1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

The structural and topographic evolution of orogenic plateaus is an important research topic because of its impact on atmospheric circulation patterns, the amount and distribution of rainfall, and resulting changes in surface processes. The Puna region in the north‐western Argentina (between 13°S and 27°S) is part of the Andean Plateau, which is the world's second largest orogenic plateau. In order to investigate the deformational events responsible for the initial growth of this part of the Andean plateau, we carried out structural and stratigraphic investigations within the present‐day transition zone between the northern Puna and the adjacent Eastern Cordillera to the east. This transition zone is characterized by ubiquitous exposures of continental middle Eocene redbeds of the Casa Grande Formation. Our structural mapping, together with a sedimentological analysis of these units and their relationships with the adjacent mountain ranges, has revealed growth structures and unconformities that are indicative of syntectonic deposition. These findings support the notion that tectonic shortening in this part of the Central Andes was already active during the middle Paleogene, and that early Cenozoic deformation in the region that now constitutes the Puna occurred in a spatially irregular manner. The patterns of Paleogene deformation and uplift along the eastern margin of the present‐day plateau correspond to an approximately north‐south oriented swath of reactivated basement heterogeneities (i.e. zones of mechanical weakness) stemming from regional Paleozoic mountain building that may have led to local concentration of deformation belts.

,

Schematic overview of the distribution and extent of Paleogene proto‐ranges (dark grey) and their present‐day pendants (light grey) in the Central Andes of NW Argentina and surrounding regions. Black and white arrows indicate the vergence of faults with Eocene activity. Documented Paleogene tectono‐sedimentary features (white dots) and Paleogene thermochronological ages (black dots) are shown. Black line shows the western limit of Cretaceous rift activity. Light‐orange filling area indicates the zone in which penetrative Paleozoic deformation dies out towards the east (Mon & Hongn, 1987). The western and eastern borders of this zone contain Lower Paleozoic sequences respectively with intense (west) and little or no (east) Paleozoic deformation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12510
2021-03-15
2024-04-24
Loading full text...

Full text loading...

References

  1. Aceñolaza, F., & Toselli, A. (1973).Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste argentino. 2nd Congreso Latinoamericano de Geología, Abstracts, 2: 755–764. Caracas, Venezuela.
  2. Adams, C. J., Miller, H., Aceñolaza, F. G., Toselli, A. J., & Griffin, W. L. (2011). The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: Detrital zircon U‐Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Research, 19, 71–83. https://doi.org/10.1016/j.gr.2010.05.002
    [Google Scholar]
  3. Adelmann, D. (2001). Känozoische Beckenentwicklung in der südlichen Puna am Beispiel des Salar de Antofalla (NW‐Argentinien). Ph.D. Thesis, Berlin: Freie Universität Berlin, 180 p.
    [Google Scholar]
  4. Allmendinger, R. W., Jordan, T. E., Kay, S. M., & Isacks, B. L. (1997). The evolution of the Altiplano‐Puna Plateau of the Central Andes. Annual Review Earth Planetary Sciences, 25, 139–174. https://doi.org/10.1146/annurev.earth.25.1.139
    [Google Scholar]
  5. Alonso, R., & Fielding, E. (1986).Acerca de un nuevo yacimiento de vertebrados paleógenos en la Puna Argentina (Antofagasta de la Sierra, Catamarca). 3rd Jornadas Argentinas de Paleontología de Vertebrados.Abstracts. Buenos Aires, Argentina.
  6. Anderson, R. B., Long, S. P., Horton, B. K., Thomson, S. N., Calle, A. Z., & Stockli, D. F. (2018). Orogenic wedge evolution of the central Andes, Bolivia (21°S): Implications for Cordilleran cyclicity. Tectonics, 37(10), 3577–3609. https://doi.org/10.1029/2018TC005132
    [Google Scholar]
  7. Andriessen, P., & Reutter, K. (1994). K‐Ar and fission‐track mineral age determination of igneous rocks related to multiple magmatic arc systems along the 23°SL of Chile and NW‐Argentina. In K.‐J.Reutter, E.Scheuber, & P. J.Wigger (Eds.), Tectonics of the Southern Central Andes (pp. 141–153). Berlin Heidelberg: Springer. https://doi.org/10.1007/978‐3‐642‐77353‐2_10
    [Google Scholar]
  8. Aparicio González, P., Pimentel, M. M., Hauser, N., & Moya, M. C. (2014). U‐Pb LA‐ICP‐MS geochronology of detrital zircon grains from low‐grade metasedimentary rocks (Neoproterozoic ‐ Cambrian) of the Mojotoro Range, northwest Argentina. Journal of South American Earth Sciences, 49, 39–50. https://doi.org/10.1016/j.jsames.2013.10.002
    [Google Scholar]
  9. Aramayo, A., Hongn, F., & del Papa, C. (2017). Acortamiento paleógeno en el tramo medio de los Valles Calchaquíes: depositación sintectónica de la Formación Quebrada de los Colorados. Revista De La Asociación Geológica Argentina, 74, 524–536.
    [Google Scholar]
  10. Astini, R., Waisfeld, B., Toro, B., & Benedetto, J. L. (2004). El Paleozoico inferior y medio de la región de Los Colorados, borde occidental de la Cordillera Oriental (provincia de Jujuy). Revista De La Asociación Geológica Argentina, 59, 243–260.
