1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

Capture areas of the western Okavango Basin during the Pliocene (a) and the early Pleistocene (b). The change in provenance that occured around the Pliocene‐Pleistocene transition is attributed to adjustments of the drainage systems to axial crustal uplift, resulting in the formation of large waterbodies.

, Abstract

The structural depression that occupies the Okavango Basin in southern Africa comprises a depo‐centre within the intracratonic Kalahari Basin where sediments of the Cenozoic Kalahari Group have accumulated. The Okavango Basin has been formed due to stretching and subsidence at an area of diffused deformation, southwestwards to the main East African Rift System (EARS). Sediments from two full Kalahari Group sequences, located on opposite sides of the Gumare Fault that forms a major fault within the Okavango Basin, were studied to determine their provenance and chronology. Terrestrial Cosmogenic Nuclide (TCN) 26Al/10Be burial dating was used to constrain a chronostratigraphical framework, and Pb, Sr, and Nd isotopic ratios combined with geochemical and sedimentological analyses were applied to track the source areas of the sediments.Results indicate the following sequence of basin filling: (a) Accumulation between ca. 4–3 Ma during which the currently downthrown (southern) block received a mixture of sediments mostly from the Choma‐Kalomo, Ghanzi‐Chobe, and Damara terranes, and possibly from the Lufilian Belt and/or Karoo basalts during earlier stages of deposition. Simultaneously, the upthrown (northern) block received sediments from more distant Archean sources in the Zimbabwe and/or Kasai cratons, (b) Hiatus in sedimentation occurred at both sites between ca. 3–2 Ma, (c) Sediments on both sides of the Gumare Fault share a similar source (Angolan Shield) with minor distinct contributions to the downthrown block from the Kasai Craton and local sources input to the upthrown block, and (d) Regional distribution of aeolian sand since at least 1 Ma. The change in source areas is attributed to rearrangements of the drainage systems that were probably linked to vertical crustal movements on the margins of the Okavango Basin. The tectonically induced morphodynamics controlled the landscape evolution of the endorheic basin where vast lakes, wetlands and salt pans have developed through time.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12509
2021-03-15
2024-04-18
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons. T. A. Baillieul (1979). Makgadikgadi pans complex of central Botswana. Geological Society of America Bulletin, 90(2), 289–312.
    [Google Scholar]
  2. Allen, P. A., & Armitage, J. J. (2011). Cratonic basins (pp. 602–620). Tectonics of sedimentary basins: Recent advances.
    [Google Scholar]
  3. Balco, G. (2017). Production rate calculations for cosmic‐ray‐muon‐produced 10Be and 26Al benchmarked against geological calibration data. Quaternary Geochronology, 39, 150–173. https://doi.org/10.1016/j.quageo.2017.02.001
    [Google Scholar]
  4. Baldock, J. W., & Evans, J. A. (1988). Constraints on the age of the Bulawayan Group metavolcanic sequence, Harare greenstone belt, Zimbabwe. Journal of African Earth Sciences (and the Middle East), 7(5–6), 795–804. https://doi.org/10.1016/0899‐5362(88)90022‐X
    [Google Scholar]
  5. Bataille, C. P., Laffoon, J., & Bowen, G. J. (2012). Mapping multiple source effects on the strontium isotopic signatures of ecosystems from the circum‐Caribbean region. Ecosphere, 3(12), 1–24. https://doi.org/10.1890/ES12‐00155.1
    [Google Scholar]
  6. Bea, F. (2015). Geochemistry of the Lanthanide Elements. XXXV Reunión de la Sociedad Española de Mineralogía.
  7. Black, L. P., & Shaw, R. D. (1995). An assessment, based on U/Pb zircon data, of Rb/Sr dating in the Arunta Inlier, central Australia. Precambrian Research, 71(1–4), 3–15.
    [Google Scholar]
  8. Brandt, S., Will, T. M., & Klemd, R. (2007). Magmatic loading in the proterozoic Epupa Complex, NW Namibia, as evidenced by ultrahigh‐temperature sapphirine‐bearing orthopyroxene–sillimanite–quartz granulites. Precambrian Research, 153(3–4), 143–178. https://doi.org/10.1016/j.precamres.2006.11.016
    [Google Scholar]
  9. Braun, J. J., Pagel, M., Muller, J. P., Bilong, P., Michard, A., & Guillet, B. (1990). Cerium anomalies in lateritic profiles. Geochimica Et Cosmochimica Acta, 54(3), 781–795. https://doi.org/10.1016/0016‐7037(90)90373‐S
    [Google Scholar]
  10. Brook, S. G., Shaw, G., Bateman, P., Haberyan, M., Appleton, C., … Davies, F. (2003). Late Pleistocene wetting and drying in the NW Kalahari: An integrated study from the Tsodilo Hills, Botswana. Quaternary International, 104, 53–67. https://doi.org/10.1016/S1040‐6182(02)00135‐0
    [Google Scholar]
  11. Brown, E. T., Colin, F., & Bourlès, D. L. (2003). Quantitative evaluation of soil processes using in situ‐produced cosmogenic nuclides. Comptes Rendus Geoscience, 335(16), 1161–1171. https://doi.org/10.1016/j.crte.2003.10.004
    [Google Scholar]
  12. Bufford, K. M., Atekwana, E. A., Abdelsalam, M. G., Shemang, E., Atekwana, E. A., Mickus, K., … Molwalefhe, L. (2012). Geometry and faults tectonic activity of the Okavango Rift Zone, Botswana: Evidence from magnetotelluric and electrical resistivity tomography imaging. Journal of African Earth Sciences, 65, 61–71. https://doi.org/10.1016/j.jafrearsci.2012.01.004
    [Google Scholar]
  13. Burke, K., & Gunnell, Y. (2008). The African erosion surface: a continental‐scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geological Society of America Memoir (Vol. 201, pp. 1–66). Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2008.1201
    [Google Scholar]
  14. Burrough, S. L., Thomas, D. S. G., & Bailey, R. M. (2009). Mega‐Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, 28(15–16), 1392–1411. https://doi.org/10.1016/j.quascirev.2009.02.007
    [Google Scholar]
  15. Campbell, G., Johnson, S., Bakaya, T., Kumar, H., & Nsatsi, J. (2006). Airborne geophysical mapping of aquifer water quality and structural controls in the Lower Okavango Delta, Botswana. South African Journal of Geology, 109(4), 475–494. https://doi.org/10.2113/gssajg.109.4.475
    [Google Scholar]
  16. Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south‐central Africa. Journal of African Earth Sciences, 43(1–3), 211–253. https://doi.org/10.1016/j.jafrearsci.2005.07.007
    [Google Scholar]
  17. Chorowicz, J. (2005). The east African rift system. Journal of African Earth Sciences, 43(1–3), 379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019
    [Google Scholar]
  18. Cockburn, H. A. P., Brown, R. W., Summerfield, M. A., & Seidl, M. A. (2000). Quantifying passive margin denudation and landscape development using a combined fission‐track thermochronology and cosmogenic isotope analysis approach. Earth and Planetary Science Letters, 179(3–4), 429–435. https://doi.org/10.1016/S0012‐821X(00)00144‐8
    [Google Scholar]
  19. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104(1–4), 1–37. https://doi.org/10.1016/0009‐2541(93)90140‐E
    [Google Scholar]
  20. Cooke, H. (1975). The palaeoclimatic significance of caves and adjacent landforms in western Ngamiland. Botswana. Geographical Journal, 430–444. https://doi.org/10.2307/1796477
    [Google Scholar]
  21. Cooke, H. J. (1980). Landform evolution in the context of climatic change and neo‐tectonism in the middle Kalahari of northern central Botswana. Transactions of the Institute of British Geographers, 5, 80–99.
