1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

The term base‐of‐scarp is proposed for those submarine deposits controlled by a fault and physically disconnected from their more proximal counterpart located on the footwall, although genetically linked to it. These systems differ from conventional fault‐controlled deltas, such as shoal‐ and Gilbert‐type, because they are entirely subaqueous and lack equilibrium morphology—a steady state in which the system grows in size without altering its shape. We present field examples of fault‐controlled deposits from the Crati Basin and the Messina Strait (southern Italy) consisting of stratigraphic clastic wedges that thin towards and onlap onto the active margin with primary inclined bedding. Beds are composed of immature coarse‐grained gravels and sand, lack structures representative of wave‐action and reflect gravity‐driven processes such as debris flow, debris fall and high‐density turbidity currents. These deposits represent the unsteady‐state phase in which the system grows reducing its slope angle leading to conditions under which the unsteady state may eventually turn into a Gilbert‐type or shoal‐water system. A diagram for fault‐controlled base‐of‐scarp (B), Gilbert (G) and shoal‐water (S) deposits is presented, including their steady‐ and unsteady states, and the conceptual conditions under which a base‐of‐scarp system might evolve into Gilbert‐type or shoal‐water systems and vice versa.

,

Base‐of‐scarp deposits represent unsteady‐state systems showing primary inclined bedding and aggradational to progradational geometries along active fault scarps. The progressive angle decrease recognised in the younger strata promotes the architectural change of the system to either shola‐water or Gilbert‐type systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12505
2021-03-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12505.html?itemId=/content/journals/10.1111/bre.12505&mimeType=html&fmt=ahah

References

  1. Abeyta, A., & Paola, C. (2015). Transport dynamics of mass failures along weakly cohesive clinoform foresets. Sedimentology, 62, 303–313.
    [Google Scholar]
  2. Barrett, B.,Collier, R. E. L. L., Hodgson, D. M., Gawthorpe, R. L., Dorrell, R. M., & Cullen, T. M. (2019). Quantifying faulting and base level controls on syn‐rift sedimentation using stratigraphic architectures of coeval fan deltas: Constraining Early‐Middle Pleistocene baselevel amplitude change in Lake Corinth. Basin Research, 31, 1040–1065.
    [Google Scholar]
  3. Barrier, P. (1986). Evolution paleogeographic du detroit de Messine au Pliocene et au Pleistocene. Giornale Di Geologia, 48, 7–24.
    [Google Scholar]
  4. Barrier, P., Di Geronimo, L., & Lanzafame, G. (1986). I rapporti tra tettonica e sedimentazaione nell’evoluzione recente dell’Aspromonte Occidentale. Rivista Italiana Paleontologia E Sedimentologia, 91, 537–556.
    [Google Scholar]
  5. Bell, R. E., Duclaux, G., Nixon, C. W., Gawthorpe, R. L., & McNeill, L. C. (2018). High‐angle, not low‐angle, normal faults dominate early rift extension in the Corinth Rift, central Greece. Geology, 46, 115–118. https://doi.org/10.1130/G39560.1
    [Google Scholar]
  6. Blikra, L. H., & Nemec, W. (1998). Postglacial colluvium in western Norway: Depositional processes, facies and paaeoclimatic record. Sedimentology, 45, 909–959.
    [Google Scholar]
  7. Catalano, R., Monaco, C., & Tansi, C. (1993). Pleistocene strike‐slip tectonics in the Lucanian Apennine (Southern Italy). Tectonics, 12, 56–65.
    [Google Scholar]
  8. Catalano, S., De Guidi, G., Monaco, C., Tortorici, G., & Tortorici, L. (2008). Active faulting and seismicity along the Siculo‐Calabrian Rift Zone (Southern Italy). Tectonophysics, 453, 177–192.
    [Google Scholar]
  9. Chiarabba, C., Agostinetti, N. P., & Bianchi, I. (2016). Lithospheric fault and kinematic decoupling of the Apennines system across the Pollino range. Geophysical Research Letters, 43, 3201–3207.