    [Google Scholar]
  11. Bahlburg, H. (1990). The Ordovician basin in the Puna of NW Argentine and N Chile: Geodynamic evolution from back‐arc to foreland basin. Geotektonische Forschungen, 75, 1–77.
    [Google Scholar]
  12. Bahlburg, H., & Berndt, J. (2016). Provenance for zircons U‐Pb age distributions in crustally contaminated granitoids. Sedimentary Geology, 336, 161–170. https://doi.org/10.1016/j.sedgeo.2015.08.006
    [Google Scholar]
  13. Bahlburg, H., & Hervé, F. (1997). Geodynamic evolution and tectonostratgraphic terranes of northwestern Argentina and northern Chile. Geological Society of American Bulletin, 109, 869–884. https://doi.org/10.1130/0016‐7606(1997)109<0869:GEATTO>2.3.CO;2
    [Google Scholar]
  14. Barrabino, E., Seggiaro, R., & Gallardo, E. (2017).Tectónica en el área Los Colorados.Límite occidental de la cordillera Oriental Jujeña. 20th Congreso Geológico Argentino, Actas ST2, 13–15. San Miguel de Tucumán, Argentina.
  15. Boll, A., & Hernández, R. (1986).Interpretación estructural del área de Tres Cruces. Boletín de Informaciones Petroleras, 7, 2–14. Buenos Aires.
  16. Bond, M., & López, G. M. (1995). Los mamíferos de la Formación Casa Grande (Eoceno) de la Provincia de Jujuy, Argentina. Ameghiniana, 32, 301–309.
    [Google Scholar]
  17. Bookhagen, B., & Strecker, M. R. (2008). Orographic barriers, high‐resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 35(6), L06403. https://doi.org/10.1029/2007GL032011
    [Google Scholar]
  18. Cadena, E. A., Anaya, F., & Croft, D. A. (2015). Giant fossil tortoise and freshwater chelid turtle remains from the middle Miocene, Quebrada Honda, Bolivia, Evidence for lower paleoelevations for the southern Altiplano. Journal of South American Earth Sciences, 64, 190–198. https://doi.org/10.1016/j.jsames.2015.10.013
    [Google Scholar]
  19. Canavan, R., Carrapa, B., Clementz, M., Quade, J., DeCelles, P. G., & Schoenbohm, L. (2014). Early Cenozoic uplift of the Puna Plateau, central Andes, based on stable isotope paleoaltimetry of hydrated volcanic glass. Geology, 42, 447–450. https://doi.org/10.1130/G35239.1
    [Google Scholar]
  20. Carrapa, B., Adelmann, D., Hilley, G. E., Mortimer, E., Sobel, E. R., & Strecker, M. R. (2005). Oligocene range uplift and development of plateau morphology in the southern central Andes. Tectonics, 24(4), 1–19. https://doi.org/10.1029/2004TC001762
    [Google Scholar]
  21. Carrapa, B., & DeCelles, P. G. (2008). Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics, 27, TC1015. https://doi.org/10.1029/2007TC002127
    [Google Scholar]
  22. Carrapa, B., & DeCelles, P. G. (2015).Regional exhumation and kinematic history of the central Andes in response to cyclical orogenic processes, in: Geodynamics of a Cordilleran Orogenic System: the Central Andes of Argentina and Northern Chile. Geological Society of America Memoirs, pp. 1–15. https://doi.org/10.1130/2015.1212(11)
  23. Carrapa, B., Reyes‐Bywater, S., Safipour, R., Sobel, E. R., Schoenbohm, L. M., DeCelles, P. G., … Stockli, D. (2014). The effect of inherited paleotopography on exhumation of the Central Andes of NW Argentina. Geological Society of America Bulletin, 126(1–2), 66–77. https://doi.org/10.1130/B30844.1
    [Google Scholar]
  24. Catena, A. M., Hembree, D. I., Saylor, B. Z., Anaya, F., & Croft, D. A. (2017). Paleosol and ichnofossil evidence for significant Neotropical habitat variation during the late middle Miocene (Serravallian). Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 381–398. https://doi.org/10.1016/j.palaeo.2017.09.024
    [Google Scholar]
  25. Coira, B., Davidson, J., Mpodozis, C., & Ramos, V. (1982). Tectonic and magmatic evolution of the Andes of the Northern Argentina and Chile. Earth Science Reviews, 18, 303–332. https://doi.org/10.1016/0012‐8252(82)90042‐3
    [Google Scholar]
  26. Coutand, I., Carrapa, B., Deeken, A., Schmitt, A., Sobel, E., & Strecker, M. (2006). Propagation of orographic barriers along an active range front: Insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco basin, NW Argentina. Basin Research, 18, 1–26. https://doi.org/10.1111/j.1365‐2117.2006.00283.x
    [Google Scholar]
  27. Coutand, I., Cobbold, P. R., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., … López‐Gamundi, O. (2001). Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20, 210–234. https://doi.org/10.1029/2000TC900031
    [Google Scholar]
  28. Croft, D. A., Carlini, A. A., Ciancio, M. R., Brandoni, D., Drew, N. E., Engelman, R. K., & Anaya, F. (2016). New mammal faunal datafrom Cerdas, Bolivia, a middle‐latitude Neotropical site that chronicles the end of the Middle Miocene Climatic Optimum in South America. Journal of Vertebrate Paleontology, 36(5), e1163574. https://doi.org/10.1080/02724634.2016.1163574
    [Google Scholar]
  29. DeCelles, P. G., Carrapa, B., & Gehrels, G. (2007). Detrital zircon U‐Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology, 35, 323–326. https://doi.org/10.1130/G23322A.1
    [Google Scholar]
  30. DeCelles, P. G., Carrapa, B., Horton, B. K., & Gehrels, G. E. (2011). Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics, 30, TC6013. https://doi.org/10.1029/2011TC002948
    [Google Scholar]
  31. Deeken, A., Sobel, E., Coutand, I., Haschke, M., Riller, U., & Strecker, M. (2006). Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics, 25, TC6003. https://doi.org/10.1029/2005TC001894
    [Google Scholar]
  32. Deeken, A., Sobel, E. R., Haschke, M., & Riller, U. (2005).Age of initiation and growth pattern of the Puna plateau, NW‐Argentina, constrained by AFT thermochronology.19th Colloquium on Latin American Geosciences, Abstract Volume Terra Nostra, 5, 39.
