1887
Volume 33, Issue 2
  • E-ISSN: 1365-2117

Abstract

[

Temporal evolution of reconstructed 10Be palaeoconcentrations and derived palaeodenudation rates in the Surai Khola. Palaeoconcentrations (left) are corrected for radioactive decay and exposure in the floodplain (see text). Denudation rates were calculated assuming that the sediments of the Surai section were deposited by a Karnali‐type trans‐Himalayan river prior to ca. 3.5 Ma (middle), and by a Rapti‐type midland‐draining river since ca. 3.5 Ma (right).

, Abstract

To better constrain late Neogene denudation of the Himalayas, we analysed in situ 10Be concentrations in 17 Neogene sediment samples of the Surai section (central Nepal) and two modern sediment samples of the Rapti River. We first refined the depositional ages of the Surai section from 36 new paleomagnetic analyses, five 26Al/10Be burial ages, and, based on the Dynamic Time Warping algorithm, 104 automatically calculated likely magnetostratigraphic correlations. We also traced changing sediment sources using major element and Sr‐Nd isotopic data, finding at 4–3 Ma a switch from a large, trans‐Himalayan river to a river draining only the Lesser Himalaya and Siwalik piedmont, increasing the contribution of recycled sediments at that time. 10Be concentrations in Neogene sediments range from (1.00 ± 0.36) to (5.22 ± 0.98) × 103 at g–1 and decrease with stratigraphic age. Based on a flood plain transport model, our refined age model, and assuming a drainage change at 4–3 Ma, we reconstructed 10Be concentrations at the time of deposition. Assuming cosmogenic production rates similar to those of the modern basins, we calculated palaeodenudation rates of 0.9 ± 0.5 to 3.9 ± 2.7 mm a–1 from ca. 6 to 3 Ma in the palaeo‐Karnali basin and 0.6 ± 0.2 to 1.6 ± 0.8 mm a–1 since ca. 3 Ma in the palaeo‐Rapti basin. Given the uncertainties and similar modern values of ~2 mm a–1, the palaeo‐Karnali denudation rates may have been steady at ~1.7 ± 0.3 mm a–1 for the last ca. 6 Ma. A transient acceleration of the denudation in the palaeo‐Rapti basin of ~1.5 mm a–1 since ca. 1.5 Ma was likely due to the reworking of older, 10Be‐depleted Siwalik sediments in the foreland. If true, this steadiness of the denudation rates may suggest that Quaternary glaciations did not largely affect Himalayan denudation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12511
2021-03-15
2021-04-16
Loading full text...

Full text loading...

References

  1. Adams, B. A., Hodges, K. V., Whipple, K. X., Ehlers, T. A., Soest, M. C., & Wartho, J. (2015). Constraints on the tectonic and landscape evolution of the Bhutan Himalaya from thermochronometry. Tectonics, 1329–1347, https://doi.org/10.1002/2015TC003853.Received
    [Google Scholar]
  2. Appel, E., Rosler, W., Corvinus, G., & Munchen, O. (1991). Magnetostratigraphy of the Miocene‐Pleistocene Surai Khola Siwaliks in West Nepal. 191–198.
  3. Auden, J. B. (1935). Traverses in the Himalaya. Records of Geological Survey of India, 69, 123–167.
    [Google Scholar]
  4. Bernet, M., van der Beek, P., Pik, R., Huyghe, P., Mugnier, J.‐L., Labrin, E., & Szulc, A. (2006). Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission‐track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Research, 18, 393–412. https://doi.org/10.1111/j.1365‐2117.2006.00303.x
    [Google Scholar]
  5. Blard, P.‐H., Lupker, M., Rousseau, M., & Tesson, J. (2019). Two MATLAB programs for computing paleo‐elevations and burial ages from paired‐cosmogenic nuclides. MethodsX, 6, 1547–1556. https://doi.org/10.1016/j.mex.2019.05.017
    [Google Scholar]
  6. Blythe, A. E., Burbank, D. W., Carter, A., Schmidt, K., & Putkonen, J. (2007). Plio‐Quaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite [U‐Th]/He analyses. Tectonics, 26, https://doi.org/10.1029/2006tc001990
    [Google Scholar]
  7. Bojar, A. V., Fritz, H., Nicolescu, S., Bregar, M., & Gupta, R. P. (2005). Timing and mechanisms of Central Himalayan exhumation: Discriminating between tectonic and erosion processes. Terra Nova, 17, 427–433. https://doi.org/10.1111/j.1365‐3121.2005.00629.x
    [Google Scholar]
  8. Bollinger, L., Henry, P., & Avouac, J. P. (2006). Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth and Planetary Science Letters, 244, 58–71. https://doi.org/10.1016/j.epsl.2006.01.045
    [Google Scholar]
  9. Braucher, R., Merchel, S., Borgomano, J., & Bourlès, D. L. (2011). Production of cosmogenic radionuclides at great depth: A multi element approach. Earth and Planetary Science Letters, 309(1‐2), 1‐9.
