Volume 33 Number 2
PDF

Abstract

[

, Abstract

Understanding the evolution of submarine channel‐lobe systems on salt‐influenced slopes is challenging as these systems react to subtle, syn‐depositional changes in sea‐floor topography. The impact of large blocking structures on individual deep‐water systems is well documented, but our understanding of the spatial and temporal evolution of extensive channel‐lobe systems on slopes influenced by relatively modest salt structures is relatively poor. We focus on Late Miocene deep‐water depositional systems contained within a c. 450 ms TWTT thick interval imaged in 3D seismic reflection data from the contractional salt‐tectonic domain, offshore Angola. Advanced seismic attribute mapping, tied to seismic facies analysis and time‐thickness variations, reveal a wide range of interactions between structurally induced changes in slope relief, deep‐water sediment routing, geomorphology and sedimentology. Five seismic units record a striking tectono‐stratigraphic within eight minibasins. We observe gradual channel diversion through lateral migration during times of relatively high structural growth rate, as opposed to abrupt channel movement via avulsion nodes during times of relatively high sediment accumulation rate. Our models capture the response of deep‐water depositional systems to the initiation, maturation, and decay of contractional structures on salt‐influenced slopes. The initiation stage is defined by small, segmented folds with deep‐water depositional system being largely able to transverse multiple minibasins. In contrast, the maturity stage is characterised by large, now‐linked high‐relief structures bounding prominent minibasins leading to ponding and large‐scale diversion of channel‐lobe systems and the emplacement of MTCs derived from nearby highs. The decay stage is expressed by structures that are shorter and more subdued than those characterising the maturity stage; this leads to a more complicated array of channel‐lobe system, the evolution of which is still influenced by bypass, diversion and ponding. During the decay stage, remnant structures still exert a subtle but key control on the development and positioning of avulsion nodes.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12506
2021-03-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12506.html?itemId=/content/journals/10.1111/bre.12506&mimeType=html&fmt=ahah

References

  1. Aas, T. E., Basani, R., Howell, J. A., & Hansen, E. (2014). Forward modelling as a method for predicting the distribution of deep‐marine sands: an example from the Peira Cava Sub‐Basin. In A. W. Martinius, J. A. Howell and T. R. Good, (Eds.), Sediment‐Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. Geological Society, London, Special Publications, 387, 247–269.
    [Google Scholar]
  2. Abreu, V., Sullivan, M., Pirmez, C., & Mohrig, D. (2003). Lateral accretion packages (Laps): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20, 631–648.
    [Google Scholar]
  3. Anderson, A. V., Sickafoose, D. K., Fahrer, T. R., & Gottschalk, R. R. (2012). Interaction of Oligocene–Miocene deep‐water depositional systems with actively evolving structures: The Lower Congo Basin, offshore Angola. In D. Gao (Ed.), Tectonics and sedimentation: Implications for petroleum systems. AAPG Memoir, 100, 291–313.
    [Google Scholar]
  4. Anderson, J. E., Cartwright, J., Drysdall, S. J., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: Examples from miocene sediments in block 4, Angola. Marine and Petroleum Geology, 17, 1165–1203.
    [Google Scholar]
  5. Armitage, D. A., Mchargue, T., Fildani, A., & Graham, S. A. (2012). Postavulsion Channel Evolution: Niger Delta Continental Slope. AAPG Bulletin, 96, 823–843.
    [Google Scholar]
  6. Banham, S. G., & Mountney, N. P. (2013). Evolution of fluvial systems in salt‐walled mini‐basins: A review and new insights. Sedimentary Geology, 296, 142–166.
    [Google Scholar]
  7. Basani, R., Janocko, M., Cartigny, M. J. B., Hansen, E. W. M., & Eggenhuisen, J. T. (2014) Massflow‐3d as a simulation tool for turbidity currents: some preliminary results. In: A. W. Martinius, R. Ravnas, J. A. Howell, R. J. Steel & J. P. Wonham (Eds.), From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. IAS Special Publication, 46, 587–608.