  33. del Papa, C., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M., … Pereyra, R. (2013). Middle Eocene‐Oligocene broken‐foreland evolution in the Andean Calchaquí Valley, NW Argentina: Insights from stratigraphic, structural and provenance studies. Basin Research, 25, 574–593. https://doi.org/10.1111/bre.12018
    [Google Scholar]
  34. del Papa, C., & Petrinovic, I. (2017). The development of Miocene extensional and short‐lived basin in the Andean broken foreland: The Conglomerado Los Patos, Northwestern Argentina. Journal of South American Earth Sciences, 73, 191–201. https://doi.org/10.1016/j.jsames.2016.12.008
    [Google Scholar]
  35. Díaz, J., & Malizzia, D. (1983). Estudio geológico y sedimentológico del Terciario Superior del Valle Calchaquí (Dpto. San Carlos; Salta). Boletín Sedimentológico, 2, 8–28.
    [Google Scholar]
  36. Díaz, M. (2015). Estratigrafía y tectónica de la región de Purmamarca, Cordillera Oriental, Jujuy. Master Thesis (unpublished), Salta, Argentina: Universidad Nacional de Salta. 70 p.
    [Google Scholar]
  37. Ege, H., Sobel, E., Scheuber, E., & Jacobshagen, V. (2007). Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission track thermochronology. Tectonics, 26, TC1004. https://doi.org/10.1029/2005TC001869
    [Google Scholar]
  38. Ehlers, T., & Poulsen, C. J. (2009). Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Sciences Letters, 281, 238–248. https://doi.org/10.1016/j.epsl.2009.02.026
    [Google Scholar]
  39. Elger, K., Oncken, O., & Glodny, J. (2005). Plateau‐style accumulation of deformation: Southern Altiplano. Tectonics, 24, TC4020. https://doi.org/10.1029/2004TC001675
    [Google Scholar]
  40. Fernández, J., Bondesio, P., & Pascual, R. (1973). Restos de Lepidosiren paradoxa (Osteichthyes, Dipnoi) de la Formación Lumbrera (Eogeno, Eoceno?) de Jujuy. Consideraciones estratigráficas, paleoecológicas y paleozoogeográficas. Ameghiniana, 10, 152–172.
    [Google Scholar]
  41. García‐López, D. A., & Babot, M. J. (2014). Notoungulate faunas of north‐western Argentina: New findings of early‐diverging forms from the Eocene Geste Formation. Journal of Systematic Palaeontology, 13(7), 557–579. https://doi.org/10.1080/14772019.2014.930527
    [Google Scholar]
  42. Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., Macfadden, B. J., Eiler, J. M., … Mulch, A. (2008). Rise of the Andes. Science, 320, 1304–1307. https://doi.org/10.1126/science.1148615
    [Google Scholar]
  43. Garzione, C. N., McQuarrie, N., Perez, N. D., Ehlers, T. A., Beck, S. L., Kar, N., … Horton, B. K. (2017). Tectonic evolution of the Central Andean plateau and implications for the growth of plateaus. Annual Review Earth Planetary Sciences, 45, 529–559. https://doi.org/10.1146/annurev‐earth‐063016‐020612
    [Google Scholar]
  44. Gasparini, Z., De la Fuente, M., & Donadío, O. (1986).Los reptiles del Cenozoico de la Argentina: Implicancia paleoambientales y Evolución biogeográfica. 4th Congreso Argentino de Paleontología y Bioestratigrafía. Abstratcs2, 119–130.
