1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

An integrated approach developed to assess the relationship between footwall degradation and hangingwall deposition from an individual subsurface fault block that disentangles syn‐rift basin architecture through quantification of different sediment sources, which can be applied to other rift basins

, Abstract

Interactions between footwall‐, hangingwall‐ and axial‐derived depositional systems make syn‐rift stratigraphic architecture difficult to predict, and preservation of net‐erosional source landscapes is limited. Distinguishing between deposits derived from fault‐scarp degradation (consequent systems) and those derived from long‐lived catchments beyond the fault block crest (antecedent systems) is also challenging, but important for hydrocarbon reservoir prospecting. We undertake geometric and volumetric analysis of a fault‐scarp degradation complex and adjacent hangingwall‐fill associated with the Thebe‐2 fault block on the Exmouth Plateau, NW Shelf, offshore Australia, using high resolution 3D seismic data. Vertical and headward erosion of the complex and fault throw are measured. Seismic‐stratigraphic and seismic facies mapping allow us to constrain the spatial and architectural variability of depositional systems in the hangingwall. Footwall‐derived systems interacted with hangingwall‐ and axial‐derived systems, through diversion around topography, interfingering or successive onlap. We calculate the volume of footwall‐sourced hangingwall fans (V) for nine quadrants along the fault block, and compare this to the volume of material eroded from the immediately up‐dip fault‐scarp (V). This analysis highlights areas of sediment bypass (V > V) and areas fed by sediment sources beyond the degraded fault scarp (V > V). Exposure of the border fault footwall and adjacent fault terraces produced small catchments located beyond the fault block crest that fed the hangingwall basin. One source persisted throughout the main syn‐rift episode, and its location coincided with: (a) an intra‐basin topographic high; (b) a local fault throw minimum; (c) increased vertical and headward erosion within the fault‐scarp degradation complex; and (d) sustained clinoform development in the immediate hangingwall. Our novel quantitative volumetric approach to identify through‐going sediment input points could be applied to other rift basin‐fills. We highlight implications for hydrocarbon exploration and emphasize the need to incorporate interaction of multiple sediment sources and their resultant architecture in tectono‐stratigraphic models for rift basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12508
2021-03-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12508.html?itemId=/content/journals/10.1111/bre.12508&mimeType=html&fmt=ahah

References

  1. Allen, P., Van der Aa, D., Rodger, S., & Ellis, C. (2013). Arnhem‐1 final well completion report, interpretive volume, WA‐364‐P (R1). Chevron Australia Ply Ltd.
    [Google Scholar]
  2. Alves, T. M., & Cupkovic, T. (2018). Footwall degradation styles and associated sedimentary facies distribution in SE Crete: Insights into tilt‐block extensional basins on continental margins. Sedimentary Geology, 367, 1–19. https://doi.org/10.1016/j.sedgeo.2018.02.001
    [Google Scholar]
  3. Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., & Roberts, G. P. (2008). Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment. Journal of Geophysical Research, 113, F03013. https://doi.org/10.1029/2007JF000893
    [Google Scholar]
  4. Backert, N., Ford, M., & Malartre, F. (2010). Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57, 543–586. https://doi.org/10.1111/j.1365‐3091.2009.01105.x
    [Google Scholar]
  5. Barrett, B. J., Collier, R. E. L., Hodgson, D. M., Gawthorpe, R. L., Dorrell, R. M., & Cullen, T. M. (2019). Quantifying faulting and base level controls on syn‐rift sedimentation using stratigraphic architectures of coeval, adjacent Early‐Middle Pleistocene fan deltas in Lake Corinth, Greece. Basin Research, 31(6), 1040–1065. https://doi.org/10.1111/bre.12356
    [Google Scholar]
  6. Barrett, B. J., Gawthorpe, R. L., Collier, R. E. L., Hodgson, D. M., & Cullen, T. M. (2019). Syn‐rift deltaic interfan stratigraphy as archives of sedimentation and basin evolution. The Depositional Record, 6, 117–143.
