1887
Volume 33 Number 2
  • E-ISSN: 1365-2117
PDF

Abstract

[

Amplitude anomalies and stacked hydrothermal vent complexes (HTVCs) indicate reutilisation of HTVCs for fluid flow. (a) High‐amplitude anomaly shown in plan view, located above a hydrothermal vent complex (HTVC), indicating possible gas and fluid flow across the HTVC. (b) Seismic section showing an HTVC with the high‐amplitude anomaly identified and mapped in (a). (c) Seismic section with two stacked HTVCs and seismic dimming in between, indicating two episodes of hydrothermal venting. Bright amplitudes above suggest subsequent fluid flow across the HTVCs.

, Abstract

Conventional three‐dimensional (3D) seismic data reveal abundant igneous activity on the Modgunn Arch, mid‐Norwegian margin. Magmatic sills and associated hydrothermal vent complexes located at various depths prove the repeated utilisation of Paleocene‐Eocene magmatic conduits. In total, 125 sills and 85 hydrothermal vent complexes were identified and mapped, with vent complexes ranging in diameter from 300 to 3,100 m and sills from 0.5 to 50 km. Three examples of stacked vent complexes are presented, revealing large eruptions of hydrothermal fluids vertically through the same conduit, from sills to the palaeo‐sea floor. The vent complexes are found throughout Paleocene strata (66–56 Ma), whilst at least ten (10) vents were active during the Eocene. This study emphasises the importance of characterising ancient magmatic structures, as hydrothermal conduits and vent structures were, and may still be, reutilised as preferential fluid flow pathways to shallower strata. A minimum of four phases of hydrothermal vent complex formation are inferred. Cretaceous faults are both bypassed and used for magma and fluid flow. The reutilisation of magmatic structures here described may bring to light previously overlooked plays and renew interest in exploring magma‐rich continental margins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12507
2021-03-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12507.html?itemId=/content/journals/10.1111/bre.12507&mimeType=html&fmt=ahah

References

  1. 6403/6‐1
    6403/6‐1 . (2008). Retrieved from Factpages, Norwegian Petroleum Directorate website: https://factpages.npd.no/factpages/Default.aspx?culture=no
  2. 6405/7‐1
    6405/7‐1 . (2005). Retrieved from Factpages, Norwegian Petroleum Directorate website: https://factpages.npd.no/factpages/Default.aspx?culture=no
  3. Aarnes, I., Planke, S., Trulsvik, M., & Svensen, H. (2015). Contact metamorphism and thermogenic gas generation in the Vøring and Møre basins, offshore Norway, during the Paleocene‐Eocene thermal maximum. Journal of the Geological Society, 172(5), 588–598. https://doi.org/10.1144/jgs2014‐098
    [Google Scholar]
  4. Aarnes, I., Podladchikov, Y., & Svensen, H. (2012). Devolatilization‐induced pressure build‐up: Implications for reaction front movement and breccia pipe formation. Geofluids, 12(4), 265–279. https://doi.org/10.1111/j.1468‐8123.2012.00368.x
    [Google Scholar]
  5. Aarnes, I., Svensen, H., Polteau, S., & Planke, S. (2011). Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chemical Geology, 281(3–4), 181–194. https://doi.org/10.1016/j.chemgeo.2010.12.007
    [Google Scholar]
  6. Alves, T. M. (2012). Scale‐relationships and geometry of normal faults reactivated during gravitational gliding of Albian rafts (Espírito Santo Basin, SE Brazil). Earth and Planetary Science Letters, 331–332, 80–96. https://doi.org/10.1016/j.epsl.2012.03.014
    [Google Scholar]