  45. Ghosh, P., Garzione, C. N., & Eiler, J. M. (2006). Rapid Uplift of the Altiplano Revealed Through 13C–18O Bonds in Paleosol Carbonates. Science, 311, 511–515. https://doi.org/10.1126/science.1119365
    [Google Scholar]
  46. Gregory‐Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: A review. Geological Society of American Bulletin, 112, 1091–1105. https://doi.org/10.1130/0016‐7606(2000)112%3C1091:UHOTCA%3E2.0.CO;2
    [Google Scholar]
  47. Grier, M. E., Salfity, J. A., & Allmendinger, R. W. (1991). Andean reactivation of the Cretaceous Salta Rift, northwestern Argentina. Journal of South American Earth Sciences, 4, 351–372. https://doi.org/10.1016/0895‐9811(91)90007‐8
    [Google Scholar]
  48. Haschke, M., Deeken, A., Insel, N., Sobel, E., Grove, M., & Schmitt, A. K. (2005).Growth pattern of the Andean Puna plateau constrained by apatite fission track, apatite (U‐Th)/He, K‐feldspar 40Ar/39Ar, and zircon U‐Pb geochronology. 6th International Symposium of Andean Geodynamics, Extended Abstracts, 360–363, Barcelona, Spain.
  49. Hauser, N., Matteini, M., Omarini, R. H., & Pimentel, M. M. (2011). Combined U‐Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma. Gondwana Research, 19, 100–127. https://doi.org/10.1016/j.gr.2010.04.002
    [Google Scholar]
  50. Hernández, R., Gómez Omil, R., & Boll, A. (2008). Estratigrafía, tectónica y potencial petrolero del rift cretácico en la provincia de Jujuy. In B.Coira, & E.Zappettini (Eds.), Geología y recursos naturales de la provincia de Jujuy. Proceeding 17th Congreso Geológico Argentino, Jujuy (pp. 207–232). Buenos Aires: Asociación Geológica Argentina.
    [Google Scholar]
  51. Herrera, C. M., Powell, J., & del Papa, C. (2012). Un nuevo Dasypodidae (Mammalia, Xenarthra) de la Formación Casa Grande (Eoceno) de la provincia de Jujuy, Argentina. Ameghiniana, 49, 267–271.
    [Google Scholar]
  52. Hongn, F. D. (1994). Estructuras precámbricas y paleozoicas del basamento de la Puna oriental; su aplicación para el análisis regional de la faja eruptiva. Revista De La Asociación Geológica Argentina, 49, 256–268.
    [Google Scholar]
  53. Hongn, F., del Papa, C., Powell, J., Payrola, P., Petrinovic, I., & Mon, R. (2011). Fragmented Paleogene foreland basin in the Valles Calchaquíes, NW of Argentina. In J. A.Salfity & R. A.Marquillas (Eds.), Cenozoic Geology of the Central Andes of Argentina (pp. 189–209). Salta: SCS Publisher.
    [Google Scholar]
  54. Hongn, F., del Papa, C., Powell, J., Petrinovic, I., Mon, R., & Deraco, V. (2007). Middle Eocene deformation and sedimentation in the Puna‐Eastern Cordillera transition (23°‐26° S): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271–274. https://doi.org/10.1130/G23189A.1
    [Google Scholar]
  55. Hongn, F., Mon, R., Acuña, P., Kirschbaum, A., & Menegatti, N. (2006). Deformación intraordovícica en la sierra de Cobres. Asociación Geológica Argentina, Special Publication, Serie D, 10, 84–90.
    [Google Scholar]
  56. Hongn, F., Mon, R., Petrinovic, I., del Papa, C., & Powell, J. (2010). Inversión y reactivación tectónicas Cretácico‐Cenozoicas en el Noroeste Argentino, Influencia de las heterogeneidades del basamento Neoproterozoico‐Paleozoico inferior. Revista De La Asociación Geológica Argentina, 66, 38–53.
    [Google Scholar]
  57. Hongn, F., & Riller, U. (2007). Tectonic evolution of the western margin of Gondwana inferred from syntectonic emplacement of Paleozoic granitoid plutons in Northwest Argentina. Journal of Geology, 115, 163–180. https://doi.org/10.1086/510644
    [Google Scholar]
  58. Horton, B. (2005). Revised deformation history of the Central Andes: Inferences from Cenozoic foredeep and intramontane basins of the Eastern Cordillera, Bolivia. Tectonics, 24(3), 1–18. https://doi.org/10.1029/2003TC001619
    [Google Scholar]
  59. Horton, B. K., Hampton, B. A., & Waanders, G. L. (2001). Paleogene synorogenic sedimentation in the Altiplano Plateau and implications for initial mountain building in the Central Andes. Geological Society of American Bulletin, 113, 1387–1400. https://doi.org/10.1130/0016‐7606(2001)113%3C1387:PSSITA%3E2.0.CO;2
    [Google Scholar]
  60. Insel, N., Grove, M., Haschke, M., Barnes, J. B., Schmitt, A. K., & Strecker, M. R. (2012). Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth. Tectonics, 31, TC6006. https://doi.org/10.1029/2012TC003168
    [Google Scholar]
  61. Isacks, B. (1988). Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. Journal of Geophysical Research, 93, 3211–3231. https://doi.org/10.1029/JB093iB04p03211
    [Google Scholar]
  62. Jiménez, M. J., Peñaloza, G., Mon, R., Gambarruta, R., & Eremchuk, J. (2002).Zona de cizalla de alto ángulo de la Quebrada de Humahuaca (Provincia de Jujuy, Argentina). 15th Congreso Geológico Argentino, Actas CD – ROM, 307. El Calafate, Argentina.