    [Google Scholar]
  7. Barrett, B. J., Hodgson, D. M., Collier, R. E. L., & Dorrell, R. M. (2018). Novel 3D sequence stratigraphic numerical model for syn‐rift basins: Analysing architectural responses to eustasy, sedimentation and tectonics. Marine and Petroleum Geology, 92, 270–284. https://doi.org/10.1016/j.marpetgeo.2017.10.026
    [Google Scholar]
  8. Bell, D., Stevenson, C., Kane, I., Hodgson, D. M., & Poyatos‐Moré, M. (2018). Topographic controls on the development of contemporaneous but contrasting basin‐floor depositional architectures. Journal of Sedimentary Research, 88, 1169–1189. https://doi.org/10.2110/jsr.2018.58
    [Google Scholar]
  9. Bentham, P., Collier, R. E. L., Gawthorpe, R. L., Leeder, M. R., & Stark, C. (1991). Tectono‐sedimentary development of an extensional basin: The Neogene Megara Basin, Greece. Journal of the Geological Society, 148, 923–934. https://doi.org/10.1144/gsjgs.148.5.0923
    [Google Scholar]
  10. Berger, M., & Roberts, M. (1999). The Zeta Structure: A footwall degradation complex formed by gravity sliding on the western margin of the Tampen Spur, Northern North Sea. Geological Society, London, Petroleum Geology Conference Series, 5, 107–116. https://doi.org/10.1144/0050107
    [Google Scholar]
  11. Bilal, A., McClay, K., & Scarselli, N. (2018). Fault‐scarp degradation in the central Exmouth Plateau North West Shelf, Australia. In K. R. McClay & J. A. Hammerstein (Eds.), Passive margins: tectonics, sedimentation and magmatism. Geological Society, London, Special Publications, 476(1), 231–257. https://doi.org/10.1144/SP476.11
    [Google Scholar]
  12. Bradshaw, M. T., Bradshaw, J., Murray, A. P., Needham, D. J., Spencer, L., Summons, R. E., … Winn, S. (1994). Petroleum systems in west Australian basins. In P. G.Purcell & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia: Proceedings of the Petroleum Exploration Society of Australia Symposium (pp. 93–118). Perth: PESA.
    [Google Scholar]
  13. Bradshaw, M. T., Yeates, A. N., Beynon, R. M., Brakel, A. T., Langford, R. P., Totterdell, J. M., & Yeung, M. (1988). Palaeogeographic evolution of the North West Shelf region. In P. G.Purcell & R. R.Purcell (Eds.), Proceedings of the North West Shelf Symposium (pp. 29–54). Perth: PESA.
    [Google Scholar]
  14. Chen, H., Wood, L. J., & Gawthorpe, R. L. (2020). Sediment dispersal and redistributive processes in axial and transverse deep‐time source‐to‐sink systems of marine rift basins: Dampier Sub‐basin, Northwest Shelf, Australia. Basin Research, https://doi.org/10.1111/bre.12462
    [Google Scholar]
  15. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2003). The growth and propagation of synsedimentary faults. Journal of Structural Geology, 25, 633–648. https://doi.org/10.1016/S0191‐8141(02)00054‐8
    [Google Scholar]
  16. Collier, R. E. L., & Gawthorpe, R. L. (1995). Neotectonics, drainage and sedimentation in central Greece: Insights into coastal reservoir geometries in syn‐rift sequences. Geological Society, London, Special Publications, 80, 165–181. https://doi.org/10.1144/GSL.SP.1995.080.01.08
    [Google Scholar]
  17. Cotterill, C. J. (2002). A high resolution Holocene fault activity history of the Aigion shelf, Gulf of Corinth, Greece. PhD Thesis, School of Ocean and Earth Sciences, University of Southampton, UK.
  18. Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., & Roberts, G. P. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Research, 18, 231–266. https://doi.org/10.1111/j.1365‐2117.2006.00298.x
    [Google Scholar]
  19. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocenter development: Insights from a numerical fault growth model. Basin Research, 12, 241–261.
    [Google Scholar]
  20. Crameri, F. (2018). Scientific colour maps: Perceptually uniform and colour‐blind friendly. Zenodo. https://doi.org/10.5281/zenodo.1243862
    [Google Scholar]
  21. Cullen, T. M., Collier, R. E. L., Gawthorpe, R. L., Hodgson, D. M., & Barrett, B. J. (2019). Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, https://doi.org/10.1111/bre.12416
    [Google Scholar]
  22. Dart, C. J., Collier, R. E. L., Gawthorpe, R. L., Keller, J. V. A., & Nichols, G. (1994). Sequence stratigraphy of (?)Pliocene‐quaternary synrift, gilbert‐type fan deltas, Northern Peloponnesos, Greece. Marine and Petroleum Geology, 11, 545–560. https://doi.org/10.1016/0264‐8172(94)90067‐1
    [Google Scholar]
  23. Dawers, N. H., & Anderson, M. H. (1995). Displacement‐length scaling and fault linkage. Journal of Structural Geology, 17, 607–614. https://doi.org/10.1016/0191‐8141(94)00091‐D