    [Google Scholar]
  8. Boulesteix, K., Poyatos‐Moré, M., Flint, S. S., Taylor, K. G., Hodgson, D. M., & Hasiotis, S. T. (2019). Transport and deposition of mud in deep‐water environments: processes and stratigraphic implications. Sedimentology, 66, 2894–2925.
    [Google Scholar]
  9. Brice, S. E., Cochran, M. D., Pardo, G., & Edwards, A. D. (1982). Tectonics and sedimentation of the south atlantic rift sequence. Cabinda, AngolaRifted Margins: Field Investigations of Margin Structure and Stratigraphy.
    [Google Scholar]
  10. Brooks, H., Hodgson, D., Brunt, R. L., Peakall, J., Hofstra, M. & Flint, S., (2018). Deep‐water channel‐lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa. GSA Bulletin, 130, 1723–1746.
    [Google Scholar]
  11. Broucke, O., Temple, F., Rouby, D., Robin, C., Calassou, S., Nalpas, T., & Guillocheau, F. (2004). The role of deformation processes on the geometry of mud‐dominated turbiditic systems, Oligocene and lower‐middle Miocene of the lower Congo Basin (West African Margin). Marine and Petroleum Geology, 21, 327–348.
    [Google Scholar]
  12. Brown, A. R. (1991). Interpretation of three‐dimensional seismic data. AAPG Memoir, 42, 341.
    [Google Scholar]
  13. Brownfield, M. E., & Charpentier, R. R. (2006). Geology and total petroleum systems of the west‐central coastal province (7203), West Africa U.S. Geological Survey Bulletin. 2207‐B, 52 p.
  14. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: geology versus models. Marine and Petroleum Geology, 28, 1123–1145.
    [Google Scholar]
  15. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151.
    [Google Scholar]
  16. Cartigny, M. J. B., Eggenhuisen, J. T., Hansen, E. W. M., & Postma, G. (2013). Concentration‐dependent flow stratification in experimental high‐density turbidity currents and their relevance to turbidite facies models. Journal of Sedimentary Research, 83, 1046–1064.
    [Google Scholar]
  17. Clark, I. R., & Cartwright, J. A. (2009). Interactions between Submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean Sea. Marine and Petroleum Geology, 26, 1465–1482.
    [Google Scholar]
  18. Clark, I. R., & Cartwright, J. A. (2011). Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28, 1333–1349. http://dx.doi.org/10.1016/j.marpetgeo.2011.02.001
    [Google Scholar]
  19. Clark, I. R., & Cartwright, J. A. (2012). Interactions between Coeval Sedimentation and Deformation from the Niger Delta Deepwater Fold Belt. In: B. E. Prather, M. E. Deptuck, D. Mohrig, B. van Hoorn & R. B. Wynn (Eds.), Application of the Principles Seismic Geomorphology to Continental Slope and Base‐of‐slope Systems: Case Studies from Seafloor and Near‐Seafloor Analogues . SEPM Special Publication, 243–267.
    [Google Scholar]
  20. Collinson, J. D., & Thompson, D. B. (1982). Sedimentary Structures (p. 194). LondonGeorge Allen & Unwin.
    [Google Scholar]
  21. Deptuck, M. E., Steffens, G. S., Barton, M., & Pirmez, C. (2003). Architecture and evolution of upper fan channel‐belts on the niger delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20, 649–676.
    [Google Scholar]
  22. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O’byrne, C. (2007). Migration‐aggradation history and 3D seismic geomorphology of submarine channels in the pleistocene benin‐major canyon, western niger delta slope. Marine and Petroleum Geology, 24, 406–433.
    [Google Scholar]
  23. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. A. (2020). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models. Geological Society, London, Special Publications, 476, 287–315.
    [Google Scholar]
  24. Doughty‐Jones, G., Lonergan, L., Mayall, M., & Dee, S. (2019). The role of structural growth in controlling the facies and distribution of mass transport deposits in a deep‐water salt minbasin. Marine and Petroleum Geology, 104, 106–124.