  63. Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A., & Ando, C. J. (1983). Andean tectonics related to geometry of subducted Nazca plate. Geological Society of American Bulletin, 94, 341–361. https://doi.org/10.1130/0016‐7606(1983)94%3C341:ATRTGO%3E2.0.CO;2
    [Google Scholar]
  64. Jordan, T. E., & Mpodozis, C. (2006).Estratigrafía y evolución tectónica de la cuenca Paleógena Arizaro– Pocitos, Puna Occidental (24º–25º). 11th Congreso Geológico Chileno, Actas 2, 57‐60. Antofagasta, Chile.
  65. Jordan, T. E., Nester, P. L., Blanco, N., Hoke, G. D., Dávila, F., & Tomlinson, A. J. (2010). Uplift of the Altiplano‐Puna plateau: A view from the west. Tectonics, 29, TC5007. https://doi.org/10.1029/2010TC002661
    [Google Scholar]
  66. Kay, S., Coira, B., & Viramonte, J. (1994). Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, Central Andes. Journal of Geophysical Research, 99, 323–339.
    [Google Scholar]
  67. Kley, J., & Monaldi, R. (1998). Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation?Geology, 26, 723–726. https://doi.org/10.1130/0091‐7613(1998)026%3C0723:TSACTI%3E2.3.CO;2
    [Google Scholar]
  68. Kley, J., Rosello, E., Monaldi, C. R., & Habighorst, B. (2005). Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399, 155–172. https://doi.org/10.1016/j.tecto.2004.12.020
    [Google Scholar]
  69. Kraemer, B., Adelmann, D., Alten, M., Schnurr, W., Erpenstein, K., Kiefer, E., … Görler, K. (1999). Incorporation of the Paleogene foreland into the Neogene Puna Plateau, the Salar de Antofalla area, NW Argentina. Journal of South American Earth Sciences, 12, 157–182. https://doi.org/10.1016/S0895‐9811(99)00012‐7
    [Google Scholar]
  70. Lamb, S., & Hoke, L. (1997). Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics, 16, 623–649. https://doi.org/10.1029/97TC00495
    [Google Scholar]
  71. Leier, A. L., DeCelles, P. G., & Pelletier, J. D. (2005). Mountains, monsoons, and megafans. Geology, 33, 289–292. https://doi.org/10.1130/G21228.1
    [Google Scholar]
  72. López, G. M. (1997). Paleogene faunal assemblage from Antofagasta de la Sierra (Catamarca province, Argentina). Palaeovertebrata, 26, 61–81.
    [Google Scholar]
  73. López Steinmetz, R. L., Ávila, P., & Dávila, F. M. (2020). Landscape and drainage evolution during the Cenozoic in the Salinas Grandes Basin, Andean Plateau of NW Argentina. Geomorphology, 353, 107032. https://doi.org/10.1016/j.geomorph.2020.107032
    [Google Scholar]
  74. López Steinmetz, R. L., & Galli, C. (2015). Basin development at the eastern border of the Northern Puna and its relationship with the plateau evolution. Journal of South American Earth Sciences, 63, 244–259. https://doi.org/10.1016/j.jsames.2015.07.017
    [Google Scholar]
  75. López Steinmetz, R. L., & Montero‐López, C. (2019). Stratigraphy and sedimentary environments of the Villa María and Peña Colorada Formations (Paleogene), westernmost Argentine Plateau. Latin American Journal of Sedimentology and Basin Analysis, 26(1), 39–56.
    [Google Scholar]
  76. Maksaev, V., & Zentilli, M. (1999). Fission track thermochronology of the Domeyko Cordillera, Northern Chile, implications for Andean tectonics and porphyry copper metallogenesis. Exploration and Mining Geology, 8(1–2), 65–89.
    [Google Scholar]
  77. Marquillas, R., del Papa, C., & Sabino, I. (2005). Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous‐Paleogene), northwestern Argentina. International Journal of Earth Sciences (Geol Rundsch), 94, 94–113. https://doi.org/10.1007/s00531‐004‐0443‐2
    [Google Scholar]
  78. McQuarrie, N., Barnes, J. B., & Ehlers, T. A. (2008). Geometric, kinematic, and erosional history of the Central Andean Plateau, Bolivia (15–17°S). Tectonics, 27, TC3007. https://doi.org/10.1029/2006TC002054
    [Google Scholar]
  79. Méndez, V., Navarini, A., Plaza, D., & Viera, V. (1973).Faja Eruptiva de la Puna Oriental. 5th Congreso Geológico Argentino, Actas 4, 89‐100. Buenos Aires, Argentina.
  80. Miall, A. D. (1996). The geology of fluvial deposits. sedimentary facies, basin analysis, and petroleum geology. Berlin, Germany: Springer‐Verlag. 582 p. ISBN 3 540 59186 9.
    [Google Scholar]
  81. Mon, R., & Hongn, F. (1987). Estructura del Ordovícico de la Puna. Revista De La Asociación Geológica Argentina, 42, 31–38.
    [Google Scholar]
  82. Mon, R., Mena, R., & Amengual, R. (1996). Plegamiento cenozoico del basamento proterozoico de la Cordillera Oriental del norte Argentino. Revista De La Asociación Geológica Argentina, 51, 213–223.