    [Google Scholar]
  10. Chiarella, D. (2016). Angular and tangential toeset geometry in tidal cross strata: an additional feature of current‐modulated deposits. In B.Tessier, & J.‐Y.Reynaud (Eds.), Contributions to modern and ancient tidal sedimentology: Proceedings of the tidalites 2012 conference (pp. 185–195). Hoboken, NJ: IAS Special Publication. https://doi.org/10.1002/9781119218395.ch10
    [Google Scholar]
  11. Chiarella, D., & Longhitano, S. G. (2012). Distinguishing depositional environments in shallow‐water mixed, bio‐siliciclastic deposits on the basis of the degree of heterolithic segregation (Gelasian, southern Italy). Journal of Sedimentary Research, 82, 969–990. https://doi.org/10.2110/jsr.2012.78
    [Google Scholar]
  12. Chiarella, D., Longhitano, S., Sabato, L., & Tropeano, M. (2012). Sedimentology and hydrodynamics of mixed (siliciclastic‐bioclastic) shallow‐marine deposits of Acerenza (Pliocene, Southern Apennines, Italy). Italian Journal of Geosciences, 131, 136–151.
    [Google Scholar]
  13. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2017). Types of mixing and heterogeneities in mixed siliciclastic‐carbonate sediments. Marine and Petroleum Geology, 88, 617–627.
    [Google Scholar]
  14. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2019). Different stacking patterns along an active fold‐and‐thrust belt—Acerenza Bay, Southern Apennines (Italy). Geology, 47, 139–142. https://doi.org/10.1130/G45628.1
    [Google Scholar]
  15. Colella, A. (1988a). Fault‐controlled marine Gilbert‐type fan deltas. Geology, 16, 1031–1034. https://doi.org/10.1130/0091‐7613(1988)016<1031:FCMGTF>2.3.CO;2
    [Google Scholar]
  16. Colella, A. (1988b). Pliocene‐Holocene fan deltas and braid deltas in the Crati basin: A consequence of varying tectonic conditions. In W.Nemec, & R. J.Steel (Eds.), Fan deltas: sedimentology and tectonic settings (pp. 50–74). LondonBlackie and Son Ltd.
    [Google Scholar]
  17. Cullen, T. M., Collier, R. E. L. L., Gawthorpe, R. L., Hodgson, D. M., & Barrett, B. J. (in press). Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research. https://doi.org/10.1111/bre.12416
    [Google Scholar]
  18. Dorsey, R. J., Umhoefer, P. J., & Renne, P. R.1995. Rapid subsidence and stacked Gilbert‐type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico. Seidmentary Geology, 98, 181–204.
    [Google Scholar]
  19. Ethridge, F., & Wescott, W. (1984). Tectonic setting, recognition and hydrocarbon reservoir potential of fan‐delta deposits. In E. H.Koster, & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates, (Vol. 10, pp. 217–235). Calgary, Canada: CSPG Special Publications.
    [Google Scholar]
  20. Ferranti, L., Santoro, E., Mazzella, M. E., Monaco, C., & Morelli, D. (2009). Active transpression in the northern Calabria Apennines, southern Italy. Tectonophysics, 476, 226–251.
    [Google Scholar]
  21. Filice, F., & Seeber, L. (2019). The culmination of an oblique time‐transgressive arc continent collision: The Pollino Massif between Calabria and the Southern Apennines, Italy. Tectonics, 38, 3261–3280. https://doi.org/10.1029/2017TC004932
    [Google Scholar]
  22. Garcia‐Garcia, F., Fernandez, J., Viseras, C., & Soria, J. M. (2006). Architecture and sedimentary facies evolution in a delta stack controlled by fault growth (Betic Cordillera, southern Spain, late Tortonian). Sedimentary Geology, 185, 79–92. https://doi.org/10.1016/j.sedgeo.2005.10.010
    [Google Scholar]
  23. Ghisetti, F. (1979). Evoluzione neotettonica dei principali sistemi di faglie della Calabria centrale. Bollettino Della Società Geologica Italiana, 98, 387–430.
    [Google Scholar]
  24. Ghisetti, F. (1984). Recent deformations and the seimogenic source in the Messina Strait (Southern Italy). Tectonophysics, 109, 191–208.
    [Google Scholar]
  25. Ghisetti, F. (1992). Fault parameters in the Messina Strait (southern Italy) and relations with the seismogenic source. Tectonophysics, 210, 117–133. https://doi.org/10.1016/0040‐1951(92)90131‐O
    [Google Scholar]
  26. Ghisetti, F., & Vezzani, L. (1982). Strutture tensionali e compressive indotti da meccanismi profondi lungo la linea del Pollino (Appennino meridionale). Bollettino Della Società Geologica Italiana, 101, 385–440.