    [Google Scholar]
  10. Braun, J. (2005). Quantitative constraints on the rate of landform thermochronology. Reviews in Mineralogy and Geochemistry, 58, 351–374. https://doi.org/10.2138/rmg.2005.58.13
    [Google Scholar]
  11. Brewer, I. D., Burbank, D. W., & Hodges, K. V. (2003). Modelling detrital cooling‐age populations: Insights from two Himalayan catchments. Basin Research, 15, 305–320.
    [Google Scholar]
  12. Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., & Yiou, F. (1995). Denudation rates determined from the accumulation of in situ produced 10Be in the Luquillo experimental forest, Puerto‐Rico. Earth and Planetary Science Letters, 129, 193–202. https://doi.org/10.1016/0012‐821X(94)00249‐X
    [Google Scholar]
  13. Burbank, D. W., Derry, L. A., & France‐Lanord, C. (1993). Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364, 48–50. https://doi.org/10.1038/364048a0
    [Google Scholar]
  14. Charreau, J., Blard, P. H., Puchol, N., Avouac, J. P., Lallier‐Vergès, E., Bourlès, D., Braucher, R., Gallaud, A., Finkel, R., Jolivet, M., Chen, Y., & Roy, P. (2011). Paleo‐erosion rates in Central Asia since 9Ma: A transient increase at the onset of Quaternary glaciations?Earth and Planetary Science Letters, 304, 85–92. https://doi.org/10.1016/j.epsl.2011.01.018
    [Google Scholar]
  15. Charreau, J., Blard, P.‐H., Zumaque, J., Martin, L. C. P., Delobel, T., & Szafran, L. (2019). Basinga: A cell‐by‐cell GIS toolbox for computing basin average scaling factors, cosmogenic production rates and denudation rates. Earth Surface Processes and Landforms, 44, 2349–2365. https://doi.org/10.1002/esp.4649
    [Google Scholar]
  16. Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S., Augier, R., Sen, S., Avouac, J.‐P., Gallaud, A., Graveleau, F., & Wang, Q. (2009). Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics, 28, 1–22. https://doi.org/10.1029/2007TC002137
    [Google Scholar]
  17. Clift, P. D. (2006). Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 241, 571–580. https://doi.org/10.1016/j.epsl.2005.11.028
    [Google Scholar]
  18. Corvinus, G., & Rimal, L. N. (2001). Biostratigraphy and geology of the Neogene Siwalik Group of the Surai Khola and Rato Khola areas in Nepal. Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 251–279. https://doi.org/10.1016/S0031‐0182(00)00163‐2
    [Google Scholar]
  19. Craw, D., Koons, P. O., Zeitler, P. K., & Kidd, W. S. F. (2005). Fluid evolution and thermal structure in the rapidly exhuming gneiss complex of Namche Barwa – Gyala Peri, eastern Himalayan syntaxis. Journal of Metamorphic Geology, 23, 829–845. https://doi.org/10.1111/j.1525‐1314.2005.00612.x
    [Google Scholar]
  20. DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., & Upreti, B. N. (1998). Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geological Society of America Bulletin, 110(1), 2–21. https://doi.org/10.1130/0016‐7606(1998)110<0002:NFBDEU>2.3.CO;2
    [Google Scholar]
  21. Deniel, C., Vidal, P., Fernandez, A., Le Fort, P., & Peucat, J. J. (1987). Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology, 96, 78–92. https://doi.org/10.1007/BF00375529
    [Google Scholar]
  22. Dhital, M. R., Gajurel, A. P., Pathak, D., Paudel, L. P., & Kizaki, K. (1995). Geology and structure of the Siwaliks and Lesser Himalaya in the Surai Khola‐Bardanda area, Mid Western Nepal. Bulletin of Department of Geology, Tribhuvan University, 4, 1–70.