    [Google Scholar]
  22. Cordova, C. E., Scott, L., Chase, B. M., & Chevalier, M. (2017). Late Pleistocene‐Holocene vegetation and climate change in the Middle Kalahari, Lake Ngami, Botswana. Quaternary Science Reviews, 171, 199–215. https://doi.org/10.1016/j.quascirev.2017.06.036
    [Google Scholar]
  23. Cotterill, F. P. D., & De Wit, M. J. (2011). Geoecodynamics and the Kalahari epeirogeny: Linking its genomic record, tree of life and palimpsest into a unified narrative of landscape evolution. South African Journal of Geology, 114(3–4), 489–514. https://doi.org/10.2113/gssajg.114.3‐4.489
    [Google Scholar]
  24. Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian‐Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51(3), 181–203. https://doi.org/10.1016/S0024‐4937(99)00063‐8
    [Google Scholar]
  25. Daly, M. C., Tozer, B., & Watts, A. B. (2019). Cratonic basins and the Wilson cycle: A perspective from the Parnaíba Basin, Brazil. Geological Society, London, Special Publications, 470(1), 463–477. https://doi.org/10.1144/SP470.13
    [Google Scholar]
  26. Day, J. J., Bills, R., & Friel, J. P. (2009). Lacustrine radiations in African Synodontis catfish. Journal of Evolutionary Biology, 22(4), 805–817.
    [Google Scholar]
  27. De Carvalho, H., Tassinari, C., Alves, P. H., Guimarães, F., & Simões, M. C. (2000). Geochronological review of the Precambrian in western Angola: Links with Brazil. Journal of African Earth Sciences, 31(2), 383–402. https://doi.org/10.1016/S0899‐5362(00)00095‐6
    [Google Scholar]
  28. De Waele, B., Mapani, B. (2002). Geology and correlation of the central Irumide belt. Journal of African Earth Sciences, 35, (3), 385–397. https://doi.org/10.1016/s0899‐5362(02)00149‐5
    [Google Scholar]
  29. De Wit, M. (2007). The Kalahari Epeirogeny and climate change: Differentiating cause and effect from core to space. South African Journal of Geology, 110(2–3), 367–392. https://doi.org/10.2113/gssajg.110.2‐3.367
    [Google Scholar]
  30. Delhal, J., Deutsch, S., & Denoiseux, B. (1986). A Sm/Nd isotopic study of heterogeneous granulites from the Archean Kasai‐Lomami gabbro‐norite and charnockite complex (Zaire, Africa). Chemical Geology, 57(1–2), 235–245.
    [Google Scholar]
  31. Delhal, J., Ledent, D., & Torquato, J. R. (1977). New geochronological data relating to the gabbro‐noritic and charnockitic complex of the Kasai shield and its extension in Angola. Annals of the Geological Society of Belgium, 99, 211–226. https://popups.uliege.be/0037‐9395/index.php?id=5361
    [Google Scholar]
  32. Derricourt, R. M. (1976). Retrogression rate of the Victoria Falls and the Batoka Gorge. Nature, 264(5581), 23–25.
    [Google Scholar]
  33. Dirks, P. H., & Jelsma, H. A. (2002). Crust–mantle decoupling and the growth of the Archaean Zimbabwe craton. Journal of African Earth Sciences, 34(3–4), 157–166. https://doi.org/10.1016/S0899‐5362(02)00015‐5
    [Google Scholar]
  34. Dixey, F. H. (1956). The East African Rift System. Colonial Geol. Mineral Resources, 1, 1–71.
    [Google Scholar]
  35. Doucouré, C. M., & de Wit, M. J. (2003). Old inherited origin for the present near‐bimodal topography of Africa. Journal of African Earth Sciences, 36(4), 371–388. https://doi.org/10.1016/S0899‐5362(03)00019‐8
    [Google Scholar]
  36. du Toit, A. L. (1933). Crustal movement as a factor in the geographical evolution of southern Africa. South African Geographical Journal, 16, 3–20.
    [Google Scholar]
  37. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J., & Duncan, A. R. (1997). The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research: Solid Earth, 102(B8), 18127–18138. https://doi.org/10.1029/97JB00972
    [Google Scholar]
  38. Ebert, J., & Hitchcock, R. K. (1978). Ancient Lake Makgadikgadi, Botswana: Mapping, measurement and palaeoclimatic significance. Palaeoecology of Africa, 10(11–47), 47–56.