  7. Angkasa, S. S., Jerram, D. A., Millett, J. M., Svensen, H. H., Planke, S., Taylor, R. A., … Howell, J. (2017). Mafic intrusions, hydrothermal venting and the basalt‐sediment transition: Linking onshore and offshore examples from the north atlantic igneous province. Interpretation, 5(3), 83–101. https://doi.org/10.1190/int‐2016‐0162.1
    [Google Scholar]
  8. Bischoff, A., Nicol, A., Cole, J., & Gravley, D. (2019). Stratigraphy of architectural elements of a buried monogenetic volcanic system. Open Geosciences, 11(1), 581–616. https://doi.org/10.1515/geo‐2019‐0048
    [Google Scholar]
  9. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. Geological Society, London, Special Publications, 167, 327–378. https://doi.org/10.1144/GSL.SP.2000.167.01.13
    [Google Scholar]
  10. Brekke, H., Dahlgren, S., Nyland, B., & Magnus, C. (1999). The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. In A. J.Fleet, & S. A. R.Boldy (Eds.), Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. Petroleum Geology (pp. 261–274). London: Geological Society. https://doi.org/10.1144/0050261
    [Google Scholar]
  11. Bryan, S. E., & Ernst, R. E. (2008). Revised definition of Large Igneous Provinces (LIPs). Earth‐Science Reviews, 86(1–4), 175–202. https://doi.org/10.1016/j.earscirev.2007.08.008
    [Google Scholar]
  12. Dalland, A., Worsley, D., & Ofstas, K. (1988).Bulletin 4 Mesozoic‐Cenozoic Mid‐Northern Norway.pdf.
  13. Davies, R., Bell, B. R., Cartwright, J. A., & Shoulders, S. (2002). Three‐dimensional seismic imaging of Paleogene dike‐fed submarine volcanoes from the northeast Atlantic margin. Geology, 30(3), 223–226. https://doi.org/10.1130/0091‐7613(2002)030<0223:TDSIOP>2.0.CO;2
    [Google Scholar]
  14. Deegan, C. E., & Scull, B. J. (1977).A proposed standard lithostratigraphic nomenclature for the central and northern North Sea. Report of the Institute of Geological Sciences.
  15. Doré, A. G., Lundin, E. R., Fichler, C., & Olesen, O. (1997). Patterns of basement structure and reactivation along the NE Atlantic margin. Journal of the Geological Society, London, 154, 85–92. https://doi.org/10.1144/gsjgs.154.1.0085
    [Google Scholar]
  16. Duncan, L., Helland‐Hansen, D., & Dennehy, C. (2009). The Rosebank Discovery. A new play type in intra basalt reservoirs of the North Atlantic volcanic province. In 6th European Production and Development Conference and Exhibition (DEVEX), Abstracts (Vol. 1, p. 22). Aberdeen: Chevron Upstream Europe.
    [Google Scholar]
  17. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma‐poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
    [Google Scholar]
  18. Gibb, F. G. F., & Kanaris‐Sotiriou, R. (1988). The geochemistry and origin of the Faeroe‐Shetland sill complex. Geological Society Special Publication, 39(39), 241–252. https://doi.org/10.1144/GSL.SP.1988.039.01.22
    [Google Scholar]
  19. Gómez, M., & Vergés, J. (2005). Quantifying the contribution of tectonics vs. differential compaction in the development of domes along the Mid‐Norwegian Atlantic margin. Basin Research, 17(2), 289–310. https://doi.org/10.1111/j.1365‐2117.2005.00264.x
    [Google Scholar]
  20. Hafeez, A., Planke, S., Jerram, D. A., Millett, J. M., Maharjan, D., & Prestvik, T. (2017). Upper paleocene ultramafic igneous rocks offshore mid‐Norway: Re‐interpretation of the vestbrona formation as a sill complex. Interpretation, 5(3), 103–120. https://doi.org/10.1190/int‐2016‐0143.1
    [Google Scholar]