    [Google Scholar]
  24. Deng, H., & McClay, K. (2019). Tectono‐stratigraphy of the Dampier sub‐basin, North West Shelf of Australia. In K. R. McClay, J. A. Hammerstein (Eds.), Passive margins: tectonics, sedimentation & magmatism. Geological Society, London, Special Publications, 476, SP476‐2018–180. https://doi.org/10.1144/SP476‐2018‐180
    [Google Scholar]
  25. Densmore, A. L., Dawers, N. H., Gupta, S., Allen, P. A., & Gilpin, R. (2003). Landscape evolution at extensional relay zones. Journal of Geophysical Research, 108, 2273. https://doi.org/10.1029/2001JB001741
    [Google Scholar]
  26. Dodd, T. J., McCarthy, D. J., & Richards, P. C. (2018). A depositional model for deep‐lacustrine, partially‐confined, turbidite fans: Early Cretaceous, North Falkland Basin. Sedimentology, 66, 53–80. https://doi.org/10.1111/sed.12483
    [Google Scholar]
  27. Dorsey, R. J., & Umhoefer, P. J. (2000). Tectonic and eustatic controls on sequence stratigraphy of the Pliocene Loreto Basin, Baja California Sur, Mexico. Geological Society of America Bulletin, 112, 177–199. https://doi.org/10.1130/0016‐7606(2000)112<177:TAECOS>2.0.CO;2
    [Google Scholar]
  28. Dorsey, R. J., Umhoefer, P. J., & Renne, P. R. (1995). Rapid subsidence and stacked gilbert‐type fan deltas, Pliocene Loreto Basin, Baja California Sur, Mexico. Sedimentary Geology, 98, 181–204. https://doi.org/10.1016/0037‐0738(95)00032‐4
    [Google Scholar]
  29. Elliott, G. M., Wilson, P., Jackson, C.‐A.‐L., Gawthorpe, R. L., Michelsen, L., & Sharp, I. (2012). The linkage between fault throw and footwall scarp erosion patterns: An example from the Bremstein Fault Complex, offshore Mid‐Norway. Basin Research, 24, 180–197. https://doi.org/10.1111/j.1365‐2117.2011.00524.x
    [Google Scholar]
  30. Ellis, C. (2010a). Kentish Knock‐1 well completion report, interpretive volume, WA‐365‐P. Chevron Australia Ply Ltd.
    [Google Scholar]
  31. Ellis, C. (2010b). Guardian‐1 well completion report, interpretive volume, WA‐365‐P. Chevron Australia Ply Ltd.
    [Google Scholar]
  32. Ellis, C., Woodall, M., Goody, A., Lim, D., & Locke, M. (2008). Thebe‐1 and Thebe‐1CH well completion report, interpretive volume, WA‐346‐P. BHP. Billiton Petroleum Pty Ltd.
    [Google Scholar]
  33. Ellis, C., Woodall, M., Goody, A., Lim, D., & Locke, M. (2009a). Thebe‐2 and Thebe‐2CH well completion report, basic data volume, WA‐346‐P. BHP. Billiton Petroleum Pty Ltd.
    [Google Scholar]
  34. Ellis, C., Woodall, M., Goody, A., Lim, D., & Locke, M. (2009b). Thebe‐2 and Thebe‐2CH well completion report, interpretive volume, WA‐346‐P. BHP. Billiton Petroleum Pty Ltd.
    [Google Scholar]
  35. Etheridge, M. A., & O’Brien, G. W. (1994). Structural and tectonic evolution of the Western Australia margin system. PESA Journal, 22, 45–63.
    [Google Scholar]
  36. Exon, N. F., Haq, B. U., & von Rad, U. (1992). Exmouth Plateau revisited: Scientific drilling and geological framework. Proceedings of the Ocean Drilling Program, Scientific Results, 122, 3–20.
    [Google Scholar]
  37. Ford, M., Williams, E. A., Malartre, F., & Popescu, S. M. (2007). Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert‐type fan delta, Gulf of Corinth, Greece. In G. Nichols, E. Williams & C. Paola (Eds.), Sedimentary processes, environments and basins. A tribute to peter friend. International Association of Sedimentologists Special Publications, 38, 49–90.
    [Google Scholar]
  38. Forman, D. J., & Wales, D. W. (1981). Geological evolution of the Canning Basin, Western Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 210, 91.
    [Google Scholar]
  39. Forster, C. (2016). Blake‐1 final well completion report, WA‐383‐P. Chevron Australia Ply Ltd.
    [Google Scholar]
  40. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings – a review. Earth‐Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  41. Fraser, S. I., Robinson, A. M. et al (2002). Upper Jurassic. In A.Armour, D.Evans, & C.Hickey (Eds.), The millenium atlas: petroleum geology of the central and Northern North Sea (pp. 157–189). LondonThe Geological Society.
    [Google Scholar]
  42. Gartrell, A. P. (2010). Rheological controls on extensional styles and the structural evolution of the Northern Carnarvon Basin, North West Shelf, Australia. Australian Journal of Earth Sciences, 47, 231–244.
    [Google Scholar]
  43. Gartrell, A. P., Keep, M., van der Reit, C., Paterniti, L., & Ban, S. (2019). Variable inversion of polyphase rift basins impacts the Triassic sequence architecture of the NW Shelf, Australia. San Antonio, TA: AAPG Convention and Exhibition.