    [Google Scholar]
  39. Ebinger, C. J. (1989). Tectonic development of the western branch of the East African rift system. Geological Society of America Bulletin, 101(7), 885–903. https://doi.org/10.1130/0016‐7606(1989)101<0885:TDOTWB>2.3.CO;2
    [Google Scholar]
  40. Eckardt, F. E., Flügel, T., Cotterill, F., Rowe, C., & McFarlane, M. (2016). Kalahari tectonic landforms and processes beyond the Okavango Graben. Quaternary International, 404, 194. https://doi.org/10.1016/j.quaint.2015.08.157
    [Google Scholar]
  41. Erel, Y., Dayan, U., Rabi, R., Rudich, Y., & Stein, M. (2006). Trans boundary transport of pollutants by atmospheric mineral dust. Environmental Science & Technology, 40(9), 2996–3005. https://doi.org/10.1021/es051502l
    [Google Scholar]
  42. Fadel, I., van der Meijde, M., & Paulssen, H. (2018). Crustal structure and dynamics of Botswana. Journal of Geophysical Research: Solid Earth, 123(12), 10–659. https://doi.org/10.1029/2018JB016190
    [Google Scholar]
  43. Fairhead, J. D., & Girdler, R. W. (1969). How far does the rift system extend through Africa?Nature, 221(5185), 1018–1020.
    [Google Scholar]
  44. Farmer, G. L., Barber, D., & Andrews, J. (2003). Provenance of Late Quaternary ice‐proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence. Earth and Planetary Science Letters, 209(1–2), 227–243. https://doi.org/10.1016/S0012‐821X(03)00068‐2
    [Google Scholar]
  45. Faure, G. (1997). Principles and applications of geochemistry, Vol. 625. New Jersey: Prentice Hall.
    [Google Scholar]
  46. Fitzpatrick, R. W., & Chittleborough, D. J. (2002). Titanium and zirconium minerals. Soil Mineralogy with Environmental Applications, 7, 667–690.
    [Google Scholar]
  47. Garçon, M., Chauvel, C., France‐Lanord, C., Limonta, M., & Garzanti, E. (2014). Which minerals control the Nd–Hf–Sr–Pb isotopic compositions of river sediments?Chemical Geology, 364, 42–55. https://doi.org/10.1016/j.chemgeo.2013.11.018
    [Google Scholar]
  48. Gärtner, A., Linnemann, U., & Hofmann, M. (2014). The provenance of northern Kalahari Basin sediments and growth history of the southern Congo Craton reconstructed by U‐Pb ages of zircons from recent river sands. International Journal of Earth Sciences, 103(2), 579–595. https://doi.org/10.1007/s00531‐013‐0974‐5
    [Google Scholar]
  49. Garzanti, E., Padoan, M., Setti, M., López‐Galindo, A., & Villa, I. M. (2014). Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366, 61–74. https://doi.org/10.1016/j.chemgeo.2013.12.016
    [Google Scholar]
  50. Glynn, S. M., Master, S., Wiedenbeck, M., Davis, D. W., Kramers, J. D., Belyanin, G. A., … Oberthür, T. (2017). The Proterozoic Choma‐Kalomo Block, SE Zambia: Exotic terrane or a reworked segment of the Zimbabwe Craton?Precambrian Research, 298, 421–438. https://doi.org/10.1016/j.precamres.2017.06.020
    [Google Scholar]
  51. Goudie, A. S. (2005). The drainage of Africa since the Cretaceous. Geomorphology, 67(3–4), 437–456. https://doi.org/10.1016/j.geomorph.2004.11.008
    [Google Scholar]
  52. Government of Botswana (GoB)
    Government of Botswana (GoB) (2003a): North‐western Ngamiland TGLP Groundwater Potential Survey. – Final Report. Department of Geological Surveys, Ministry of Minerals, Energy and Water Affairs.
  53. Government of Botswana (GoB)
    Government of Botswana (GoB) (2003b): Geomorphology. Vol. 9. North‐western Ngamiland TGLP Groundwater Potential Survey – Final Report. Department of Geological Surveys, Ministry of Minerals, Energy and Water Affairs.
  54. Granger, D. E., & Muzikar, P. F. (2001). Dating sediment burial with in situ‐produced cosmogenic nuclides: Theory, techniques, and limitations. Earth and Planetary Science Letters, 188(1–2), 269–281. https://doi.org/10.1016/S0012‐821X(01)00309‐0
    [Google Scholar]
  55. Gray, D. R., Foster, D. A., Meert, J. G., Goscombe, B. D., Armstrong, R., Trouw, R. A. J., & Passchier, C. W. (2008). A Damara orogen perspective on the assembly of southwestern Gondwana. Geological Society, London, Special Publications, 294(1), 257–278. https://doi.org/10.1144/SP294.14
    [Google Scholar]
  56. Greenwood, P. G., & Carruthers, R. M. (1973). Geophysical surveys in the Okavango Delta. AppliedGeophysics Unit, Institute of Geological Sciences, Report No. 15, 36.
  57. Grey, D. R. C., & Cooke, H. J. (1977). Some problems in the Quarternary evolution of the landforms of northern Botswana. Catena, 4, 123–133.
    [Google Scholar]
  58. Grove, A. T. (1969). Landforms and Climatic Change in the Kalahari and Ngamiland. The Geographical Journal, 135(2), 191–212. https://doi.org/10.2307/1796824
    [Google Scholar]
  59. Gumbricht, T., McCarthy, T. S., & Merry, C. L. (2001). The topography of the Okavango Delta, Botswana, and its tectonic and sedimentological implications. South African Journal of Geology, 104, 243–264. https://doi.org/10.2113/1040243
    [Google Scholar]
  60. Haddon, I. G. (2005). The Sub‐Kalahari Geology and Tectonic Evolution of the Kalahari Basin, Southern Africa. (PhD Thesis, Faculty of Science, University of the Witwatersrand, Johannesburg).