    [Google Scholar]
  23. Dubille, M., & Lavé, J. (2015). Rapid grain size coarsening at sandstone/conglomerate transition: Similar expression in Himalayan modern rivers and Pliocene molasse deposits. Basin Research, 27, 26–42. https://doi.org/10.1111/bre.12071
    [Google Scholar]
  24. France‐Lanord, C., Derry, L., & Michard, A. (1993). Evolution of the Himalaya since Miocene time: Isotopic and sedimentological evidence from the Bengal Fan. Geological Society, London, Special Publications, 74, 603–621. https://doi.org/10.1144/GSL.SP.1993.074.01.40
    [Google Scholar]
  25. France‐Lanord, C., Evans, M., Hurtrez, J. E., & Riotte, J. (2003). Annual dissolved fluxes from Central Nepal rivers: Budget of chemical erosion in the Himalayas. Comptes Rendus Geoscience, 335, 1131–1140. https://doi.org/10.1016/j.crte.2003.09.014
    [Google Scholar]
  26. Gansser, A. (1964). Geology of the Himalayas. New York: Wiley Interscience. 289.
  27. Garzanti, E., Vezzoli, G., Andò, S., Lavé, J., Attal, M., France‐lanord, C., & Decelles, P. (2007). Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters, 258, 500–515. https://doi.org/10.1016/j.epsl.2007.04.010
    [Google Scholar]
  28. Gautam, P., & Rosler, W. (1999). Depositional chronology and fabric of Siwalik group sediments in Central Nepal from magnetostratigraphy and magnetic anisotropy. Journal of Asian Earth Sciences, 17, 659–682. https://doi.org/10.1016/S1367‐9120(99)00021‐8
    [Google Scholar]
  29. Gébelin, A., Mulch, A., Teyssier, C., Jessup, M. J., Law, R. D., & Brunel, M. (2013). The Miocene elevation of Mount Everest. Geology, 41, 799–802. https://doi.org/10.1130/G34331.1
    [Google Scholar]
  30. Godard, V., Bourles, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., Moulin, A., & Leanni, L. (2014). Dominance of tectonics over climate in Himalayan denudation. Geology, 42, 243–246. https://doi.org/10.1130/G35342.1
    [Google Scholar]
  31. Granger, D. E., & Muzikar, P. F. (2001). Dating sediment burial with in situ‐produced cosmogenic nuclides: Theory, techniques, and limitations. Earth and Planetary Science Letters, 188, 269–281. https://doi.org/10.1016/S0012‐821X(01)00309‐0
    [Google Scholar]
  32. Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25, 11–15. https://doi.org/10.1130/0091‐7613(1997)025<0011:HDPATO>2.3.CO;2
    [Google Scholar]
  33. Harrison, T. M., Copeland, P., Hall, S. A., Quade, J., Scott, B., Ojha, P., & Kidd, W. S. F. (1993). Isotopic preservation of Himalya/Tibetan Uplift, denudation and climatic histories of two molasse deposits. The Journal of Geology, 101, 157–175.
    [Google Scholar]
  34. Hérail, G., & Mascle, G. (1980). Les Siwaliks du Népal central: Structure et géomorphologie d’un piédmont en cours de déformation (The central nepalese siwaliks: Structure and geomorphology of an upheaveling piedmont). Bulletin De L'association De Géographes Français, 471, 259–267.
    [Google Scholar]
  35. Herman, F., Copeland, P., Avouac, J. P., Bollinger, L., Mahéo, G., Fort, P. L., Rai, S., Foster, D., Pêcher, A., Stüwe, K., & Henry, P. (2010). Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. Journal of Geophysical Research, 115, 1–38. https://doi.org/10.1029/2008JB006126
    [Google Scholar]
  36. Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., & Ehlers, T. A. (2013). Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504, 423–426. https://doi.org/10.1038/nature12877
    [Google Scholar]
  37. Huntington, K. W., Blythe, A. E., & Hodges, K. V. (2006). Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth and Planetary Science Letters, 252, 107–118. https://doi.org/10.1016/j.epsl.2006.09.031
    [Google Scholar]
  38. Hurtrez, J.‐E., Lucazeau, F., Lavé, J., & Avouac, J.‐P. (1999). Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal. Journal of Geophysical Research, 104, 12779. https://doi.org/10.1029/1998JB900098
    [Google Scholar]
  39. Huyghe, P., Galy, A., Mugnier, J. M., & France‐Lanord, C. (2001). Propagation of the thrust system and erosion in the Lesser Himalaya: Geochemical and sedimentological evidence. Geology, 29, 1007–1010.