    [Google Scholar]
  25. Doughty‐Jones, G., Mayall, M., & Lonergan, L. (2017). Stratigraphy, facies, and evolution of deep‐water lobe complexes within a salt‐controlled intraslope minibasin. AAPG Bulletin, 101, 1879–1904. https://doi.org/10.1306/01111716046
    [Google Scholar]
  26. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 389–404. https://doi.org/10.1016/0264‐8172(92)90050‐O
    [Google Scholar]
  27. Eggenhuisen, J. T., & Mccaffrey, W. D. (2012). The vertical turbulence structure of experimental turbidity currents encountering basal obstructions: implications for vertical suspended sediment distribution in non‐equilibrium currents. Sedimentology, 59, 1101–1120. https://doi.org/10.1111/j.1365‐3091.2011.01297.x
    [Google Scholar]
  28. Fort, X., Brun, J. P., & Chauvel, F. (2004). Salt tectonics on the angolan margin, synsedimentary deformation processes. AAPG Bulletin, 88, 1523–1544. https://doi.org/10.1306/06010403012
    [Google Scholar]
  29. Gamberi, F., & Rovere, M. (2011). Architecture of a modern transient slope fan (Villafranca Fan, Gioia Basin‐Southeastern Tyrrhenian Sea). Sedimentary Geology, 236, 211–225. https://doi.org/10.1016/j.sedgeo.2011.01.007
    [Google Scholar]
  30. Gamboa, D., & Alves, T. M. (2015). Spatial and dimensional relationships of submarine slope architectural elements: A seismic‐scale analysis from the Espírito Santo Basin (SE Brazil). Marine and Petroleum Geology, 64, 43–57. https://doi.org/10.1016/j.marpetgeo.2015.02.035
    [Google Scholar]
  31. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  32. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365‐2117.2000.00121.x
    [Google Scholar]
  33. Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Hansen, E. W. M. (2018). Response of unconfined turbidity current to relay‐ramp topography: insights from process‐based numerical modelling. Basin Research, 30, 321–343. https://doi.org/10.1111/bre.12255
    [Google Scholar]
  34. Gee, M. J. R., & Gawthorpe, R. L. (2006). Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola. Marine and Petroleum Geology, 23, 443–458. https://doi.org/10.1016/j.marpetgeo.2006.01.002
    [Google Scholar]
  35. Gee, M. J. R., Gawthorpe, R. L., Bakke, K., & Friedmann, S. J. (2007). Seismic geomorphology and evolution of submarine channels from the Angolan continental margin. Journal of Sedimentary Research, 77, 433–446. https://doi.org/10.2110/jsr.2007.042
    [Google Scholar]
  36. Giles, K. A., & Rowan, M. G. (2012) Concepts in halokinetic‐sequence deformation and stratigraphy. In: G. I. Alsop, S. G. Archer, A. J. Hartley, N. T. Grant & R. Hodgkinson (Ed.), Salt Tectonics, Sedimentation and Prospectivity. Geological Society, London, Special Publications, 363, 7–31.
    [Google Scholar]
  37. Guiraud, M., Buta‐Neto, A., & Quesne, D. (2010). Segmentation and differential post‐rift uplift at the angola margin as recorded by the transform‐rifted benguela and oblique‐to‐orthogonal‐rifted kwanza basins. Marine and Petroleum Geology, 27, 1040–1068. https://doi.org/10.1016/j.marpetgeo.2010.01.017
    [Google Scholar]
  38. Guiraud, R., & Maurin, J. C. (1992). Early Cretaceous rifts of western and central Africa: An overview. Tectonophysics, 213, 153–168. https://doi.org/10.1016/0040‐1951(92)90256‐6
    [Google Scholar]
  39. Hadler‐Jacobsen, F., Gardner, M. H., & Borer, J. M. (2007) Seismic stratigraphic and geomorphic analysis of deep‐marine deposition along the west african continental margin. In R. J. Davies, H. W. Posamentier, L. J. Wood & J. A. Cartwright (Eds.), Seismic geomorphology: Applications to hydrocarbon exploration and production. Geological Society, London, Special Publications, 277, 47–84.