  61. Haddon, I. G., & McCarthy, T. S. (2005). The Mesozoic‐Cenozoic interior sag basins of Central Africa: The late‐cretaceous–Cenozoic Kalahari and Okavango Basins. Journal of African Earth Sciences, 43(1–3), 316–333. https://doi.org/10.1016/j.jafrearsci.2005.07.008
    [Google Scholar]
  62. Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6), 1265–1279. https://doi.org/10.1016/j.gca.2003.09.012
    [Google Scholar]
  63. Hansen, S. E., Nyblade, A. A., & Benoit, M. H. (2012). Mantle structure beneath Africa and Arabia from adaptively parameterized P‐wave tomography: Implications for the origin of Cenozoic Afro‐Arabian tectonism. Earth and Planetary Science Letters, 319, 23–34. https://doi.org/10.1016/j.epsl.2011.12.023
    [Google Scholar]
  64. Hanson, R. E. (2003). Proterozoic geochronology and tectonic evolution of southern Africa. Geological Society, London, Special Publications, 206(1), 427–463. https://doi.org/10.1144/GSL.SP.2003.206.01.20
    [Google Scholar]
  65. Haughton, P. D. W., Todd, S. P., & Morton, A. C. (1991). Sedimentary provenance studies. Geological Society, London, Special Publications, 57(1), 1–11. https://doi.org/10.1144/GSL.SP.1991.057.01.01
    [Google Scholar]
  66. Hawkesworth, C. J., Menzies, M. A., & Van Calsteren, P. (1986). Geochemical and tectonic evolution of the Damara Belt, Namibia. Geological Society, London, Special Publications, 19(1), 305–319. https://doi.org/10.1144/GSL.SP.1986.019.01.17
    [Google Scholar]
  67. Heine, C., Dietmar Müller, R., Steinberger, B., & Torsvik, T. H. (2008). Subsidence in intracontinental basins due to dynamic topography. Physics of the Earth and Planetary Interiors, 171(1), 252–264. https://doi.org/10.1016/j.pepi.2008.05.008
    [Google Scholar]
  68. Hidy, A. J., Gosse, J. C., Froese, D. G., Bond, J. D., & Rood, D. H. (2013). A latest Pliocene age for the earliest and most extensive Cordilleran Ice Sheet in northwestern Canada. Quaternary Science Reviews, 61, 77–84. https://doi.org/10.1016/j.quascirev.2012.11.009
    [Google Scholar]
  69. Holbrook, J., & Schumm, S. A. (1999). Geomorphic and sedimentary response of rivers to tectonic deformation: A brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics, 305(1–3), 287–306. https://doi.org/10.1016/S0040‐1951(99)00011‐6
    [Google Scholar]
  70. Huntsman‐Mapila, P., Kampunzu, A. B., Vink, B., & Ringrose, S. (2005). Cryptic indicators of provenance from the geochemistry of the Okavango Delta sediments. Botswana. Sedimentary Geology, 174(1–2), 123–148. https://doi.org/10.1016/j.sedgeo.2004.11.001
    [Google Scholar]
  71. Huntsman‐Mapila, P., Tiercelin, J. J., Benoit, M., Ringrose, S., Diskin, S., Cotten, J., & Hémond, C. (2009). Sediment geochemistry and tectonic setting: Application of discrimination diagrams to early stages of intracontinental rift evolution, with examples from the Okavango and Southern Tanganyika rift basins. Journal of African Earth Sciences, 53(1–2), 33–44. https://doi.org/10.1016/j.jafrearsci.2008.07.005
    [Google Scholar]
  72. Hutchins, D. G., Hutton, L. G., Hutton, S. M., Jones, C. R., & Loenhert, E. P. (1976). A Summary of the Geology, Seismicity, Geomorphology and Hydrogeology of the Okavango Delta', 7, 1‐27. Lobatse, Botswana: Republic of Botswana Geological Survey Department.
    [Google Scholar]
  73. Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm‐Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139–155. https://doi.org/10.1016/0012‐821X(80)90125‐9
    [Google Scholar]
  74. Jahn, B. M., & Condie, K. C. (1976). On the age of Rhodesian greenstone belts. Contributions to Mineralogy and Petrology, 57(3), 317–330. https://doi.org/10.1007/BF03542941
    [Google Scholar]
  75. Jelsma, H. A., McCourt, S., Perritt, S. H., & Armstrong, R. A. (2018). The geology and evolution of the Angolan shield, Congo craton. Geology of Southwest Gondwana (pp. 217–239). Cham: Springer.
    [Google Scholar]
  76. Jelsma, H. A., Perritt, S. H., Armstrong, R. A., & Ferreira, H. F. (2011). SHRIMP U‐Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola. Abstract, 23rd CAG, Johannesburg, 8th–14th January.
  77. Jelsma, H. A., Perritt, S. H., Joy, S., & Armstrong, R. A. (2016). Basement architecture of the Central African Kasai Craton revealed using high precision SHRIMP II U‐Pb zircon geochronology. In International Geological Congress (Paper Number: 1835). Cape Town.
  78. Jelsma, H. A., Vinyu, M. L., Wijbrans, J. R., Verdurmen, E. A. T., Valbracht, P. J., & Davies, G. R. (1996). Constraints on Archaean crustal evolution of the Zimbabwe craton: A U‐Pb zircon, Sm‐Nd and Pb‐Pb whole‐rock isotope study. Contributions to Mineralogy and Petrology, 124(1), 55–70. https://doi.org/10.1007/s004100050173
    [Google Scholar]
  79. Jourdan, F., Bertrand, H., Schärer, U., Blichert‐Toft, J., Féraud, G., & Kampunzu, A. B. (2007). Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana–Zimbabwe: Lithosphere vs mantle plume contribution. Journal of Petrology, 48(6), 1043–1077. https://doi.org/10.1093/petrology/egm010
    [Google Scholar]
  80. Kampunzu, A. B., Akanyang, P., Mapeo, R. B. M., Modie, B. N., & Wendorff, M. (1998). Geochemistry and tectonic significance of the Mesoproterozoic Kgwebe metavolcanic rocks in northwest Botswana: Implications for the evolution of the Kibaran Namaqua‐Natal belt. Geological Magazine, 135(5), 669–683.
    [Google Scholar]
  81. Kampunzu, A. B., Armstrong, R. A., Modisi, M. P., & Mapeo, R. B. (1999). The Kibaran Belt in Southwest Africa: Ion Microprobe U‐Pb Zircon Data and Definition of the Kibaran Ngami Belt in Botswana. Namibia and Angola, Gondwana Research, 2(4), 571–572. https://doi.org/10.1016/S1342‐937X(05)70200‐8
    [Google Scholar]
  82. Kampunzu, A. B., Armstrong, R. A., Modisi, M. P., & Mapeo, R. B. M. (2000). Ion microprobe U‐ Pb ages on detrital zircon grains from the Ghanzi Group: Implications for the identification of a Kibaran‐age crust in northwest Botswana. Journal of African Earth Sciences, 30(3), 579–587. https://doi.org/10.1016/S0899‐5362(00)00040‐3
    [Google Scholar]
  83. Key, R. M., & Rundle, C. C. (1981). The regional significance of new isotopic ages from Precambrian windows through the'Kalahari Beds' in north‐western Botswana. Transactions of the Geological Society of South Africa, 84(1), 51–66.