  21. Hamilton, R. V., & Minshell, B. J. (2019). Hydrothermal vents and seismic anomalies: Implications for the petroleum system NE of Shetland. Petroleum Geoscience, 25(1), 90–101. https://doi.org/10.1144/petgeo2017‐072
    [Google Scholar]
  22. Hansen, D. M. (2006). The morphology of intrusion‐related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. Journal of the Geological Society, 163(5), 789–800. https://doi.org/10.1144/0016‐76492004‐167
    [Google Scholar]
  23. Hansen, D. M., & Cartwright, J. (2006a). Saucer‐shaped sill with lobate morphology revealed by 3D seismic data: Implications for resolving a shallow‐level sill emplacement mechanism. Journal of the Geological Society, 163(3), 509–523. https://doi.org/10.1144/0016‐764905‐073
    [Google Scholar]
  24. Hansen, D. M., & Cartwright, J. (2006b). The three‐dimensional geometry and growth of forced folds above saucer‐shaped igneous sills. Journal of Structural Geology, 28(8), 1520–1535. https://doi.org/10.1016/j.jsg.2006.04.004
    [Google Scholar]
  25. Harilal, X. & Biswal, S. (2010). Pitfalls in seismic amplitude interpretation: Lessons from Oligocene channel sandstones. The Leading Edge, SEG, 29(4), 384–390. https://doi.org/10.1190/1.3378300
    [Google Scholar]
  26. Hjelstuen, B. O., Eldholm, O., & Skogseid, J. (1999). Cenozoic evolution of the northern Voring margin. GSA Bulletin, 111(12), 1792–1807.
    [Google Scholar]
  27. Holford, S., Schofield, N., MacDonald, J., Duddy, I., & Green, P. (2012). Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity: Examples from the southern Australian margin. The APPEA Journal, 52(1), 229. https://doi.org/10.1071/aj11017
    [Google Scholar]
  28. Holford, S. P., Schofield, N., & Reynolds, P. (2017). Subsurface fluid flow focused by buried volcanoes in sedimentary basins: Evidence from 3D seismic data, Bass Basin, offshore southeastern Australia. Interpretation, 5(3), SK39–SK50. https://doi.org/10.1190/int‐2016‐0205.1
    [Google Scholar]
  29. Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30–42. https://doi.org/10.1016/j.epsl.2017.03.023
    [Google Scholar]
  30. Jaeger, J. C. (1958). The solidification and cooling of intrusive sheets. In Dolerites, a symposium (pp. 77–87). Tasmania Univ. Geol. Dept.
    [Google Scholar]
  31. Jamtveit, B., Svensen, H., Podladchikov, Y. Y., & Planke, S. (2004). Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geological Society, London, Special Publications, 234(1), 233–241. https://doi.org/10.1144/gsl.sp.2004.234.01.15
    [Google Scholar]
  32. Kjoberg, S., Schmiedel, T., Planke, S., Svensen, H. H., Millett, J. M., Jerram, D. A., … Helsem, A. (2017). 3D structure and formation of hydrothermal vent complexes at the Paleocene‐Eocene transition, the Møre Basin, mid‐Norwegian margin. Interpretation, 5(3), SK65–SK81. https://doi.org/10.1190/INT‐2016‐0159.1
    [Google Scholar]
  33. Lockett, G. (2018). Geothermal power: An alternate role for redundant North Sea platforms? Retrieved from Offshore Magazine website: https://www.offshore‐mag.com/pipelines/article/16762144/geothermal‐power‐an‐alternate‐role‐for‐redundant‐north‐sea‐platforms
  34. Løseth, H., Gading, M., & Wensaas, L. (2009). Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26, 1304–1319. https://doi.org/10.1016/j.marpetgeo.2008.09.008
    [Google Scholar]
  35. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N. M., Basire, C., & Graue, K. (2011). 1000 M long gas blow‐out pipes. Marine and Petroleum Geology, 28(5), 1040–1060. https://doi.org/10.1016/j.marpetgeo.2010.10.001
    [Google Scholar]
