sea. In: Rift‐related coarse‐grained submarine fan reservoirs; the Brae Play, South Viking Graben, North Sea (Ed. by Turner C.C & Cronin B.T.), AAPG Memoirs, 115, 565–594.
    [Google Scholar]
  83. Tyson, R. V. (1996). Sequence‐stratigraphical interpretation of organic facies variations in marine siliciclastic systems: general principles and application to the Onshore Kimmeridge Clay Formation, UK. Geological Society of London Special Publications, 103, 75–96. https://doi.org/10.1144/GSL.SP.1996.103.01.06
    [Google Scholar]
  84. Tyson, R. V.,& Pearson, T. H. (1991). Modern and ancient continental shelf anoxia: an overview. Geological Society of London Special Publications, 58, 1–24. https://doi.org/10.1144/GSL.SP.1991.058.01.01
    [Google Scholar]
  85. Usken, B.(2018). Upper Jurassic‐Lower Cretaceous seismic interpretation in the Nysleppen Fault complex, SW Barents Sea. Bachelor thesis. University of Stavanger, 58 p.
  86. van Buchem, E. S. P., Herbin, J.‐P., de Boer, P. L., McCave, I. N., & Huc, A.‐Y. (1995). The Organic Carbon Distribution in Mesozoic Marine Sediments and the Influence of Orbital Climatic Cycles (England and the Western North Atlantic). In: Paleogeography, Paleoclimate, and Source Rocks (Ed. by Huc A.Y.), 40, 0. American Association of Petroleum Geologists.
  87. Wierzbowski, A., & Århus, N. (1990). Ammonite and dinoflagellate cyst succession of an upper Oxfordian‐Kimmeridgian black shale core from the Nordkapp Basin, Southern Barents Sea. Newsletters on Stratigraphy, 22, 7–19. https://doi.org/10.1127/nos/22/1990/7
    [Google Scholar]
  88. Wierzbowski, A., & Smelror, M. (2020). The Bajocian to Kimmeridgian (Middle to Upper Jurassic) Ammonite Succession at Sentralbanken High (Core 7533/3‐U‐1), Barents Sea, and Its Stratigraphical and Palaeobiogeographical Significance. Volumina Jurassica, 18, 1–22. https://doi.org/10.7306/vj.18.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12504
Loading
/content/journals/10.1111/bre.12504
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error