    [Google Scholar]
  40. Hadler‐Jacobsen, F., Johannessen, E. P., Ashton, N., Henriksen, S., Johnson, S. D., & Kristensen, J. B. (2005). Submarine fan morphology and lithology distribution: A predictable function of sediment delivery, gross shelf‐to‐basin relief, slope gradient and basin topography. Geological Society, London, Petroleum Geology Conference Series, 6, 1121–1146. https://doi.org/10.1144/0061121
    [Google Scholar]
  41. Hansen, L., Janocko, M., Kane, I., & Kneller, B. (2017). Submarine channel evolution, terrace development, and preservation of intra‐channel thin‐bedded turbidites: Mahin and Avon channels. Offshore Nigeria. Marine Geology, 383, 146–167. https://doi.org/10.1016/j.margeo.2016.11.011
    [Google Scholar]
  42. Haughton, P. D. W. (2000). Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain. Sedimentology, 47, 497–518. https://doi.org/10.1046/j.1365‐3091.2000.00293.x
    [Google Scholar]
  43. Hay, D. C. (2012) Stratigraphic evolution of a tortuous corridor from the stepped slope of Angola. In E. Bradford, M. D. Prather, D. Mohrig, B. Van Hoorn & R. B. Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: case studies from seafloor and near‐seafloor analogues. SEPM Special Publication, 99, 163–180.
    [Google Scholar]
  44. Hofstra, M., Hodgson, D. M., Peakall, J., & Flint, S. S. (2015). Giant scour‐fills in ancient channel‐lobe transition zones: formative processes and depositional architecture. Sedimentary Geology, 329, 98–114. https://doi.org/10.1016/j.sedgeo.2015.09.004
    [Google Scholar]
  45. Howlett, D. M., Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Jackson, C. A. L. (2019). Response of unconfined turbidity current to deep‐water fold and thrust belt topography: orthogonal incidence on solitary and segmented folds. Sedimentology, 66, 2425–2454. https://doi.org/10.1111/sed.12602
    [Google Scholar]
  46. Hudec, M. R., & Jackson, M. P. A. (2002). Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the inner Kwanza Basin, Angola. GSA Bulletin, 114, 1222–1244. https://doi.org/10.1130/0016‐7606(2002)114<1222:SSIAST>2.0.CO;2
    [Google Scholar]
  47. Hudec, M. R., & Jackson, M. P. A. (2004). Regional restoration across the Kwanza Basin, Angola: salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88, 971–990. https://doi.org/10.1306/02050403061
    [Google Scholar]
  48. Hudec, M. R., & Jackson, M. P. A. (2007). Terra Infirma: understanding salt tectonics. Earth Science Reviews, 82, 1–28.
    [Google Scholar]
  49. Jackson, C. A. L., & Lewis, M. M. (2012). Origin of an anhydrite sheath encircling a salt diapir and implications for the seismic imaging of steep‐sided salt structures, Egersund Basin, Northern North Sea. Journal of the Geological Society, 169(5), 593–599. https://doi.org/10.1144/0016‐76492011‐126
    [Google Scholar]
  50. Jackson, J. (1999). Fault Death: A perspective from actively deforming regions. Journal of Structural Geology, 21, 1003–1010. https://doi.org/10.1016/S0191‐8141(99)00013‐9
    [Google Scholar]
  51. Jackson, M. P. A., Hudec, M. R., & Hegarty, K. A. (2005). The great West African Tertiary coastal uplift: Fact or fiction? A perspective from the angolan divergent margin. Tectonics, 24, 1–23. https://doi.org/10.1029/2005TC001836
    [Google Scholar]
  52. Janocko, M., Nemec, W., Henriksen, S., & Warcho, M. (2013). The diversity of deep‐water sinuous channel belts and slope valley‐fill complexes. Marine and Petroleum Geology, 41, 7–34. https://doi.org/10.1016/j.marpetgeo.2012.06.012
    [Google Scholar]
  53. Jian‐Ping, L. I. U., Pan, X. H., Jun, M., Tian, Z. J., Chen, Y. J. W., & Wan, L.‐K. (2008). Petroleum geology and resources in West Africa: An overview. Petroleum Exploration and Development, 35, 378–383. https://doi.org/10.1016/S1876‐3804(08)60086‐5
    [Google Scholar]
  54. Jobe, Z. R., Sylvester, Z., Parker, A. O., Howes, N., Slowey, N., & Pirmez, C. (2015). Rapid adjustment of submarine channel architecture to changes in sediment supply. Journal of Sedimentary Research, 85, 729–753. https://doi.org/10.2110/jsr.2015.30