    [Google Scholar]
  83. Mon, R., & Salfity, J. (1995).Tectonic evolution of the Andes of Northern Argentina.In A.Tankard, A.Suárez & H.Welsink (Eds.), Petroleum basins of South America (pp. 269–283). Tulsa: AAPG memoir 62.
    [Google Scholar]
  84. Monaldi, C. R., Albanesi, G., Ortega, G., Salfity, J. A., Gorustovich, S., Voldman, G., & Giuliano, M. E. (2014). Los Colorados: un graben de edad cretácica en la Cordillera Oriental de Jujuy. 19th Congreso Geológico Argentino, Actas, T6‐14, Córdoba, Argentina.
  85. Monaldi, R., Salfity, J., & Kley, J. (2008). Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for fault reactivation. Tectonics, 27, TC1011. https://doi.org/10.1029/2006TC001993
    [Google Scholar]
  86. Monaldi, R., Salfity, J., Vitulli, N., & Ortiz, A. (1993).Estructuras de crecimiento episódico en el subsuelo de la laguna de Guayatayoc, Jujuy, Argentina. 12th Congreso Geológico Argentino, Actas 3: 55‐64. Mendoza.
  87. Montero López, M. C. (2006). Geología y estructuras de las quebradas de Quitacara, provincia de Jujuy. Asociación Geológica Argentina, Special Publication, Serie D, 10, 119–122.
    [Google Scholar]
  88. Montero‐López, C., Aramayo, A., & Ballato, P. (2017).New evidences of the Paleogene and Early Miocene unconformity in the quebrada de Carachi, El Toro basin, Cordillera Oriental (NW Argentina). 20th Congreso Geológico Argentino, Actas ST2: 117‐118.
  89. Montero‐López, C., del Papa, C., Hongn, F., Strecker, M., & Aramayo, A. (2018). Synsedimentary broken‐foreland tectonics during the Paleogene in the Andes of NW Argentine: New evidence from regional to centimeter‐scale deformation features. Basin Research, 30, 142–159. https://doi.org/10.1111/bre.12212
    [Google Scholar]
  90. Montero‐López, C., Hongn, F., & López Steinmetz, R. L. (2017).Geometrías de crecimiento en sedimentos paleógenos en el borde Puna‐Cordillera Oriental en la provincia de Jujuy. 20th Congreso Geológico Argentino, Actas ST2, 115‐116. San Miguel de Tucumán, Argentina.
  91. Moreno, J. A. (1970). Estratigrafía y paleogeografía del Cretácico Superior en la cuenca del Noroeste argentino, con especial mención de los subgrupos Balbuena y Santa Bárbara. Revista De La Asociación Geológica Argentina, 25, 9–44.
    [Google Scholar]
  92. Mortimer, E., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E., Sosa Gómez, J., & Strecker, M. R. (2007). Fragmentation of a foreland basin in response to out‐of‐sequence basement uplifts and structural reactivation: El Cajón‐Campo del Arenal basin, NW Argentina. Geological Society of American Bulletin, 119(5/6), 637–653. https://doi.org/10.1130/B25884.1
    [Google Scholar]
  93. Moya, M. C., Diez Gómez, G. A., & Eveling, E. J. (2017). La Sierra de Mojotoro, una guía en el estudio del paleozoico inferior del Noroeste Argentino. In C.Muruaga & P.Grosse (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA (pp. 166–198). 20th Congreso Geológico Argentino, Relatorio, San Miguel de Tucumán.
    [Google Scholar]
  94. Moya, M. C., & Monteros, J. A. (1999).El Ordovícico Tardío y el Silúrico en el borde occidental de la Cordillera Oriental argentina. 14th Congreso Geológico Argentino, Actas 1, 401‐404. Salta, Argentina.
  95. Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P., & Reich, M. (2005). Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes. Tectonophysics, 399, 125–154. https://doi.org/10.1016/j.tecto.2004.12.019
    [Google Scholar]
  96. Mulch, A., Uba, C. E., Strecker, M. R., Schoenberg, R., & Chamberlain, C. P. (2010). Late Miocene climate variability and surface elevation in the central Andes. Earth Planetary Science Letters, 290, 173–182. https://doi.org/10.1016/j.epsl.2009.12.019
    [Google Scholar]
  97. Oncken, O., Hindle, D., Kley, J., Victor, P., & Schemman, K. (2006). Deformation of the Central Andean upper plate system‐ Facts, fiction and constrains for plateau models. In O.Oncken, G.Chong, G.Franz, P.Giese, H.Götze, V.Ramos, M.Strecker, & P.Wigger (Eds.), The Andes: Active subduction orogeny (pp. 3–27). Berlin‐Heidelberg: Frontiers in Earth Sciences, Springer Verlag.
    [Google Scholar]
  98. Ortiz Jaureguizar, E. (2003). Relaciones de similitud, paleoecología y extinción de los Abderitidae (Marsupialia, Paucituberculata). Coloquios De Paleontología, 1, 475–498.
    [Google Scholar]
  99. Pascual, R., & Ortiz Jaureguizar, E. (1990). Evolving climates and mammal faunas in Cenozoic South America. Journal of Human Evolution, 19, 23–60. https://doi.org/10.1016/0047‐2484(90)90011‐Y
    [Google Scholar]
  100. Pascual, R., Vucetich, M. G., & Fernández, J. (1978). Los primeros mamíferos (Notoungulata, Henricorbornidae) de la Formación Mealla, su importancia filogenética, taxonómica y cronológica. Ameghiniana, 15, 366–390.