    [Google Scholar]
  84. Kinabo, B. D., Hogan, J. P., Atekwana, E. A., Abdelsalam, M. G., & Modisi, M. P. (2008). Fault growth and propagation during incipient continental rifting: Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana. Tectonics, 27(3), 1–16. https://doi.org/10.1029/2007TC002154
    [Google Scholar]
  85. King, L. C. (1951). South African Scenery, 2nd ed. (p. 243). Edinburgh: Oliver and Boyd.
    [Google Scholar]
  86. King, L. C., & King, L. A. (1959). A reappraisal of the Natal monocline. South African Geographical Journal, 41, 15–30. https://doi.org/10.1080/03736245.1959.10559341
    [Google Scholar]
  87. Klein, J., Giegengack, R., Middleton, R., Sharma, P., Underwood, J. R., & Weeks, R. A. (1986). Revealing histories of exposure using in situ produced 26 Al and 10 Be in Libyan desert glass. Radiocarbon, 28(2A), 547–555.
    [Google Scholar]
  88. Kohl, C. P., Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in‐situ ‐produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 56, (9), 3583–3587. https://doi.org/10.1016/0016‐7037(92)90401‐4
    [Google Scholar]
  89. Koppel, V. H., & Saager, R. (1974). Lead isotope evidence on the detrital origin of Witwatersrand pyrites and its bearing on the provenance of the Witwatersrand gold. Economic Geology, 69(3), 318–331. https://doi.org/10.2113/gsecongeo.69.3.318
    [Google Scholar]
  90. Lancaster, I. N. (1979). Evidence for a widespread late Pleistocene humid period in the Kalahari. Nature, 279(5709), 145. https://doi.org/10.1038/279145a0
    [Google Scholar]
  91. Le Gall, B., Tshoso, G., Jourdan, F., Féraud, G., Bertrand, H., Tiercelin, J., … Maia, M. (2002). 40Ar/39Ar geochronology and structural data from the giant Okavango and related mafic dyke swarms, Karoo igneous province, northern Botswana. Earth and Planetary Science Letters, 202(3–4), 595–606. https://doi.org/10.1016/S0012‐821X(02)00763‐X
    [Google Scholar]
  92. Leighton, M. W., & Kolata, D. R. (1990). Selected Interior Cratonic Basins and Their Place in the Scheme of Global Tectonics: A Synthesis: Chapter 35: Part III. Synthesis and Analysis of Interior Cratonic Basins: Synthesis, (729‐797).
  93. Leseane, K., Atekwana, E. A., Mickus, K. L., Abdelsalam, M. G., Shemang, E. M., & Atekwana, E. A. (2015). Thermal perturbations beneath the incipient Okavango Rift Zone, Northwest Botswana. Journal of Geophysical Research: Solid Earth, 120(2), 1210–1228. https://doi.org/10.1002/2014JB011029
    [Google Scholar]
  94. Lifton, N., Sato, T., & Dunai, T. J. (2014). Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic‐ray fluxes. Earth and Planetary Science Letters, 386, 149–160. https://doi.org/10.1016/j.epsl.2013.10.052
    [Google Scholar]
  95. Lister, L. A. (1979). The geomorphic evolution of Zimbabwe Rhodesia. South African Journal of Geology, 82(3), 363–370.
    [Google Scholar]
  96. Logatchev, N. A., Beloussov, V. V., & Milanovsky, E. E. (1972). East african rift development. In R. W. Girdler (Ed.), East African Rifts. Tectonophysics, 15(1‐2), 71–81. https://doi.org/10.1016/0040‐1951(72)90053‐4
    [Google Scholar]
  97. Mallick, D. I. J., Habgood, F., & Skinner, A. C. (1981). Geological interpretation of Landsat imagery and air photography of Botswana, Overseas Geology and Mineral Resources, 56, (35–36). H.M. Stationery Office. Retrieved from https://books.google.co.il/books/about/Geological_Interpretation_of_Landsat_Ima.html?id=FvgeAQAAIAAJ&redir_esc=y
    [Google Scholar]
  98. Mapeo, R. B. M., Armstrong, R. A., & Kampunzu, A. B. (2001). SHRIMP U‐Pb zircon geochronology of gneisses from the Gweta borehole, northeast Botswana: Implications for the Palaeoproterozoic Magondi Belt in southern Africa. Geological Magazine, 138(3), 299–308.
    [Google Scholar]
  99. Mapeo, R. B. M., Kampunzu, A. B., & Armstrong, R. A. (2000). Ages of detrital zircon grains from Neoproterozoic siliciclastic rocks in the Shakawe area: Implications for the evolution of Proterozoic crust in northern Botswana. South African Journal of Geology, 103(2), 156–161. https://doi.org/10.2113/103.2.156
    [Google Scholar]
  100. Marsh, J. S. (1991). REE fractionation and Ce anomalies in weathered Karoo dolerite. Chemical Geology, 90(3–4), 189–194. https://doi.org/10.1016/0009‐2541(91)90099‐D
    [Google Scholar]
  101. Matmon, A., Hidy, A. J., Vainer, S., Crouvi, O., Fink, D., Erel, Y., … Horwitz, L. K. (2015). New chronology for the southern Kalahari Group sediments with implications for sediment‐cycle dynamics and early hominin occupation. Quaternary Research, 84(1), 118–132. https://doi.org/10.1016/j.yqres.2015.04.009
    [Google Scholar]
  102. Matmon, A., Ron, H., Chazan, M., Porat, N., & Horwitz, L. K. (2012). Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave. South Africa. Bulletin, 124(3–4), 611–625. https://doi.org/10.1130/B30410.1
    [Google Scholar]
  103. McCarthy, T. S. (2013). The Okavango Delta and its place in the geomorphological evolution of southern Africa. South African Journal of Geology, 116(1), 1–54. https://doi.org/10.2113/gssajg.116.1.1
    [Google Scholar]
  104. McCarthy, T. S., & Ellery, W. N. (1998). The Okavango delta. Transactions of the Royal Society of South Africa, 53(2), 157–182. https://doi.org/10.1080/00359199809520384
    [Google Scholar]
  105. McCarthy, T. S., Green, R. W., & Franey, N. J. (1993). The influence of neo‐tectonics on water dispersal in the northeastern regions of the Okavango swamps, Botswana. Journal of African Earth Sciences, 17(1), 23–32. https://doi.org/10.1016/0899‐5362(93)90019‐M
    [Google Scholar]
  106. McCarthy, T. S., McIver, J. R., & Verhagen, B. T. (1991). Groundwater evolution, chemical sedimentation and carbonate brine formation on an island in the Okavango Delta swamp, Botswana. Applied Geochemistry, 6(6), 577–595. https://doi.org/10.1016/0883‐2927(91)90071‐V
    [Google Scholar]
  107. McCarthy, T. S., Smith, N. D., Ellery, W. N., & Gumbricht, T. (2002). The Okavango Delta—semiarid alluvial‐fan sedimentation related to incipient rifting. SEPM Special Publication, 73, 173–179.