    [Google Scholar]
  55. Jolly, B., Lonergan, L., & Whittaker, A. (2016). Growth history of fault‐related folds and interaction with seabed channels in the toe‐thrust region of the deep‐water Niger Delta. Marine and Petroleum Geology, 70, 58–76. https://doi.org/10.1016/j.marpetgeo.2015.11.003
    [Google Scholar]
  56. Jolly, B., Whittaker, A., & Lonergan, L. (2017). Quantifying the geomorphic response of modern submarine channels to actively growing folds and thrusts, deep‐water Niger Delta. GSA Bulletin, 129, 1123–1139. https://doi.org/10.1130/B31544.1
    [Google Scholar]
  57. Jones, I. F., & Davison, I. (2014). Seismic Imaging in and around Salt Bodies. Interpretation, 2, SL1–SL20. https://doi.org/10.1190/INT‐2014‐0033.1
    [Google Scholar]
  58. Karner, G. D., & Driscoll, N. W. (1999) Tectonic and stratigraphic development of the West African and Eastern Brazilian Margins: Insights from quantitative basin modelling. In N. R. Cameron, R. H. Bate & V. S. Clure (Eds.), The oil and gas habitats of the South Atlantic. Geological Society, London, Special Publications, 153, 11–40.
    [Google Scholar]
  59. Kneller, B. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In A. J. Hartley and D. J. Prosser (Eds.), Characterization of deep marine clastic systems. GEological Society, London, Special Publications, 94, 31–49.
    [Google Scholar]
  60. Kneller, B., Edwards, D., Mccaffrey, W., & Moore, R. (1991). Oblique reflection of turbidity currents. Geology, 19, 250–252. https://doi.org/10.1130/0091‐7613(1991)019<0250:OROTC>2.3.CO;2
    [Google Scholar]
  61. Kneller, B. C., & Mccaffrey, W. D. (1995). Modelling the effects of salt‐induced topography on deposition from turbidity currents. Salt, Sediment and Hydrocarbons: Gulf Coast Section SEPM, 1, 137–145.
    [Google Scholar]
  62. Kolla, V. (2007). A review of sinuous channel avulsion patterns in some major deep‐seafans and factors controlling them. Marine and Petroleum Geology, 24, 450–469. https://doi.org/10.1016/j.marpetgeo.2007.01.004
    [Google Scholar]
  63. Lavier, L. L., Steckler, M. S., & Brigaud, F. (2001). Climatic and tectonic control on the cenozoic evolution of the West African Margin. Marine Geology, 178, 63–80.
    [Google Scholar]
  64. Liu, Q., Kneller, B., Fallgatter, C., Valdez Buso, V., & Milana, J. P. (2018). Tabularity of individual turbidite beds controlled by flow efficiency and degree of confinement. Sedimentology, 65, 2368–2387. https://doi.org/10.1111/sed.12470
    [Google Scholar]
  65. Lundin, E. R. (1992). Thin‐skinned extensional tectonics on a salt detachment, Northern Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 405–411. https://doi.org/10.1016/0264‐8172(92)90051‐F
    [Google Scholar]
  66. Maestrelli, D., Iacopini, D., Jihad, A. A., Bond, C. E., & Bonini, M. (2017). Seismic and structural characterization of fluid escape pipes using 3d and partial stack seismic from the loyal field (Scotland, UK): A multiphase and repeated intrusive mechanism. Marine and Petroleum Geology, 88, 489–510. https://doi.org/10.1016/j.marpetgeo.2017.08.016
    [Google Scholar]
  67. Maier, K. L., Fildani, A., Mchargue, T. R., Paull, C. K., Graham, S. A., & Caress, D. W. (2012). Punctuated deep‐water channel migration: high‐resolution subsurface data from the lucia chica channel system, offshore California, U.S.A. Journal of Sedimentary Research, 82, 1–8. https://doi.org/10.2110/jsr.2012.10
    [Google Scholar]
  68. Martinez, J. F., Cartwright, J., & Hall, B. (2005). 3d Seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17, 83–108. https://doi.org/10.1111/j.1365‐2117.2005.00255.x
    [Google Scholar]
  69. Marton, L. G. (2000). Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural styles. In W. Mohriak & M. Talwani (Eds.), Atlantic Rifts and Continental Margins. The American Geophysical Union Washington, 115, 129–149.