  36. Lundin, E., & Doré, A. G. (2002). Mid‐Cenozoic post‐breakup deformation in the “passive” margins bordering the Norwegian‐Greenland Sea. Marine and Petroleum Geology, 19(1), 79–93. https://doi.org/10.1016/S0264‐8172(01)00046‐0
    [Google Scholar]
  37. Manton, B. M. (2015). The mechanics of sill propagation and associated venting, investigated using 3D seismic data from Offshore Norway (PhD dissertation). Cardiff: Cardiff University. Retrieved from https://www.researchgate.net/publication/339208100
    [Google Scholar]
  38. Miles, A., & Cartwright, J. (2010). Hybrid flow sills: A new mode of igneous sheet intrusion. Geology, 38(4), 343–346. https://doi.org/10.1130/G30414.1
    [Google Scholar]
  39. Neagu, R. C., Cartwright, J., Davies, R., & Jensen, L. (2010). Fossilisation of a silica diagenesis reaction front on the mid‐Norwegian margin. Marine and Petroleum Geology, 27(10), 2141–2155. https://doi.org/10.1016/j.marpetgeo.2010.09.003
    [Google Scholar]
  40. Omosanya, K. O., Eruteya, O. E., Siregar, E. S. A., Zieba, K. J., Johansen, S. E., Alves, T. M., & Waldmann, N. D. (2018). Three‐dimensional (3‐D) seismic imaging of conduits and radial faults associated with hydrothermal vent complexes (Vøring Basin, Offshore Norway). Marine Geology, 399(2017), 115–134. https://doi.org/10.1016/j.margeo.2018.02.007
    [Google Scholar]
  41. Omosanya, K. O., Maia, A. R., & Eruteya, O. E. (2020). Seismic, morphologic and scale variabilities of subsurface pipes and vent complexes in a magma‐rich margin. Bulletin of Volcanology, 82, 40.https://doi.org/10.1007/s00445‐020‐01379‐3
    [Google Scholar]
  42. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005).Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins.In A. G.Doré, & B. A.Vining (Eds.), Petroleum Geology: North‐West Europe and Global Perspectives ‐ Proceedings of the 6th Petroluem Geology Conference (pp. 833–844). London: Geological Society.
    [Google Scholar]
  43. Planke, S., Svensen, H., Myklebust, R., Bannister, S., Manton, B., & Lorenz, L. (2015). Geophysics and remote sensing. In C.Breitkreuz & S.Rocchi (Eds.), Physical geology of shallow magmatic systems, Advances in Volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior) (pp. 131–146). Cham: Springer. https://doi.org/10.1007/11157
    [Google Scholar]
  44. Polteau, S., Mazzini, A., Galland, O., Planke, S., & Malthe‐Sørenssen, A. (2008). Saucer‐shaped intrusions: Occurrences, emplacement and implications. Earth and Planetary Science Letters, 266(1–2), 195–204. https://doi.org/10.1016/j.epsl.2007.11.015
    [Google Scholar]
  45. Rateau, R., Schofield, N., & Smith, M. (2013). The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience, 19(3), 259–272. https://doi.org/10.1144/petgeo2012‐035
    [Google Scholar]
  46. Reynolds, P., Planke, S., Millett, J. M., Jerram, D. A., Trulsvik, M., Schofield, N., & Myklebust, R. (2017). Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM. Earth and Planetary Science Letters, 467, 72–78. https://doi.org/10.1016/j.epsl.2017.03.031
    [Google Scholar]
  47. Roaldset, E., & He, W. (1995).Silica‐phase transformation of opal‐A to opal‐CT to quartz ‐ An experimental approach.Trondheim.
  48. Rohrman, M. (2007). Prospectivity of volcanic basins: Trap delineation and acreage de‐risking. AAPG Bulletin, 91(6), 915–939. https://doi.org/10.1306/12150606017
    [Google Scholar]
  49. Schmiedel, T., Kjoberg, S., Planke, S., Magee, C., Galland, O., Schofield, N., & Jackson, C. (2017). Mechanisms of overburden deformation associated with the emplacment of the Tulipan sill, mid‐Norwegian margin. Interpretation, 5(3), SK23–SK38.