    [Google Scholar]
  44. Gartrell, A. P., Torres, J., Dixon, M., & Keep, M. (2016). Mesozoic rift onset and its impact on the sequence stratigraphic architecture of the Northern Carnarvon Basin. The APPEA Journal, 56, 143–158. https://doi.org/10.1071/AJ15012
    [Google Scholar]
  45. Gawthorpe, R. L., Andrews, J. E., Collier, R. E. L., Ford, M., Henstra, G. A., Kranis, H., … Skourtsos, E. (2017). Building up or out? Disparate sequence architectures along an active rift margin—Corinth rift, Greece. Geology, 45(12), 1111–1114. https://doi.org/10.1130/G39660.1
    [Google Scholar]
  46. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  47. Gawthorpe, R. L., Hardy, S., & Ritchie, B. (2003). Numerical modelling of depositional sequences in half graben rift basins. Sedimentology, 50, 169–185. https://doi.org/10.1046/j.1365‐3091.2003.00543.x
    [Google Scholar]
  48. Gawthorpe, R. L., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, London, 150, 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  49. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365‐2117.2000.00121.x
    [Google Scholar]
  50. Ghinassi, M. (2007). The effects of differential subsidence and coastal topography on high‐order transgressive‐regressive cycles: Pliocene nearshore deposits of the Val d’Orcia Basin, Northern Apennines, Italy. Sedimentary Geology, 202, 677–701. https://doi.org/10.1016/j.sedgeo.2007.08.002
    [Google Scholar]
  51. Gibbons, A. D., Barckhausen, U., Van Den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J. M., & Müller, R. D. (2012). Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13, 1–25. https://doi.org/10.1029/2011GC003919
    [Google Scholar]
  52. Gobo, K., Ghinassi, M., & Nemec, W. (2015). Gilbert‐type deltas recording short‐term base‐level changes: Delta‐brink morphodynamics and related foreset facies. Sedimentology, 62, 1923–1949. https://doi.org/10.1111/sed.12212
    [Google Scholar]
  53. Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. L. (1999). Role of fault interaction in controlling synrift dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11, 167–189.
    [Google Scholar]
  54. Hampson, G. J., Duller, R. A., Petter, A. L., Robinson, R. A. J., & Allen, P. A. (2014). Mass‐balance constraints on stratigraphic interpretation of linked alluvial‐coastal‐shelfal deposits from source to sink: Example from Cretaceous Western Interior Basin, Utah and Colorado, USA. Journal of Sedimentary Research, 84, 935–960. https://doi.org/10.2110/jsr.2014.78
    [Google Scholar]
  55. Hardy, S., & Gawthorpe, R. L. (1998). Effects of variations in fault slip rate on sequence stratigraphy in fan deltas: insights from numerical modeling. Geology, 26, 911–914.
    [Google Scholar]
  56. Hartley, R. A., Roberts, G. G., White, N., & Richardson, C. (2011). Transient convective uplift of an ancient buried landscape. Nature Geoscience, 4, 562–565. https://doi.org/10.1038/ngeo1191
    [Google Scholar]
  57. Heine, C., & Müller, R. (2005). Late Jurassic rifting along the Australian North West Shelf: Margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52, 27–39. https://doi.org/10.1080/08120090500100077
    [Google Scholar]
  58. Heldreich, G., Redfern, J., Legler, B., Gerdes, K., & Williams, B. P. J. (2017). Challenges in characterizing subsurface paralic reservoir geometries: a detailed case study of the Mungaroo Formation, North West Shelf, Australia. In G. J. Hampson, A. D. Reynolds, B. Kostic & M. R. Wells (Eds.), Sedimentology of paralic reservoirs: recent advances. Geological Society, London, Special Publications, 444, 59–108.
    [Google Scholar]
  59. Hengesh, J. V., & Whitney, B. B. (2016). Transcurrent reactivation of Australia’s western passive margin: An example of intraplate deformation from the central Indo‐Australian plate. Tectonics, 35, 1066–1089. https://doi.org/10.1002/2015TC004103
    [Google Scholar]
  60. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: Seismic case study from the Lofoten margin, Norway. Basin Research, 29, 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  61. Henstra, G. A., Grundvåg, S.‐A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., … Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland Group, East Greenland. Marine and Petroleum Geology, 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
    [Google Scholar]
  62. Hocking, R. M., Moors, H. T., & Van de Graaff, W. J. E. (1988). Regional Geology of the Northern Carnarvon Basin. In P. G.Purcell and R. R.Purcell (Eds.), The North West Shelf, Australia. Proceedings of Petroleum Exploration Society of Australia Symposium. PESA, Perth, 97–114.
    [Google Scholar]
  63. Hunt, D., & Gawthorpe, R. L. (2000). Sedimentary responses to forced regressions. Geological Society, London, Special Publications, 172, https://doi.org/10.1144/GSL.SP.2000.172
    [Google Scholar]
  64. Jackson, C.‐A.‐L., Gawthorpe, R. L., Carr, I. D., & Sharp, I. R. (2005). Normal faulting as a control on the stratigraphic development of shallow marine syn‐rift sequences: The Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift. Egypt. Sedimentology, 52, 313–338. https://doi.org/10.1111/j.1365‐3091.2005.00699.x
    [Google Scholar]
  65. Jackson, C.‐A.‐L., Gawthorpe, R. L., & Sharp, I. R. (2006). Style and sequence of deformation during extensional fault‐propagation folding: Examples from the Hammam Faraun and El‐Qaa fault blocks, Suez Rift. Egypt. Basin Research, 28, 519–535.