    [Google Scholar]
  101. Payrola Bosio, P., Powell, J., del Papa, C., & Hongn, F. (2009). Middle Eocene deformation‐sedimentation in the Luracatao valley: Tracking the beginning of the foreland basin of northwestern Argentina. Journal of South American Earth Sciences, 28, 142–158. https://doi.org/10.1016/j.jsames.2009.06.002
    [Google Scholar]
  102. Payrola, P., del Papa, C., Aramayo, A., Pingel, H., Hongn, F., Sobel, E. R., … Glodny, J. (2020). Episodic out‐of‐sequence deformation promoted by Cenozoic fault reactivation in NW Argentina. Tectonophysics, 776, 228276. https://doi.org/10.1016/j.tecto.2019.228276
    [Google Scholar]
  103. Pearson, D. M., Kapp, P., DeCelles, P. G., Reyners, P. W., Gehlers, G. E., Ducea, M. N., & Pullen, A. (2013). Influence of pre‐Andean crustal structure on cenozoic thrust belt kinematics and shortening magnitude, Northwestern Argentina. Geosphere, 9, 1766–1782. https://doi.org/10.1130/GES00923.1
    [Google Scholar]
  104. Pearson, D. M., Kapp, P., Reiners, P. W., Gehrels, G. E., Ducea, M. N., Pullen, A., … Alonso, R. N. (2012). Major Miocene exhumation by fault‐propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina. Tectonics, 31, TC4023. https://doi.org/10.1029/2011TC003043
    [Google Scholar]
  105. Pingel, H., Alonso, R. N., Altenberger, U., Cottle, J., & Strecker, M. R. (2019). Miocene to Quaternary basin evolution at the southeastern Andean Plateau (Puna) margin (~24° S lat, Northwestern Argentina). Basin Research, 31, 808–826. https://doi.org/10.1111/bre.12346
    [Google Scholar]
  106. Pingel, H., Mulch, A., Alonso, R. N., Cottle, J., Hynek, S. A., Poletti, J., … Strecker, M. R. (2016). Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina). Earth and Planetary Science Letters, 440, 33–42. https://doi.org/10.1016/j.epsl.2016.02.009
    [Google Scholar]
  107. Pingel, H., Strecker, M. R., Alonso, R., & Schmitt, A. K. (2013). Neotectonic basin and landscape evolution in the Eastern Cordillera of NW Argentina, Humahuaca Basin (~24°S). Basin Research, 25, 1–20. https://doi.org/10.1111/bre.12016
    [Google Scholar]
  108. Pingel, H., Strecker, M. R., Mulch, A., Alonso, R. N., Cottle, J., & Rohrmann, A. (2020). Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina). Earth and Planetary Science Letters, 535, 116112. https://doi.org/10.1016/j.epsl.2020.116112
    [Google Scholar]
  109. Quade, J., Dettinger, M. P., Carrapa, B., DeCelles, P., Murray, K. E., Huntington, K. W., … Clementz, M. (2015). The growth of the Central Andes, 22°S‐26°S, InP. G.DeCelles, M. N.Ducea, B.Carrapa, & P. A.Kapp (Eds.), Geodynamics of a Cordilleran Orogenic System, The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir, 212. https://doi.org/10.1130/2015.1212(15)
    [Google Scholar]
  110. Quattrocchio, M., & Volkheimer, W. (2000). Paleoclimatic changes during the Paleocene‐Lower Eocene in the Salta Group Basin, NW Argentina. In P.Smolka, & W.Volkheimer (Eds.), Southern Hemisphere Paleo‐ and Neoclimates (pp. 353–367). Berlin, Heidelberg: Springer.
    [Google Scholar]
  111. Quiñones, S. I., Miño‐Boilini, A. R., Zurita, A. E., Contreras, S. A., Luna, C. A., Candela, A. M. et al (2019). New records of Neogene Xenarthra (Mammalia) from eastern Puna (Argentina): Diversity and biochronology. Journal of Paleontology, 93(6), 1258–1275. https://doi.org/10.1017/jpa.2019.64
    [Google Scholar]
  112. Reiners, P. W., Thomson, S. N., Vernon, A., Willett, S. D., Zattin, M., Einhorn, J., … Cavazza, W. (2015). Low‐temperature thermochronologic trends across the central Andes, 21°S–28°S. GSA Memoirs, 212, 215–249. https://doi.org/10.1130/2015.1212(12)
    [Google Scholar]
  113. Riba, O. (1976). Syntectonic unconformities of the Alto Cardener. Spanish Pyrenees, A genetic interpretation. Sedimentary Geology, 15, 213–233. https://doi.org/10.1016/0037‐0738(76)90017‐8
    [Google Scholar]
  114. Rodríguez‐Fernández, L. R., Heredia, N., Seggiaro, R. E., & González, M. A. (1998). Estructura andina de la cordillera oriental en el área de la quebrada de Humahuaca, provincia de Jujuy, NO de Argentina. Trabajos De Geología, 21, 321–332.