    [Google Scholar]
  40. Lallier, F., Antoine, C., Charreau, J., Caumon, G., & Ruiu, J. (2013). Management of ambiguities in magnetostratigraphic correlation. Earth and Planetary Science Letters, 371–372, 26–36. https://doi.org/10.1016/j.epsl.2013.04.019
    [Google Scholar]
  41. Lang, K. A., Huntington, K. W., Burmester, R., & Housen, B. (2016). Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Geological Society of America Bulletin, 128(9‐10), 1403–1422. https://doi.org/10.1130/B31419.1
    [Google Scholar]
  42. Lauer, J. W., & Willenbring, J. (2010). Steady state reach‐scale theory for radioactive tracer concentration in a simple channel/floodplain system. Journal of Geophysical Research, 115(F4), 1–21. https://doi.org/10.1029/2009JF001480
    [Google Scholar]
  43. Lavé, J., & Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105, 5735–5770. https://doi.org/10.1029/1999JB900292
    [Google Scholar]
  44. Lavé, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research, 106, 26561–26591. https://doi.org/10.1029/2001JB000359
    [Google Scholar]
  45. Lénard, S., Lavé, J., France‐Lanord, C., Aumaître, G., Bourlès, D., & Keddadouche, K. (2020). Steady erosion rates in the Himalayas through late Cenozoic climatic changes. Nature Geoscience, 13, 448–452. https://doi.org/10.1038/s41561‐020‐0585‐2
    [Google Scholar]
  46. Lupker, M., Blard, P.‐H., Lavé, J., France‐Lanord, C., Leanni, L., Puchol, N., Charreau, J., & Bourlès, D. (2012). 10Be‐derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth and Planetary Science Letters, 333–334, 146–156. https://doi.org/10.1016/j.epsl.2012.04.020
    [Google Scholar]
  47. Lupker, M., France‐lanord, C., Galy, V., Gajurel, A. P., & Guilmette, C. (2012). Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochemica Cosmochim. Acta, 84, 410–432. https://doi.org/10.1016/j.gca.2012.02.001
    [Google Scholar]
  48. Lupker, M., Lanord, C. F., Lavé, J., Bouchez, J., Galy, V., Métivier, F., Gaillardet, J., Lartiges, B., & Mugnier, J. L. (2011). A Rouse‐based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research: Earth Surface, 116(F4), 1–223.
    [Google Scholar]
  49. Lyon‐Caen, H., & Molnar, P. (1985). Gravity anomalies, flexure of the Indian plate and the structure, support and evolution of the Himalaya and Ganga basin. Tectonics, 4, 513–538. https://doi.org/10.1029/TC004i006p00513
    [Google Scholar]
  50. Mandal, S. K., Scherler, D., Romer, R. L., Burg, J. P., Guillong, M., & Schleicher, A. M. (2019). Multiproxy isotopic and geochemical analysis of the Siwalik sediments in NW India: Implication for the late Cenozoic tectonic evolution of the Himalaya. Tectonics, 38, 120–143. https://doi.org/10.1029/2018TC005200
    [Google Scholar]
  51. Métivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137, 280–318. https://doi.org/10.1046/j.1365‐246X.1999.00802.x
    [Google Scholar]
  52. Morin, G. (2015). L’érosion et l’altération en Himalaya et leur évolution depuis le tardi‐pleistocène: analyse des processus d’érosion à partir de rivière actuelles et passées au Népal Central, PhD thesis, université de Lorraine.
  53. Nakayama, K., & Ulak, P. D. (1999). Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sedimentary Geology, 125, 205–224. https://doi.org/10.1016/S0037‐0738(99)00012‐3
    [Google Scholar]
  54. Naylor, M., Sinclair, H. D., Bernet, M., van der Beek, P., & Kirstein, L. A. (2015). Bias in detrital fission track grain‐age populations: Implications for reconstructing changing erosion rates. Earth and Planetary Science Letters, 422, 94–104. https://doi.org/10.1016/j.epsl.2015.04.020
    [Google Scholar]
  55. Ogg, J. G. (2012). Geomagnetic polarity time scale. In F.GradsteinJ.OggM.Schmitz & G.Ogg (Eds.), The Geological Time Scale (pp. 1176). Oxford: Elsevier.
    [Google Scholar]
  56. Ojha, T. P., Butler, R. F., Decelles, P. G., & Quade, J. (2009). Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Research, 21(1), 61–90. https://doi.org/10.1111/j.1365‐2117.2008.00374.x
    [Google Scholar]
  57. Oskin, M., Longinotti, N., Peryam, T., Dorsey, R., DeBoer, C., Housen, B. A., & Blisniuk, K. (2017). Steady 10Be‐derived paleoerosion rates across the Plio‐Pleistocene climate transition, Fish Creek‐Vallecito basin, California. Journal of Geophysical Research: Earth Surface, 122, 1653–1677.
    [Google Scholar]
  58. Parrish, R. R., & Hodges, K. (1996). Isotopic constraints on the age and povenance of the Lesser and Greater Himalayan sequence, Nepalese Himalaya. Geological Society of America Bulletin, 108, 904–911.