    [Google Scholar]
  27. Gobo, K., Ghinassi, M., & Nemec, W. (2015). Gilbert‐type deltas recording short‐term base‐level changes: Delta‐brink morphodynamics and related foreset facies. Sedimentology, 62, 1923–1949. https://doi.org/10.1111/sed.12212
    [Google Scholar]
  28. Hardy, S., Dart, C. J., & Waltham, D. (1994). Computer modelling of the influence of tectonics on sequence architecture of coarse‐grained fan deltas. Marine and Petroleum Geology, 11, 561–574. https://doi.org/10.1016/0264‐8172(94)90068‐X
    [Google Scholar]
  29. Henstra, G. S., Grundvåg, S. A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., … Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology, 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
    [Google Scholar]
  30. Jia, Y., Lin, C., Eriksson, K. A., Niu, C., Li, H., & Zhang, P. (2019). Fault control on depositional systems and sequence stratigraphic architecture in a multiphase, rifted, lacustrine basin: A case study from the paleogene of the central Bohai Bay Basin, Northeast China. Marine and Petroleum Geology, 101, 459–475. https://doi.org/10.1016/j.marpetgeo.2018.12.019
    [Google Scholar]
  31. Jopling, A. V. (1965). Hydraulic factors controlling the shape of the laminae in laboratory deltas. Journal of Sedimentary Petrography, 35, 777–791.
    [Google Scholar]
  32. Lai, S. Y. J., Hsiao, Y.‐T., & Wu, F.‐C. (2017). Asymmetric effects of subaerial and subaqueous basement slopes on self‐similar morphology of prograding deltas. Journal of Geophysical Research: Earth Surface, 122, 2506–2526. https://doi.org/10.1002/2017JF004244
    [Google Scholar]
  33. Leeder, M. R., & Gawthorpe, R. L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. In M. P. Coward, J. F. Dewey, & P. L. Hancock (Eds.), Continental extensional tectonics. Geological Society, London, Special Publications, 28, 139–152.
    [Google Scholar]
  34. Lewis, M. M., Jackson, C.‐A.‐L., Gawthorpe, R. L., & Whipp, P. S. (2015). Early synrift reservoir development on the flanks of extensional forced folds: A seismic‐scale outcrop analog from the Hadahid fault system, Suez Rift, Egypt. AAPG Bulletin, 99, 985–1012. https://doi.org/10.1306/120111414036
    [Google Scholar]
  35. Longhitano, S. G. (2008). Sedimentary facies and sequence stratigraphy of coarse‐grained Gilbert‐type deltas within the Pliocene thrust‐top Potenza Basin (Southern Apennines, Italy). Sedimentary Geology, 210, 87–110. https://doi.org/10.1016/j.sedgeo.2008.07.004
    [Google Scholar]
  36. Longhitano, S. G. (2018). Between Scylla and Charybdis: The sedimentary dynamics of the ancient, Early Pleistocene Messina Strait (central Mediterranean) based on its modern analogue. Earth‐Science Reviews, 179, 248–286.
    [Google Scholar]
  37. Longhitano, S. G., Chiarella, D., Di Stefano, A., Messina, C., Sabato, L., & Tropeano, M. (2012). Tidal signatures in Neogene to Quaternary mixed deposits of southern Italy straits and bays. Sedimentary Geology, 279, 74–96. https://doi.org/10.1016/j.sedgeo.2011.04.019
    [Google Scholar]
  38. Longhitano, S. G., Chiarella, D., & Muto, F. (2014). Three‐dimensional to two‐dimensional cross‐strata transition in the lower Pleistocene Catanzaro tidal strait transgressive succession (southern Italy). Sedimentology, 61, 2136–2171. https://doi.org/10.1111/sed.12138
    [Google Scholar]
  39. Longhitano, S. G., Sabato, L., Tropeano, M., Murru, M., & Carannante, G. (2015). Outcrop reservoir analogous and porosity changes in continental deposits from an extensional basin: The case study of the upper Oligocene Sardinia Graben System, Italy. Marine and Petroleum Geology, 67, 439–459. https://doi.org/10.1016/j.marpetgeo.2015.05.022
    [Google Scholar]
  40. Massari, F. (1996). Upper‐flow‐regime stratification types on steep‐face, coarse‐grained, Gilbert‐type progradational wedges (Pleistocene, southern Italy). Journal of Sedimentary Research, 66, 364–375. https://doi.org/10.1306/D426834C‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  41. Massari, F., & Chiocci, F. L. (2006). Biocalcarenite and mixed cool‐water prograding bodies of the Mediterranean Pliocene and Pleistocene: architecture, depositional setting and forcing factors. Geological Society, London, Special Publications, 255(1), 95–120. https://doi.org/10.1144/GSL.SP.2006.255.01.08
    [Google Scholar]
  42. Massari, F., & Colella, A. (1988). Evolution and types of fan‐delta systems in some major tectonic settings. In W.Nemec, & R. J.Steel (Eds.), Fan Deltas: Sedimentology and Tectonic Settings (pp. 103–122). LondonBlackie and Son Ltd.