    [Google Scholar]
  70. Mattos, N. H., Alves, T. M., & Scully, A. (2019). Structural and depositional controls on plio‐pleistocene submarine channel geometry (Taranaki Basin, New Zealand). Basin Research, 31, 136–154. https://doi.org/10.1111/bre.12312
    [Google Scholar]
  71. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., … Skeene, R. (2010). The response of turbidite slope channels to growth‐induced seabed topography. AAPG Bulletin, 94, 1011–1030. https://doi.org/10.1306/01051009117
    [Google Scholar]
  72. Mcardle, N. J., & Ackers, M. A. (2012). Understanding seismic thin‐bed responses using frequency decomposition and RGB blending. First Break, 30, 57–65. https://doi.org/10.3997/1365‐2397.2012022
    [Google Scholar]
  73. Moulin, M., Aslanian, D., Olivet, J.‐L., Contrucci, I., Matias, L., Géli, L., … Unternehr, P. (2005). Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (Zaïango Project). Geophysics Journal International, 162, 793–810. https://doi.org/10.1111/j.1365‐246X.2005.02668.x
    [Google Scholar]
  74. Muravchik, M., Henstra, G. A., Eliassen, G. T., Gawthorpe, R. L., Leeder, M., Kranis, H., … Andrews, J. (2019). Deep‐water sediment transport patterns and basin floor topography in early rift basins: plio‐pleistocene syn‐rift of the corinth rift, Greece. Basin Research, 1–29. https://doi.org/10.1111/bre.12423
    [Google Scholar]
  75. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer, & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–106). New York:Springer‐Verlag.
    [Google Scholar]
  76. Niyazi, Y., Eruteya, O. E., Omosanya, K. O., Harishidayat, D., Johansen, S. E., & Waldmann, N. (2018). Seismic geomorphology of submarine channel‐belt complexes in thepliocene of the levant basin. Offshore Central Israel. Marine Geology, 403, 123–128.
    [Google Scholar]
  77. Olafiranye, K., Jackson, C. A. L., & Hodgson, D. M. (2013). The role of tectonics and mass‐transport complex emplacement on upper slope stratigraphic evolution: A 3d seismic case study from offshore Angola. Marine and Petroleum Geology, 44, 196–216. https://doi.org/10.1016/j.marpetgeo.2013.02.016
    [Google Scholar]
  78. Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., & Hadler‐Jacobsen, F. (2014). Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern lower Congo basin, offshore Angola. Basin Research, 26, 597–620. https://doi.org/10.1111/bre.12051
    [Google Scholar]
  79. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C. A. L., & Mccaffrey, W. D. (2017). Influence of seabed morphology and substrate composition on mass‐transport flow processes and pathways: insights from the Magdalena fan, offshore Colombia. Journal of Sedimentary Research, 87, 189–209. https://doi.org/10.2110/jsr.2017.10
    [Google Scholar]
  80. Ortiz‐Karpf, A., Hodgson, D. M., & Mccaffrey, W. D. (2015). The role of mass‐transport complexes in controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin: The Magdalena fan, offshore Colombia. Marine and Petroleum Geology, 64, 58–75. https://doi.org/10.1016/j.marpetgeo.2015.01.005
    [Google Scholar]
  81. Othman, A. A. A., Fathy, M., & Maher, A. (2016). Use of spectral decomposition technique for delineation of channels at solar gas discovery, offshore West Nile Delta, Egypt. Egyptian Journal of Petroleum, 25, 45–51. https://doi.org/10.1016/j.ejpe.2015.03.005
    [Google Scholar]