    [Google Scholar]
  66. Jackson, C.‐A.‐L., Larsen, E., Hanslien, S., & Tjemsland, A.‐E. (2011). Controls on synrift turbidite deposition on the hanging wall of the South Viking Graben, North Sea rift system, offshore Norway. AAPG Bulletin, 95, 1557–1587. https://doi.org/10.1306/01031110037
    [Google Scholar]
  67. Jackson, J. A., & Leeder, M. R. (1993). Drainage systems and the evolution of normal faults: An example from Pleasant Valley, Nevada. Journal of Structural Geology, 16, 1041–1059.
    [Google Scholar]
  68. Kallweit, R. S., & Wood, L. C. (1982). The limits of resolution of zero‐phase wavelets. Geophysics, 47, 1035–1046. https://doi.org/10.1190/1.1441367
    [Google Scholar]
  69. Keep, M., Powell, C. M., & Baillie, P. W. (1998). Neogene deformation of the North West Shelf, Australia. In P. G.Purcell & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia 2: Proceedings of Petroleum Exploration Society Australia Symposium (pp. 81–91). Perth: PESA.
    [Google Scholar]
  70. L’Anson, A., Elders, C., & McHarg, S. (2019). Marginal fault systems of the northern Carnarvon Basin: Evidence for multiple Palaeozoic extension events, North‐ West Shelf, Australia. Marine and Petroleum Geology, 101, 211–229. https://doi.org/10.1016/j.marpetgeo.2018.11.040
    [Google Scholar]
  71. Leeder, M. R., Collier, R. E. L., Abdul Aziz, L. H., Trout, M., Ferentinos, G., Papatheodorou, G., & Lyberis, E. (2002). Tectono‐sedimentary processes along an active marine/lacustrine half‐graben margin: Alkyonides Gulf, E. Gulf of Corinth, Greece. Basin Research, 14, 25–41. https://doi.org/10.1046/j.1365‐2117.2002.00164.x
    [Google Scholar]
  72. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. In M. P. Coward, J. F. Dewey & P. L. Hancock (Eds.), Continental Extensional Tectonics. Geological Society, London, Special Publications, 28, 139–152.
    [Google Scholar]
  73. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Research, 5, 79–102. https://doi.org/10.1111/j.1365‐2117.1993.tb00059.x
    [Google Scholar]
  74. Leeder, M. R., Mack, G. H., & Salyards, S. L. (1996). Axial‐transverse fluvial interactions in half graben: Plio‐Pleistocene Palomas Basin, southern Rio Grande Rift, New Mexico, USA. Basin Research, 8, 225–241. https://doi.org/10.1046/j.1365‐2117.1996.00192.x
    [Google Scholar]
  75. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt. Sedimentary Geology, 191, 67–87. https://doi.org/10.1016/j.sedgeo.2006.01.006
    [Google Scholar]
  76. Lewis, M. M., Jackson, C.‐A.‐L., & Gawthorpe, R. L. (2015). Tectono‐sedimentary development of early syn‐rift deposits: The Abura Graben, Suez Rift. Basin Research, 29, 327–351.
    [Google Scholar]
  77. Lin, W., & Bhattacharya, J. P. (2017). Estimation of source‐to‐sink mass balance by a fulcrum approach using channel paleohydrologic parameters of the Cretaceous Dunvegan Formation, Canada. Journal of Sedimentary Research, 87, 97–116. https://doi.org/10.2110/jsr.2017.1
    [Google Scholar]
  78. Longley, I. M., Buessenschuett, C., Clydsdale, L., Cubitt, C. J., Davis, R. C., Johnson, M. K., … Thompson, N. B. (2002). The North West Shelf of Australia – a Woodside perspective. In M.Keep & S. J.Moss (Eds.), The Sedimentary Basins of Western Australia 3: Proceedings of the Petroleum Society of Australia Symposium (966). Perth: PESA.
    [Google Scholar]
  79. Marshall, N. G., & Lang, S. C. (2013). A New Sequence Stratigraphic Framework for the North West Shelf, Australia. In M. Keep & S. J.Moss (Eds.), The Sedimentary Basins of Western Australia 4: Proceedings of Petroleum Exploration Society of Australia Symposium (pp. 18–21). Perth: PESA.