    [Google Scholar]
  108. McCourt, S., Armstrong, R. A., Jelsma, H., & Mapeo, R. B. M. (2013). New U‐Pb SHRIMP ages from the Lubango region, SW Angola: Insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa. Journal of the Geological Society, 170(2), 353–363. https://doi.org/10.1144/jgs2012‐059
    [Google Scholar]
  109. McFarlane, M. J., Coetzee, S. H., Kuhn, J. R., Vanderpost, C. H. M., & Eckardt, F. D. (2007). In situ rounding of quartz grains within an African surface weathering profile in North West Ngamiland. Botswana. Zeitschrift Für Geomorphologie, 51(3), 269–286. https://doi.org/10.1127/0372‐8854/2007/0051‐0269
    [Google Scholar]
  110. McFarlane, M. J., & Eckardt, F. D. (2006). Lake Deception: A new Makgadikgadi palaeolake. Botswana Notes and Records, 38, 195–201.
    [Google Scholar]
  111. McFarlane, M. J., & Eckardt, F. D. (2007). Palaeodune morphology associated with the Gumare fault of the Okavango graben in the Botswana/Namibia borderland: A new model of tectonic influence. South African Journal of Geology, 110(4), 535–542. https://doi.org/10.2113/gssajg.110.4.535
    [Google Scholar]
  112. McFarlane, M. J., Eckardt, F. D., Ringrose, S., Coetzee, S. H., & Kuhn, J. R. (2005). Degradation of linear dunes in Northwest Ngamiland, Botswana and the implications for luminescence dating of periods of aridity. Quaternary International, 135(1), 83–90. https://doi.org/10.1016/j.quaint.2004.10.025
    [Google Scholar]
  113. McFarlane, M. J., & Segadika, P. (2001). Archaeological evidence for the reassessment of the ages of the Makgadikgadi paleolakes. Botswana Notes & Records, 33(1), 83–90.
    [Google Scholar]
  114. McKenzie, D. M., & Priestley, K. (2016). Speculations on the formation of cratons and cratonic basins. Earth and Planetary Science Letters, 435, 94–104. https://doi.org/10.1016/j.epsl.2015.12.010
    [Google Scholar]
  115. McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers‐Geological Society of America, 21.
    [Google Scholar]
  116. Meier, P., Kalscheuer, T., Podgorski, J. E., Kgotlhang, L., Green, A. G., Greenhalgh, S., … Mikkelsen, P. (2014). Hydrogeophysical investigations in the western and north‐central Okavango Delta (Botswana) based on helicopter and ground‐based transient electromagnetic data and electrical resistance tomography. Geophysics, 79(5), B201–B211. https://doi.org/10.1190/geo2014‐0001.1
    [Google Scholar]
  117. Miller, R. M. (2014). Evidence for the evolution of the Kalahari dunes from the Auob River, southeastern Namibia. Transactions of the Royal Society of South Africa, 69(3), 195–204. https://doi.org/10.1080/0035919X.2014.955555
    [Google Scholar]
  118. Miller, R. M., Pickford, M., & Senut, B. (2010). The geology, palaeontology and evolution of the Etosha Pan, Namibia: Implications for terminal Kalahari deposition. South African Journal of Geology, 113(3), 307–334. https://doi.org/10.2113/gssajg.113.3.307
    [Google Scholar]
  119. Milner, S. C., Duncan, A. R., Whittingham, A. M., & Ewart, A. (1995). Trans‐Atlantic correlation of eruptive sequences and individual silicic volcanic units within the Paraná‐Etendeka igneous province. Journal of Volcanology and Geothermal Research, 69(3–4), 137–157. https://doi.org/10.1016/0377‐0273(95)00040‐2
    [Google Scholar]
  120. Modie, B. N. (1996). Depositional environments of the Meso‐to Neoproterozoic Ghanzi‐Chobe belt, northwest Botswana. Journal of African Earth Sciences, 22(3), 255–268. https://doi.org/10.1016/0899‐5362(96)00014‐0
    [Google Scholar]
  121. Modisi, M. P. (2000). Fault system at the southeastern boundary of the Okavango Rift, Botswana. Journal of African Earth Sciences, 30(3), 569–578. https://doi.org/10.1016/S0899‐5362(00)00039‐7
    [Google Scholar]
  122. Modisi, M. P., Atekwana, E. A., Kampunzu, A. B., & Ngwisanyi, T. H. (2000). Rift kinematics during the incipient stages of continental extension: Evidence from the nascent Okavango rift basin, northwest Botswana. Geology, 28(10), 939–942.
    [Google Scholar]
  123. Moore, A. E. (1999). A reappraisal of epeirogenic flexure axes in southern Africa. South African Journal of Geology, 102(4), 363–376.
    [Google Scholar]
  124. Moore, A., Blenkinsop, T., & Cotterill, F. (2009). Southern African topography and erosion history: Plumes or plate tectonics?Terra Nova, 21(4), 310–315. https://doi.org/10.1111/j.1365‐3121.2009.00887.x
    [Google Scholar]
  125. Moore, A. E., Cotterill, F. P. D., & Eckardt, F. D. (2012). The evolution and ages of Makgadikgadi palaeo‐lakes: Consilient evidence from Kalahari drainage evolution south‐central Africa. South African Journal of Geology, 115(3), 385–413. https://doi.org/10.2113/gssajg.115.3.385
    [Google Scholar]
  126. Moore, A. E., & Dingle, R. V. (1998). Evidence for fluvial sediment transport of Kalahari sands in central Botswana. South African Journal of Geology, 101(2), 143–153.