  82. Patacci, M., Haughton, P. D. W., & Mccaffrey, W. D. (2015). Flow behavior of ponded turbidity currents. Journal of Sedimentary Research, 85, 885–902. https://doi.org/10.2110/jsr.2015.59
    [Google Scholar]
  83. Peel, F. J. (2014). The engines of gravity‐driven movement on passive margins: quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142. https://doi.org/10.1016/j.tecto.2014.06.023
    [Google Scholar]
  84. Pichel, L. M., Finch, E., & Gawthorpe, R. L. (2019). The impact of pre‐salt rift topography on salt tectonics: A discrete‐element modeling approach. Tectonics, 38, 1466–1488. https://doi.org/10.1029/2018TC005174
    [Google Scholar]
  85. Pichel, L. M., Jackson, C. A. L., Peel, F., & Dooley, T. P. (2020). Base‐salt Relief controls salt‐tectonic structural style, são paulo plateau, Santos Basin, Brazil. Basin Research, 32, 453–484. https://doi.org/10.1111/bre.12375
    [Google Scholar]
  86. Pichel, L. M., Peel, F., Jackson, C. A. L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  87. Pinter, P. R., Butler, R. W. H., Hartley, A. J., Maniscalco, R., Baldassini, N., & Di Stefano, A. (2018). Tracking sand‐fairways through a deformed turbidite system: The numidian (Miocene) of Central Sicily, Italy. Basin Research, 30, 480–501. https://doi.org/10.1111/bre.12261
    [Google Scholar]
  88. Pirmez, C., Hiscou, R. N., & Kronen, J. K. (1997). Sandy turbidite successions at the base of channel‐levee systems of the amazon fan revealed by fms logs and cores: Unraveling the facies architecture of large submarine fans. Proceedings‐Ocean Drilling Program Scientific Results, 155, 7–34.
    [Google Scholar]
  89. Posamentier, H. W. (2003). Depositional elements associated with a basin floor channel‐levee system: Case study from the Gulf of Mexico. Marine and Petroleum Geology, 20, 677–690. https://doi.org/10.1016/j.marpetgeo.2003.01.002
    [Google Scholar]
  90. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  91. Prather, B., Booth, J., Steffens, G., & Craig, P. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of Intraslope Basins, Deep‐Water Gulf of Mexico. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  92. Prather, B. E., Pirmez, C., Sylvester, Z., & Prather, D. S. (2012) Stratigraphic response to evolving geomorphology in a submarine apron perched on the upper niger delta slope. In B. E. Prather, M. E. Deptuck, D. C. Mohrig, vanHoorn B. & R. B. Wynn (Eds.), Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies From Seafloor and Near‐Seafloor Analogue. SEPM Special Publication, 99, 145–161.
    [Google Scholar]
  93. Prélat, A., Covault, J. A., Hodgson, D. M., Fildani, A., & Flint, S. S. (2010). Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66–76. http://dx.doi.org/10.1016/j.sedgeo.2010.09.010
    [Google Scholar]
  94. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012) Salt tectonics on passive margins: examples from santos, campos and Kwanza Basins. In G. I. Alsop, S. G. Archer, A. J. Hartley, N. T. Grant & R. Hodgkinson (Eds.), Salt tectonics, sediments, prospectivity. Geological Society, London, Special Publications, 363, 207–244.
    [Google Scholar]
  95. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  96. Rodriguez, C. R., Jackson, C. A. L., Bell, R. E., Rotevatn, A., & Francis, M. (2020). Deep‐Water Reservoir Distribution on a Salt‐Influenced Slope. Offshore BrazilSantos Basin.