    [Google Scholar]
  80. McArthur, A. D., Hartley, A. J., Archer, S. G., Jolley, D. W., & Lawrence, H. M. (2016). Spatiotemporal relationships of deep‐marine, axial, and transverse depositional systems from the synrift Upper Jurassic of the central North Sea. AAPG Bulletin, 100, 1469–1500. https://doi.org/10.1306/04041615125
    [Google Scholar]
  81. McArthur, A. D., Jolley, D. W., Hartley, A. J., Archer, S. G., & Lawrence, H. M. (2016). Palaeoecology of syn‐rift topography: A Late Jurassic footwall island on the Josephine Ridge, Central Graben, North Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 63–75. https://doi.org/10.1016/j.palaeo.2016.06.033
    [Google Scholar]
  82. McHarg, S., Elders, C., & Cunneen, J. (2018). Normal fault linkage and reactivation, Dampier Sub‐basin, Western Australia. Australian Journal of Earth Science, 66, 209–225. https://doi.org/10.1080/08120099.2019.1519848
    [Google Scholar]
  83. McLeod, A. E., & Underhill, J. R. (1999). Processes and products of footwall degradation, northern Brent Field, Northern North Sea. Geological Society, London, Petroleum Geology Conference Series, 5, 91–106. https://doi.org/10.1144/0050091
    [Google Scholar]
  84. McNeill, L. C., Cotterill, C. J., Henstock, T. J., Bull, J. M., Stefatos, A., Collier, R. E. L., … Hicks, S. E. (2005). Active faulting within the offshore western Gulf of Corinth, Greece: Implications for models of continental rift deformation. Geology, 33, 241–244. https://doi.org/10.1130/G21127.1
    [Google Scholar]
  85. Metcalfe, I. (1999). Gondwana dispersion and Asian accretion: An overview. In I.Metcalfe (Ed.), Gondwana Dispersion and Asian Accretion – IGCP 321 Final Results Volume (pp. 9–28). Rotterdam: A.A. Balkema.
    [Google Scholar]
  86. Michael, N. A., Whittaker, A. C., & Allen, P. A. (2013). The functioning of sediment routing systems using a mass balance approach: Example from the Eocene of the Southern Pyrenees. The Journal of Geology, 121, 581–606. https://doi.org/10.1086/673176
    [Google Scholar]
  87. Mohrig, D., Heller, P. L., Paola, C., & Lyons, W. J. (2000). Interpreting avulsion process from ancient alluvial sequences: Guadalope‐Matarranya (northern Spain) and Wasatch Formation (western Colorado). Geological Society of America Bulletin, 112, 1787–1803.
    [Google Scholar]
  88. Monro, J. (2012). Genseric‐1 final well completion report, WA‐434‐P. Woodside.
    [Google Scholar]
  89. Morley, C. K., Ionnikoff, Y., Pinyochon, N., & Seusutthiya, K. (2007). Degradation of a footwall fault block with hanging‐wall fault propagation in a continental lacustrine setting: How a new structural model impacted field development plans, the Sirikit field, Thailand. AAPG Bulletin, 91, 1637–1661. https://doi.org/10.1306/06280707014
    [Google Scholar]
  90. Mortimer, E. J., & Carrapa, B. (2007). Footwall drainage evolution and scarp retreat in response to increasing fault displacement: Loreto fault, Baja California Sur, Mexico. Geology, 35, 651–654. https://doi.org/10.1130/G23690A.1
    [Google Scholar]
  91. Muravchik, M., Gawthorpe, R. L., Sharp, I. R., Rarity, F., & Hodgetts, D. (2018). Sedimentary environment evolution in a marine hangingwall dipslope setting. El Qaa Fault Block, Suez Rift. Egypt. Basin Research, 30, 452–478. https://doi.org/10.1111/bre.12231
    [Google Scholar]
  92. Nøttvedt, A., Berge, A. M., Dawers, N. H., Færseth, R. B., Häger, K. O., Mangerud, G., & Puigdefabregas, C. (2000). Syn‐rift evolution and resulting play models in the Snorre‐H area, northern North Sea. In A. Nøttvedt (Ed.), Dynamics of the Norwegian Margin. Geological Society, London, Special Publications, 167, 179–218.