    [Google Scholar]
  59. Patel, R. C., & Carter, A. (2009). Exhumation history of the higher Himalayan Crystalline along Dhauliganga‐Goriganga river valleys, NW India: New constraints from fission track analysis. Tectonics, 28, 1–14. https://doi.org/10.1029/2008TC002373
    [Google Scholar]
  60. Puchol, N., Charreau, J., Blard, P.‐H., Lavé, J., Dominguez, S., Pik, R., & Saint‐Carlier, D. (2017). Limited impact of Quaternary glaciations on denudation rates in Central Asia. Geological Society of America Bulletin, 129(3‐4), 479–499. https://doi.org/10.1130/B31475.1
    [Google Scholar]
  61. Refsnider, K. A. (2010). Dramatic increase in late Cenozoic alpine erosion rates recoreded by cave sediment in the southern Rocky Moutains. Earth and Planetary Science Letters, 297, 505–511.
    [Google Scholar]
  62. Robinson, D. M., Decelles, P. G., Patchett, P. J., & Garzione, C. N. (2001). The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth and Planetary Science Letters, 192, 507–521. https://doi.org/10.1016/S0012‐821X(01)00451‐4
    [Google Scholar]
  63. Rosler, W., & Appel, E. (1998). Fidelity and time resolution of the magnetostratigraphic record in Siwalik sediments: High‐resolution study of a complete polarity transition and evidence for cryptochrons in a Miocene fluviatile section. Geophysical Journal International, 135, 861–875. https://doi.org/10.1046/j.1365‐246X.1998.00677.x
    [Google Scholar]
  64. Rosler, W., Metzler, W., & Appel, E. (1997). Neogene magnetic polarity stratigraphy of some fluviatile Siwalik sections, Nepal. Geophysical Journal International, 130, 89–111. https://doi.org/10.1111/j.1365‐246X.1997.tb00990.x
    [Google Scholar]
  65. Schaller, M., von Blanckenburg, F., Veldkamp, A., Tebbens, L. A., Hovius, N., & Kubik, P. W. (2002). A 30 000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth and Planetary Science Letters, 204, 307–320.
    [Google Scholar]
  66. Scherler, D., Bookhagen, B., & Strecker, M. R. (2014). Tectonic control on 10Be‐derived erosion rates in the Garhwal Himalaya, India. Journal of Geophysical Research: Earth Surface, 119, 83–105. https://doi.org/10.1002/2013JF002955
    [Google Scholar]
  67. Sinha, R. (2009). The great avulsion of Kosi on 18 August 2008. Current Science, 97, 429–433.
    [Google Scholar]
  68. Sinha, R., Jain, V., Babu, G. P., & Ghosh, S. (2005). Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains. Geomorphology, 70, 207–225. https://doi.org/10.1016/j.geomorph.2005.02.006
    [Google Scholar]
  69. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18(8), 2872–2886. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  70. Szulc, A. G., Najman, Y., Sinclair, H. D., Pringle, M., Bickle, M., & Chapman, H. (2006). Tectonic evolution of the Himalaya constrained by detrital 40Ar/39 Ar, Sm, Nd and petrographic data from the Siwalik foreland basin succession, SW Nepal. Basin Research, 18, 375–391. https://doi.org/10.1111/j.1365‐2117.2006.00307.x
    [Google Scholar]
  71. Thiede, R. C., & Ehlers, T. A. (2013). Large spatial and temporal variations in Himalayan denudation. Earth and Planetary Science Letters, 371–372, 278–293. https://doi.org/10.1016/j.epsl.2013.03.004
    [Google Scholar]
  72. van der Beek, P., Robert, X., Mugnier, J., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene‐Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18, 413–434. https://doi.org/10.1111/j.1365‐2117.2006.00305.x
    [Google Scholar]
  73. Wells, N. A., & Dorr, J. A. (1977). Shifting of the Kosi River, northern India. Geology, 15, 204–207. https://doi.org/10.1130/0091‐7613(1987)15<204:SOTKRN>2.0.CO;2
    [Google Scholar]
  74. Willenbring, J. K., & Jerolmack, D. J. (2016). The null hypothesis: Globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova, 28, 11–18. https://doi.org/10.1111/ter.12185
    [Google Scholar]
  75. Zijderveld, J. D. A. (1967). A.C. demagnetization of rocks: Analysis of results. In D. W.Collinson, K. M.Creer, & S. K.Runcorn (Eds.), Methods in Paleomagnetism (pp. 254–286).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12511
Loading
/content/journals/10.1111/bre.12511
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): cosmogenic 10Be , Himalaya , late Neogene and palaeodenudation rates
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error