    [Google Scholar]
  50. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., … Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41–63. https://doi.org/10.1111/bre.12164
    [Google Scholar]
  51. Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C. H., Festøy, M., … Jerram, D. A. (2017). Effects of igneous intrusions on the petroleum system: A review. First Break, 35, 1–10.
    [Google Scholar]
  52. Skogseid, J., Pedersen, T., Eldholm, O., & Larsen, B. T. (1992). Tectonism and magmatism during NE Atlantic continental break‐up: The Vøring Margin. Geological Society, London, Special Publications, 68(1), 305–320. https://doi.org/10.1144/gsl.sp.1992.068.01.19
    [Google Scholar]
  53. Smallwood, J. R., & Maresh, J. (2002). The properties, morphology and distribution of igneous sills: Modelling, borehole data and 3D seismic from the Faroe‐Shetland area. Geological Society Special Publication, 197, 271–306. https://doi.org/10.1144/GSL.SP.2002.197.01.11
    [Google Scholar]
  54. Song, J., Alves, T., Omosanya, K., & Ze, T. (2020). Tectonic evolution of strike‐slip zones on continental margins and their impact on the development of submarine landslides (Storegga Slide, northeast Atlantic). Geological Society of America Bulletin. https://doi.org/10.1130/B35421.1
    [Google Scholar]
  55. Stagpoole, V., & Funnell, R. (2001). Arc magmatism and hydrocarbon generation in the Northern Taranaki Basin, New Zealand. Petroleum Geoscience, 7(3), 255–267. https://doi.org/10.1144/petgeo.7.3.255
    [Google Scholar]
  56. Stimac, J., Goff, F., & Goff, C. J. (2015). Intrusion‐related geothermal systems. In The encyclopedia of volcanoes (2nd ed., pp. 799–822). Academic Press. https://doi.org/10.1016/b978‐0‐12‐385938‐9.00046‐8
    [Google Scholar]
  57. Svensen, H., Jamtveit, B., Planke, S., & Chevallier, L. (2006). Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society, 163(4), 671–682. https://doi.org/10.1144/1144‐764905‐037
    [Google Scholar]
  58. Svensen, H., Planke, S., & Corfu, F. (2010). Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, 167(3), 433–436. https://doi.org/10.1144/0016‐76492009‐125
    [Google Scholar]
  59. Svensen, H., Planke, S., Jamtveit, B., & Pedersen, T. (2003). Seep carbonate formation controlled by hydrothermal vent complexes: A case study from the Vøring Basin, the Norwegian Sea. Geo‐Marine Letters, 23(3–4), 351–358. https://doi.org/10.1007/s00367‐003‐0141‐2
    [Google Scholar]
  60. Svensen, H., Planke, S., Maithe‐Sørensen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429(6991), 542–545. https://doi.org/10.1038/nature02566
    [Google Scholar]
  61. The 2014 NPD lithostratigraphic charts
    The 2014 NPD lithostratigraphic charts . (2014). Retrieved from Norwegian Petroleum Directorate website: https://www.npd.no/en/facts/geology/lithostratigraphy/
  62. Thomson, K. (2007). Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement mechanisms. Bulletin of Volcanology, 70(2), 183–201. https://doi.org/10.1007/s00445‐007‐0131‐8
    [Google Scholar]
  63. Underhill, J. (1998). Jurassic. In K.W.Glennie (ed.), Petroleum geology of the North Sea: Basic concepts and recent advances (4th ed., pp. 245–293). Blackwell Science Ltd.
    [Google Scholar]
  64. Ward, N. I. P., Alves, T. M., & Blenkinsop, T. G. (2018). Differential compaction over Late Miocene submarine channels in SE Brazil: Implications for trap formation. Bulletin of the Geological Society of America, 130(1–2), 208–221. https://doi.org/10.1130/B31659.1
    [Google Scholar]
  65. White, R., & McKenzie, D. (1989). Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94(B6), 7685–7729. https://doi.org/10.1029/JB094iB06p07685
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12507
Loading
/content/journals/10.1111/bre.12507
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error