    [Google Scholar]
  97. Rojo, L. A., & Escalona, A. (2018). Controls on minibasin infill in the Nordkapp Basin: Evidence of complex triassic synsedimentary deposition influenced by salt tectonics. AAPG Bulletin, 102, 1239–1272. https://doi.org/10.1306/0926171524316523
    [Google Scholar]
  98. Serié, C., Huuse, M., Schødt, N. H., Brooks, J. M., & Williams, A. (2017). Subsurface fluid flow in the deep‐water Kwanza Basin, offshore Angola. Basin Research, 29, 149–179. http://dx.doi.org/10.1111/bre.12169
    [Google Scholar]
  99. Smith, R. U. (2004) Silled sub‐basins to connected tortuous corridors: Sediment distribution systems on topographically complex sub‐aqueous slopes. In S. A. Lomas & P. Joseph (Eds.), Confined turbidite systems. Geological Society, London, Special Publications, 222, 23–44.
    [Google Scholar]
  100. Straub, K. M., & Mohrig, D. (2009). Constructional canyons built by sheet‐like turbidity currents: observations from offshore Brunei Darussalam. Journal of Sedimentary Research, 79, 24–39. https://doi.org/10.2110/jsr.2009.006
    [Google Scholar]
  101. Tari, G., Molnar, J., & Ashton, N. (2003) Examples of Salt tectonics from West Africa: A comparative approach. In W.U. Mohriak, A. Danforth, P.J. Post, D.E. Brown, G.C. Tari, M. Nemcok & S.T. Sinha (Eds.), Conjugate Divergent Margins. Geological Society, London, Special Publications, 207, 85–104.
    [Google Scholar]
  102. Tinterri, R., Laporta, M., & Ogata, K. (2017). Asymmetrical cross‐current turbidite facies tract in a structurally‐confined Mini‐Basin (Priabonian‐Rupelian, Ranzano Sandstone, Northern Apennines, Italy). Sedimentary Geology, 352, 63–87. https://doi.org/10.1016/j.sedgeo.2016.12.005
    [Google Scholar]
  103. Valle, P. J., Gjelberg, J. G., & Helland‐Hansen, W. (2001). Tectonostratigraphic development in the esatern lower congo, basin, offshore Angola, West Africa. Marine and Petroleum Geology, 18, 909–927.
    [Google Scholar]
  104. Van Andel, T. H., & Komar, P. D. (1969). Ponded sediments of the mid‐atlantic ridge between 22 and 23 north latitude. GSA Bulletin, 80, 1163–1190. https://doi.org/10.1130/0016‐7606(1969)80[1163:PSOTMR]2.0.CO;2
    [Google Scholar]
  105. Wagner, B. H.III, & Jackson, M. P. (2011). Viscous flow during salt welding. Tectonophysics, 510, 309–326. https://doi.org/10.1016/j.tecto.2011.07.012
    [Google Scholar]
  106. Ward, N. I. P., Alves, T. M., & Blenkinsop, T. G. (2017). Differential Compaction over Late Miocene Submarine Channels in Se Brazil: Implications for Trap Formation. GSA Bulletin, 130, 208–221. https://doi.org/10.1130/B31659.1
    [Google Scholar]
  107. Wu, N., Jackson, C. A. L., Johnson, H. D., Hodgson, D. M., & Nugraha, H. D. (2020). Mass‐Transport Complexes (MTCs) Document Subsidence Patterns in a Northern Gulf of Mexico Salt Minibasin. Basin Research, 1–28. https://doi.org/10.1111/bre.12429
    [Google Scholar]
  108. Wynn, R. B., Kenyon, N. H., Masson, D. G., Stow, D. A., & Weaver, P. P. (2002). Characterization and Recognition of Deep‐water Channel‐lobe Transition Zones. AAPG Bulletin, 86, 1441–1462.
    [Google Scholar]
  109. Zhao, X., Qi, K., Patacci, M., Tan, C., & Xie, T. (2019). Submarine Channel Network Evolution above an Extensive Mass‐Transport Complex: A 3d Seismic Case Study from the Niger Delta Continental Slope. Marine and Petroleum Geology, 104, 231–248. https://doi.org/10.1016/j.marpetgeo.2019.03.029
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12506
Loading
/content/journals/10.1111/bre.12506
Loading

Data & Media loading...

Keyword(s): deep‐water turbidite systems; Kwanza Basin; minibasins; salt tectonics; seismic geomorphology; turbidite channels and lobes

Most Cited This Month Most Cited RSS feed