    [Google Scholar]
  43. Miall, A. D. (1976). Facies model 4, deltas. Geoscience Canada, 3, 215–227.
    [Google Scholar]
  44. Monaco, C., & Tansi, C. (1992). Strutture transpressive lungo la zona trascorrente sinistra nel versante orientale del Pollino (Appennino calabro‐lucano) (Transpressional structures along the left‐lateral strike‐slip zone on the eastern slope of Mt. Pollino (Calabrian‐Lucanian Apennine)). Bollettino Della Societ a Geologica Italiana, 111, 291–301.
    [Google Scholar]
  45. Monaco, C., & Tortorici, L. (2000). Active faulting in the Calabrian arc and eastern Sicily. Journal of Geodynamics, 29, 407–424. https://doi.org/10.1016/S0264‐3707(99)00052‐6
    [Google Scholar]
  46. Monaco, C., Tortorici, L., Nicolich, R., Cernobori, L., & Costa, M. (1996). From collisional to rifted basins: An example from the southern Calabrian arc (Italy). Tectonophysics, 266, 233–249. https://doi.org/10.1016/S0040‐1951(96)00192‐8
    [Google Scholar]
  47. Nalin, R., Ghinassi, M., Foresi, L. M., & Dallanave, E. (2016). Carbonate Deposition in restrcited basins: A Pliocene case study from central Mediterranena (Northwestern Apennines). Journal of Sedimentary Research, 86, 1–32.
    [Google Scholar]
  48. Nemec, W. (1990) Aspects of sediment movement on steep delta slopes, In A. Colella, & D. B. Prior (Eds.), Coarse‐Grained Deltas. IAS Special Publication, 10, 29–73.
    [Google Scholar]
  49. Ono, K., & Plink‐Björklund, P. (2018). Froude supercritical flow bedforms in deepwater slope channels? Field Examples in Conglomerates, Sandstones and fine‐grained Deposits. Sedimentology, 65, 639–669. https://doi.org/10.1111/sed.12396
    [Google Scholar]
  50. Pepe, M., & Gallicchio, S. (2013). Shallow‐marine systems in a wedge‐top basin setting: An example from the middle‐upper Pliocene deposits of the Southern Apennines mountain front (Basilicata region, South Italy). Italian Journal of Geosciences, 132, 304–320. https://doi.org/10.3301/IJG.2012.32
    [Google Scholar]
  51. Postma, G., Lang, J., Hoyal, D. C., Fedele, J. J., Demko, T., Abreu, V., & Pederson, K. H. (in press) Reconstruction of bedform dynamics controlled by supercritical flow in the channel–lobe transition zone of a deep‐water delta (Sant Llorencß del Munt, northeast Spain, Eocene). Sedimentology. https://doi.org/10.1111/sed.12735
    [Google Scholar]
  52. Postma, G., Nemec, W., & Kleinspehn, K. L. (1988). Large floating clasts in turbidites: A mechanism for their emplacement. Sedimentary Geology, 58, 47–61. https://doi.org/10.1016/0037‐0738(88)90005‐X
    [Google Scholar]
  53. Prior, D. B., & Bornhold, B. D. (1988). Submarine morphology and processes of fjord fan deltas and related high‐gradient systems: Modern examples from British Columbia. In W.Nemec, & R. J.Steel (Eds.), Fan deltas: sedimentology and tectonic settings (pp. 103–122). LondonBlackie and Son Ltd.