    [Google Scholar]
  93. Nyberg, B., Helland‐Hansen, W., Gawthorpe, R. L., Sandbakken, P. H., Eide, C., Sømme, T., … Leiknes, S. (2018). Revisiting morphological relationships of modern source‐to‐sink segments as a first‐order approach to scale ancient sedimentary systems. Sedimentary Geology, 373, 111–133. https://doi.org/10.1016/j.sedgeo.2018.06.007
    [Google Scholar]
  94. Olariu, C., & Bhattacharya, J. P. (2006). Terminal distributary channels and delta front architecture of river‐dominated delta systems. Journal of Sedimentary Research, 76, 212–233. https://doi.org/10.2110/jsr.2006.026
    [Google Scholar]
  95. Ortiz‐Karpf, A., Hodgson, D. M., & McCaffrey, W. D. (2015). The role of mass‐transport complexes in controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin: The Magdalena Fan, offshore Colombia. Marine and Petroleum Geology, 6, 58–75. https://doi.org/10.1016/j.marpetgeo.2015.01.005
    [Google Scholar]
  96. Paola, C., & Martin, J. M. (2012). Mass‐balance effects in depositional systems. Journal of Sedimentary Research, 82, 435–450. https://doi.org/10.2110/jsr.2012.38
    [Google Scholar]
  97. Papadopoulos, G., & Pavlides, S. (1992). The large 1956 earthquake in the South Aegean: Macroseismic field configuration, faulting and neotectonics of Amorgos Island. Earth Planet. Sci. Letters, 113, 383–396. https://doi.org/10.1016/0012‐821X(92)90140‐Q
    [Google Scholar]
  98. Pechlivanidou, S., Cowie, P. A., Hannisdal, B., Whittaker, A. C., Gawthorpe, R. L., Pennos, C., & Riiser, O. S. (2018). Source‐to‐sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece. Basin Research, 30, 522–543. https://doi.org/10.1111/bre.12263
    [Google Scholar]
  99. Phillips Australian Oil Company
    Phillips Australian Oil Company (1980). Jupiter‐1 well completion report, WA‐84‐P. Australian Government Geoscience Australia.
  100. Prélat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154. https://doi.org/10.1111/j.1365‐3091.2009.01073.x
    [Google Scholar]
  101. Ravnås, R., & Steel, R. J. (1998). Architecture of Marine Rift‐Basin Successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  102. Reading, H. G., & Richards, M. (1994). Turbidite systems in deep‐water basin margins classified by grain size and feeder system. AAPG Bulletin, 78, 792–822.
    [Google Scholar]
  103. Richards, M., Bowman, M., & Reading, H. (1998). Submarine fan systems characterization and stratigraphic prediction. Marine and Petroleum Geology, 15, 689–717.
    [Google Scholar]
  104. Roberts, A. M., Kusznir, N. J., Yielding, G., & Beeley, H. (2019). Mapping the bathymetric evolution of the Northern North Sea: From Jurassic synrift archipelago through Cretaceous‐Tertiary post‐rift subsidence. Petroleum Geoscience, 25, 306–321. https://doi.org/10.1144/petgeo2018‐066
    [Google Scholar]
  105. Roberts, A. M., Yielding, G., & Badley, M. E. (1993). Tectonic and bathymetric controls on stratigraphic sequences within evolving half‐graben. In G. D. Wouldiams & A. Dobb (Eds.), Tectonics and seismic sequence stratigraphy. Geological Society Special Publication, 71, 87–121.
    [Google Scholar]
  106. Rohais, S., Eschard, R., & Guillocheau, F. (2008). Depositional model and stratigraphic architecture of rift climax Gilbert‐type fan deltas (Gulf of Corinth, Greece). Sedimentary Geology, 210, 132–145. https://doi.org/10.1016/j.sedgeo.2008.08.001
    [Google Scholar]
  107. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990. https://doi.org/10.1111/bre.12353
    [Google Scholar]
  108. Sharp, I. R., Gawthorpe, R. L., Armstrong, B., & Underhill, J. R. (2000). Propagation history and passive rotation of mesoscale normal faults: Implications for synrift stratigraphic development. Basin Research, 12, 285–305. https://doi.org/10.1046/j.1365‐2117.2000.00132.x
    [Google Scholar]
  109. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geological Society of America Bulletin, 112, 1877–1899. https://doi.org/10.1130/0016‐7606(2000)112<1877:FPFIES>2.0.CO;2
    [Google Scholar]
  110. Smallwood, J. R., & Gill, C. E. (2002). The rise and fall of the Faroe‐Shetland Basin: Evidence from seismic mapping of the Balder Formation. Journal of the Geological Society, 159, 627–630. https://doi.org/10.1144/0016‐764902‐064
    [Google Scholar]
  111. Stagg, H. M. J., & Colwell, J. B. (1994). The structural foundations of the Northern Carnarvon Basin. In: P. G.Purcell & R. R.Purcell (Eds.), The North West Shelf, Australia. Proceedings of Petroleum Exploration Society of Australia Symposium (pp. 349–372). Perth: PESA.
    [Google Scholar]
  112. Stevenson, C. J., Jackson, C.‐A.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  113. Steventon, M., Jackson, C.‐A.‐L., Hodgson, D. M., & Johnson, H. D. (2019). Lateral variability of shelf‐edge, slope and basin‐floor deposits. Santos Basin, Brazil. https://doi.org/10.31223/osf.io/eagqd
  114. Stewart, S. A., & Reeds, A. (2003). Geomorphology of kilometre‐scale extensional fault scarps: Factors that impact seismic interpretation. AAPG Bulletin, 87, 251–272.