    [Google Scholar]
  115. Rohrmann, A., Sachse, D., Mulch, A., Pingel, H., Tofelde, S., Alonso, R. N., & Strecker, M. R. (2016). Miocene orographic uplift forces rapid hydrological change in the southern central Andes. Scientific Reports, 6, 1–7. https://doi.org/10.1038/srep35678
    [Google Scholar]
  116. Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H., … Montero, C. (2014). Can stable isotopes ride out the storms? The role of convective rainfall for isotope models, records, and paleo‐altimetry in the Central Andes. Earth and Planetary Sciences Letters, 12(407), 187–195. https://doi.org/10.1016/j.epsl.2014.09.021
    [Google Scholar]
  117. Salfity, J., Gorustovich, S., Moya, M. C., & Amengual, R. (1984).Marco tectónico de la sedimentación y efusividad cenozoicas en la Puna Argentina. 9th Congreso Geológico Argentino, Actas 1, 539‐554. Bariloche, Argentina.
  118. Schlagintweit, O. (1943). La posición estratigráfica del yacimiento de hierro de Zapla y la difusión del horizonte glacial de Zapla en la Argentina y en Bolivia. Revista Mineralógica Argentina, 13(4), 115–127.
    [Google Scholar]
  119. Seggiaro, R. E., Becchio, R., Bercheñi, V., & Ramallo, R. (2015).Hoja Geológica 2366‐III Susques, provincias de Jujuy y Salta. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín N°414, 103 p. Buenos Aires.
  120. Sempere, T., Butler, R. F., Richards, D. R., Marshall, L. G., Sharp, W., & Swisher, C. C.III (1997). Stratigraphy and chronology of Upper Cretaceous‐lower Paleogene strata in Bolivia and northwest Argentina. Geological Society of American Bulletin, 109, 709–727. https://doi.org/10.1130/0016‐7606(1997)109%3C0709:SACOUC%3E2.3.CO;2
    [Google Scholar]
  121. Siks, B. C., & Horton, B. K. (2011). Growth and fragmentation of the Andean foreland basin during eastward advance of fold‐thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics, 30, TC6017. https://doi.org/10.1029/2011TC002944
    [Google Scholar]
  122. Sobolev, S., & Babeyko, A. Y. (2005). What drives orogeny in the Andes?Geology, 33(8), 617–620. https://doi.org/10.1130/G21557AR.1
    [Google Scholar]
  123. Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G., Sobel, E., & Trauth, M. (2007). Tectonics and climate of the Southern Central Andes. Annual Review of Earth and Planetary Sciences, 35, 747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158
    [Google Scholar]
  124. Streit, R. L., Burbank, D. W., Strecker, M. R., Alonso, R. N., Cottle, J. M., & Kylander Clark, A. R. C. (2015). Controls on intermontane basin filling, isolation and incision on the margin of the Puna Plateau, NW Argentina (~23°S). Basin Research, 29, 131–155. https://doi.org/10.1111/bre.12141
    [Google Scholar]
  125. Tawackoli, S., Jacobshagen, V., Wemmer, K., & Andriessen, P. A. M. (1996).The Eastern Cordillera of southern Bolivia: a key region to the Andean backarc uplift and deformation history. 3rd International Symposium on Andean Geodynamic, Extended abstracts, 505‐508. Saint‐Malo, France.
  126. Turner, J. C. (1960). Estratigrafía del Nevado de Cachi y sector al oeste. Acta Geológica Lilloana, 3, 191–226.
    [Google Scholar]
  127. Turner, J. C. (1972). Puna. In A.Leanza (Ed.), Primer Simposio de Geología Regional Argentina (pp. 91–116). Córdoba, Spain: Academia Nacional de Ciencias.
    [Google Scholar]
  128. Uba, C. E., Strecker, M. R., & Schmitt, A. K. (2007). Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979–982. https://doi.org/10.1130/G224025A.1
    [Google Scholar]
  129. Vermeesch, P. (2012). On the visualization of detrital age distributions. Chemical Geology, 312–313(C), 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  130. Villagrán, A. (2020). Evolución estructural del Paleozoico al Cenozoico en la quebrada del Toro entre Alfarcito y Chorrillos, Cordillera Oriental, Salta. Doctoral Thesis (unpublished), Salta, Argentina: Universidad Nacional de Salta. 201 p.
    [Google Scholar]
  131. Weissman, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., … Anaya, F. M. L. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219. https://doi.org/10.1016/j.geomorph.2015.09.005
    [Google Scholar]
  132. Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., …Zheng, Y.‐F. (2004). Further characterization of the 91500‐zircon crystal. Geostandards and Geoanalytical Research, 28, 9–39. https://doi.org/10.1111/j.1751‐908X.2004.tb01041.x
    [Google Scholar]
  133. Zurita, A. E., Camacho, M., Miño‐Boilini, A. R., Candela, A. M., Cuadrelli, F., Krmpotic, C. M., & Solís, N. (2017). Xenarthra (Mammalia) from a new late Neogene fossiliferous locality in Northwestern Argentina. Journal of South American Earth Sciences, 80, 229–236. https://doi.org/10.1016/j.jsames.2017.09.023
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12510
Loading
/content/journals/10.1111/bre.12510
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error