    [Google Scholar]
  127. Moore, A. E., & Larkin, P. A. (2001). Drainage evolution in south‐central Africa since the breakup of Gondwana. South African Journal of Geology, 104(1), 47–68. https://doi.org/10.2113/104.1.47
    [Google Scholar]
  128. Moorkamp, M., Fishwick, S., Walker, R. J., Jones, A. G., & Mt, C. (2019). Geophysical evidence for crustal and mantle weak zones controlling intra‐plate seismicity – the 2017 Botswana earthquake sequence. Earth and Planetary Science Letters, 506, 175–183. https://doi.org/10.1016/j.epsl.2018.10.048
    [Google Scholar]
  129. Napier, T. J., Hendy, I. L., Fahnestock, M. F., & Bryce, J. G. (2020). Provenance of detrital sediments in Santa Barbara Basin, California, USA: Changes in source contributions between the Last Glacial Maximum and Holocene. GAS Bulletin, 132(1–2), 65–84. https://doi.org/10.1130/B32035.1
    [Google Scholar]
  130. NASA JPL
    NASA JPL (2013). NASA Shuttle Radar Topography Mission Global 30 arc second. NASA EOSDIS Land Processes DAAC. Retrieved from 10.5067/MEaSUREs/SRTM/SRTMGL30.002
  131. Nash, D. J., & Eckardt, F. D. (2016). Drainage development, neotectonics and base‐level change in the Kalahari Desert, southern Africa. South African Geographical Journal, 98(2), 308–320. https://doi.org/10.1080/03736245.2015.1028987
    [Google Scholar]
  132. Padoan, M., Garzanti, E., Harlavan, Y., & Villa, I. M. (2011). Tracing nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochimica Et Cosmochimica Acta, 75(12), 3627–3644. https://doi.org/10.1016/j.gca.2011.03.042
    [Google Scholar]
  133. Palchan, D., Stein, M., Almogi‐Labin, A., Erel, Y., & Goldstein, S. L. (2013). Dust transport and synoptic conditions over the Sahara‐Arabia deserts during the MIS6/5 and 2/1 transitions from grain‐size, chemical and isotopic properties of Red Sea cores. Earth and Planetary Science Letters, 382, 125–139. https://doi.org/10.1016/j.epsl.2013.09.013
    [Google Scholar]
  134. Partridge, T. C. (1993). The evidence for Cainozoic aridification in southern Africa. Quaternary International, 17, 105–110. https://doi.org/10.1016/1040‐6182(93)90087‐V
    [Google Scholar]
  135. Partridge, T. C. (1998). Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in southern Africa. South African Journal of Geology, 101(3), 167–184.
    [Google Scholar]
  136. Partridge, T. C., & Maud, R. R. (1987). Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology, 90(2), 179–208.
    [Google Scholar]
  137. Pastier, A., Dauteuil, O., Murray‐hudson, M., & Moreau, F. (2017). Tectonophysics Is the Okavango Delta the terminus of the East African Rift System ? Towards a new geodynamic model : Geodetic study and geophysical review. Tectonophysics, 712–713, 469–481.
    [Google Scholar]
  138. Pattan, J. N., Pearce, N. J. G., & Mislankar, P. G. (2005). Constraints in using Cerium‐anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin. Chemical Geology, 221(3–4), 260–278. https://doi.org/10.1016/j.chemgeo.2005.06.009
    [Google Scholar]
  139. Podgorski, J. E., Green, A. G., Kgotlhang, L., Kinzelbach, W. K., Kalscheuer, T., Auken, E., & Ngwisanyi, T. (2013). Paleo‐megalake and paleo‐megafan in southern Africa. Geology, 41(11), 1155–1158. https://doi.org/10.1130/G34735.1
    [Google Scholar]
  140. Quigley, M., Sandiford, M., Fifield, L. K., & Alimanovic, A. (2007). Landscape responses to intraplate tectonism: Quantitative constraints from 10Be nuclide abundances. Earth and Planetary Science Letters, 261(1–2), 120–133. https://doi.org/10.1016/j.epsl.2007.06.020
    [Google Scholar]
  141. Rainaud, C., Master, S., Armstrong, R. A., & Robb, L. J. (2005). Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications. Journal of African Earth Sciences, 42(1–5), 1–31. https://doi.org/10.1016/j.jafrearsci.2005.08.006
    [Google Scholar]
  142. Ramokate, L. V., Mapeo, R. M. M., Corfu, F., & Kampunzu, A. B. (2000). Proterozoic geology and regional correlation of the Ghanzi‐Makunda area, western Botswana. Journal of African Earth Sciences, 30(3), 453–466. https://doi.org/10.1016/S0899‐5362(00)00031‐2
    [Google Scholar]
  143. Reeves, C. V., & Hutchins, D. G. (1982). A progress report on the geophysical exploration of the Kalahari in Botswana. Geoexploration, 20(3–4), 209–224. https://doi.org/10.1016/0016‐7142(82)90022‐9
    [Google Scholar]
  144. Richards, F. D., Hoggard, M. J., & White, N. J. (2016). Cenozoic epeirogeny of the Indian peninsula. Geochemistry, Geophysics, Geosystems, 17(12), 4920–4954. https://doi.org/10.1002/2016GC006545
    [Google Scholar]
  145. Ringrose, S., Huntsman‐Mapila, P., Downey, W., Coetzee, S., Fey, M., Vanderpost, C., … Kolokose, D. (2008). Diagenesis in Okavango fan and adjacent dune deposits with implications for the record of palaeo‐environmental change in Makgadikgadi–Okavango–Zambezi basin, northern Botswana. Geomorphology, 101(4), 544–557. https://doi.org/10.1016/j.geomorph.2008.02.008
    [Google Scholar]
  146. Ringrose, S., Huntsman‐Mapila, P., Kampunzu, A. B., Downey, W., Coetzee, S., Vink, B., … Vanderpost, C. (2005). Sedimentological and geochemical evidence for palaeo‐environmental change in the Makgadikgadi subbasin, in relation to the MOZ rift depression, Botswana. Palaeogeography, Palaeoclimatology, Palaeoecology, 217(3–4), 265–287. https://doi.org/10.1016/j.palaeo.2004.11.024
    [Google Scholar]
  147. Rodrigo‐Gámiz, M., Martínez‐Ruiz, F., Chiaradia, M., Jiménez‐Espejo, F. J., & Ariztegui, D. (2015). Radiogenic isotopes for deciphering terrigenous input provenance in the western Mediterranean. Chemical Geology, 410, 237–250. https://doi.org/10.1016/j.chemgeo.2015.06.004
    [Google Scholar]
  148. Sahagian, D. (1988). EPeirogenic motions of Africa as inferred from Cretaceous shoreline deposits. Tectonics, 7(1), 125–138. https://doi.org/10.1029/TC007i001p00125
    [Google Scholar]
  149. Schlüter, T., (2008). Geological atlas of Africa with notes on stratigraphy, tectonics, economic geology, geohazards and geosites of each country, Springer, Berlin, Heidelberg: Springer Science & Business Media. https://doi.org/10.1007/3‐540‐29145‐8
    [Google Scholar]
  150. Scholz, C. H., Koczynski, T. A., & Hutchins, D. G. (1976). Evidence for incipient rifting in southern Africa. Geophysical Journal International, 44(1), 135–144. https://doi.org/10.1111/j.1365‐246X.1976.tb00278.x
    [Google Scholar]
  151. Shaw, P. A. (1985). Late Quaternary landforms and environmental change in northwest Botswana: The evidence of Lake Ngami and the Mababe Depression. Transactions Institute of British Geographers, NS10, 333–346. https://doi.org/10.2307/622182
    [Google Scholar]
  152. Shaw, P. A., & Thomas, D. S. G. (1988). Lake Caprivi, a late Quaternary link between the Zambezi middle Kalahari drainage systems. Zeitschrift Für Geomorphologie, 32, 329–337.