    [Google Scholar]
  115. Stiros, S. C., Marangou, L., & Arnold, M. (1994). Quaternary uplift and tilting of Amorgos Island (southern Aegean) and the 1956 earthquake. Earth and Planetary Science Letters, 128, 65–76. https://doi.org/10.1016/0012‐821X(94)90135‐X
    [Google Scholar]
  116. Straub, K. M., & Pyles, D. R. (2012). Quantifying the hierarchical organization of compensation in submarine fans using surface statistics. Journal of Sedimentary Research, 82, 889–898. https://doi.org/10.2110/jsr.2012.73
    [Google Scholar]
  117. Stucky de Quay, G., Roberts, G. G., Watson, J. S., & Jackson, C.‐A.‐L. (2017). Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea. Geochemistry, Geophysics, Geosystems, 18, 973–993. https://doi.org/10.1002/2016GC006769
    [Google Scholar]
  118. Sturrock, V. (2011). Dalia South‐1 well completion report, interpretive volume, WA‐348‐P. Woodside.
    [Google Scholar]
  119. Taylor, L. (2008). Belicoso‐1 final well completion report, interpretive volume, WA‐347‐P. Woodside.
    [Google Scholar]
  120. Taylor, L. (2012). Cadwallon‐1 final well completion report, interpretive volume, WA‐434‐P. Woodside.
    [Google Scholar]
  121. Tindale, K., Newell, N., Keall, J., & Smith, N. (1998). Structural evolution and charge history of the Exmouth Sub‐basin, northern Carnarvon Basin, western Australia. In: P. G.Purcell & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia 2: Proceedings of the Petroleum Exploration Society of Australia. PESA, Perth, 447–472.
    [Google Scholar]
  122. Turner, C. C. & Cronin, B. T. (Eds.). (2018). Rift‐related coarse‐grained submarine fan reservoirs; the Brae Play, South Viking Graben, North Sea. AAPG Memoir, 115, 630.
    [Google Scholar]
  123. Underhill, J. R., Sawyer, M. J., Hodgson, P., Shallcross, M. D., & Gawthorpe, R. L. (1997). Implications of fault scarp degradation for Brent Group prospectivity, Ninian Field, northern North Sea. AAPG Bulletin, 81, 999–1022.
    [Google Scholar]
  124. Veevers, J. J. (1988). Morphotectonics of Australia’s northwestern margin – a review. In: P. G. Purcell & R. R. Purcell (Eds.), The North West Shelf, Australia: Proceedings of Petroleum Exploration Society of Australia Symposium. PESA, Perth, 651.
  125. Walsh, J. J., & Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10, 239–247. https://doi.org/10.1016/0191‐8141(88)90057‐0
    [Google Scholar]
  126. Wang, Y., Straub, K. M., & Hajek, E. A. (2011). Scale‐dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits. Geology, 39, 811–814. https://doi.org/10.1130/G32068.1
    [Google Scholar]
  127. Watkins, S. E., Whittaker, A. C., Bell, R. E., McNeill, L. C., Gawthorpe, R. L., Brooke, S. A. S., & Nixon, C. W. (2018). Are landscapes buffered to high‐frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y. GSA Bulletin, 131, 372–388. https://doi.org/10.1130/B31953.1
    [Google Scholar]
  128. Welbon, A. I. F., Brockbank, P. J., Brunsden, D., & Olsen, T. S. (2007). Characterizing and producing from reservoirs in landslides: challenges and opportunities. In: S. J. Jolley, D. Barr, J. J. Walsh & R. J. Knipe (Eds.), Structurally Complex Reservoirs. Geological Society, London, Special Publications, 292, 49–74. https://doi.org/10.1144/SP292.3
    [Google Scholar]
  129. Whittaker, A. C., Attal, M., & Allen, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22, 809–828.
    [Google Scholar]
  130. Widess, M. B. (1973). How thin is a thin bed?Geophysics, 38, 1176–1180. https://doi.org/10.1190/1.1440403
    [Google Scholar]
  131. Williams, R. M. (2018). Derisking the Thebe Discovery through cognitive interpretation. First Break, 36, 71–78.
    [Google Scholar]
  132. Yeates, A. N., Bradshaw, M. T., & Dickins, J. M. (1987). The Westralian Superbasin: an Australian link with Tethys. In K. G.McKenzie (Ed.), Shallow Tethys (Vol. 2, pp. 199–213). Rotterdam, Netherlands: A. A. Balkema. 199–213.
    [Google Scholar]
  133. Yielding, G., Badley, M. E., & Roberts, A. M. (1992). The structural evolution of the Brent Province. Geological Society, London, Special Publications, 61, 27–43. https://doi.org/10.1144/GSL.SP.1992.061.01.04
    [Google Scholar]
  134. Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2002). Architecture and evolution of syn‐rift clastic depositional systems towards the tip of a major fault segment, Suez Rift, Egypt. Basin Research, 14(1), 23. https://doi.org/10.1046/j.1365‐2117.2002.00162.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12508
Loading
/content/journals/10.1111/bre.12508
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error