    [Google Scholar]
  54. Roda‐Boluda, D. C., & Whittaker, A. C. (2017). Structural and geomorphological constraints on active normal faulting and landscape evolution in Calabria, Italy. Journal of the Geological Society, 174, 701–720.
    [Google Scholar]
  55. Rossi, V. M., Longhitano, S. G., Mellere, D., Dalrymple, R. W., Steel, R. J., Chiarella, D., & Olariu, C. (2017). Interplay of tidal and fluvial processes in an early Pleistocene, delta‐fed strait margin (Calabria, Southern Italy). Marine and Petroleum Geology, 87, 14–30. https://doi.org/10.1016/j.marpetgeo.2017.02.021
    [Google Scholar]
  56. Sorriso‐Valvo, M., & Terranova, O. (2006). The Calabrian fiumara streams, Zeitschrift für Geomorphologie. Supplementband, 143, 109–125.
    [Google Scholar]
  57. Spina, V., Tondi, E., & Mazzoli, S. (2011). Complex basin development in a wrench‐dominated back‐arc area: Tectonic evolution of the Crati Basin, Calabria, Italy. Journal of Geodynamics, 51, 90–109. https://doi.org/10.1016/j.jog.2010.05.003
    [Google Scholar]
  58. Steel, R. J., Moehle, S., Nilson, H., Roe, S. L., & Spinnangre, A. (1977). Coarsening upwards cycles in the alluvium of Homelen Basin (Devonian), Norway: Sedimentary response to tectonic events. Bulletin of the Geological Society of America, 88, 1124–1134.
    [Google Scholar]
  59. Stevenson, C. J., Jackson, C. A. L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2016). Deep water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  60. Surlyk, F. (1984). Fan‐delta to submarine fan conglomerates of the Volgian‐Valanginian Wollaston Forland group, east Greenland. In E. H. Koster, R. J. Steel (Eds.), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoir. 10, 359e382.
    [Google Scholar]
  61. Tansi, C., Folino, G. M., Muto, F., Perrotta, P., Russo, L., & Critelli, S. (2016). Seismotectonics and landslides of the Crati Graben (Calabrian Arc, Southern Italy) 2016. Journal of Maps, 12, 363–372.
    [Google Scholar]
  62. Tansi, C., Muto, F., Critelli, S., & Iovine, G. (2007). Neogene‐Quaternary strike‐slip tectonics in the central Calabrian Arc (southern Italy). Journal of Geodynamics, 43, 393–414. https://doi.org/10.1016/j.jog.2006.10.006
    [Google Scholar]
  63. Tripodi, V., Muto, F., Brutto, F., Perri, F., & Critelli, S. (2018). Neogene‐Quaternary evolution of the forearc and backarc regions between the Serre and Aspromonte Massifs, Calabria (southern Italy). Marine and Petroleum Geology, 95, 328–343. https://doi.org/10.1016/j.marpetgeo.2018.03.028.
    [Google Scholar]
  64. Turco, E., Maresca, R., & Cappadona, P. (1990). La tettonica plio‐pleistocenica del confine calabro‐lucano: Modello cinematico (Plio‐Pleistocene tectonics at the Calabrian‐Lucanian boundary: A kinematic model). Memorie Della Societ a Geologica Italiana, 45, 519–529.
    [Google Scholar]
  65. Turner, C. C., & Connell, E. R. (2018). Mid to Late Jurassic Graben margin development and evolution of shallow marine to submarinefan systems in the Brae area south of south Viking Graben, UK North Sea. AAPG Memoir, 115, 163–211.
    [Google Scholar]
  66. Van Dijk, J. P., Bello, M., Brancaleoni, G. P., Cantarella, G., Costa, V., Frixa, A., … Zerilli, A. (2000). A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics, 324, 267–320. https://doi.org/10.1016/S0040‐1951(00)00139‐6
    [Google Scholar]
  67. Yesares‐García, J., & Aguirre, J. (2004). Quantitative taphonomic analysis and taphofacies in lower Pliocene temperate carbonate‐siliciclastic mixed platform deposits (Almeria‐Nijar Basin, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 83–103.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12505
Loading
/content/journals/10.1111/bre.12505
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error