    [Google Scholar]
  153. Singletary, S. J., Hanson, R. E., Martin, M. W., Crowley, J. L., Bowring, S. A., Key, R. M., … Krol, M. A. (2003). Geochronology of basement rocks in the Kalahari Desert, Botswana, and implications for regional Proterozoic tectonics. Precambrian Research, 121(1–2), 47–71. https://doi.org/10.1016/S0301‐9268(02)00201‐2
    [Google Scholar]
  154. Sleep, N. H. (1971). Thermal effects of the formation of Atlantic continental margins by continental break up. Geophysical Journal of the Royal Astronomical Society, 24(4), 325–350. https://doi.org/10.1111/j.1365‐246X.1971.tb02182.x
    [Google Scholar]
  155. Sloss, L. L., & Speed, R. C. (1974). Relationships of cratonic and continental‐margin tectonic episodes. SEPM Special Publication, 22, 98–119.
    [Google Scholar]
  156. Smith, R. A. (1984). The lithostratigraphy of the Karoo Supergroup in Botswana (26). Geological Survey Department with the authority of Ministry of Mineral Resources and Water Affairs, Republic of Botswana.
  157. Stein, M., Starinsky, A., Katz, A., Goldstein, S. L., Machlus, M., & Schramm, A. (1997). Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica Et Cosmochimica Acta, 61(18), 3975–3992. https://doi.org/10.1016/S0016‐7037(97)00191‐9
    [Google Scholar]
  158. Stuart‐Williams, V. (1992). Overall tectonics, modern basin evolution and groundwater chemistry of the Owambo Basin. Abstracts, Kalahari Symposium, Geological Society of Namibia, Windhoek, 3‐9.
  159. Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., … Kunimaru, T. (2000). JNdi‐1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3–4), 279–281. https://doi.org/10.1016/S0009‐2541(00)00198‐4
    [Google Scholar]
  160. Taylor, S. R., & McLennan, S. M. (1981). The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461), 381–399.
    [Google Scholar]
  161. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (pp. 1–312). Oxford: Blackwell Scientific Publications.
    [Google Scholar]
  162. Thiéblemont, D., Callec, Y., Fernandez‐Alonso, M., & Chène, F. (2018). A geological and isotopic framework of Precambrian terrains in western Central Africa: An introduction. In S.SiegesmundM. A. S.BaseiP.Oyhantçabal & S.Oriolo (eds.), Geology of Southwest Gondwana (pp. 107–132). Cham: Springer. https://doi.org/10.1007/978‐3‐319‐68920‐3_5
    [Google Scholar]
  163. Thomas, D. S., Brook, G., Shaw, P., Bateman, M., Haberyan, K., Appleton, C., …Davies, F. (2003). Late Pleistocene wetting and drying in the NW Kalahari: An integrated study from the Tsodilo Hills, Botswana. Quaternary International, 104(1), 53–67. https://doi.org/10.1016/S1040‐6182(02)00135‐0
    [Google Scholar]
  164. Thomas, D. S., & Shaw, P. A. (1991). The Kalahari Environment (pp. 1–284). Cambridge: Cambridge University Press.
    [Google Scholar]
  165. Vainer, S., Dor, Y. B., & Matmon, A. (2018). Coupling cosmogenic nuclides and luminescence dating into a unified accumulation model of aeolian landforms age and dynamics: The case study of the Kalahari Erg. Quaternary Geochronology, 48, 133–144. https://doi.org/10.1016/j.quageo.2018.08.002
    [Google Scholar]
  166. Vainer, S., Erel, Y., & Matmon, A. (2018). Provenance and depositional environments of Quaternary sediments in the southern Kalahari Basin. Chemical Geology, 476, 352–369. https://doi.org/10.1016/j.chemgeo.2017.11.031
    [Google Scholar]
  167. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  168. Wendorff, M., & Master, S. (2015). Lithological variations of sedimentary succession within a meteorite impact crater: Jwaneng S Structure, Botswana. Geology, Geophysics and Environment, 41(4), 381.
    [Google Scholar]
  169. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source‐area weathering and provenance. Geochimica Et Cosmochimica Acta, 51(9), 2401–2416. https://doi.org/10.1016/0016‐7037(87)90293‐6
    [Google Scholar]
  170. Yu, Y., Liu, K. H., Huang, Z., Zhao, D., Reed, C. A., Moidaki, M., … Gao, S. S. (2017). Mantle structure beneath the incipient Okavango rift zone in southern Africa. Geosphere, 13(1), 102–111. https://doi.org/10.1130/GES01331.1
    [Google Scholar]
  171. Yu, Y., Liu, K. H., Reed, C. A., Moidaki, M., Mickus, K., Atekwana, E. A., & Gao, S. S. (2015). A joint receiver function and gravity study of crustal structure beneath the incipient Okavango Rift. Botswana. Geophysical Research Letters, 42(20), 8398–8405. https://doi.org/10.1002/2015GL065811
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12509
Loading
/content/journals/10.1111/bre.12509
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error