1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Newly available two‐dimensional (2D) and limited three‐dimensional (3D) reflection seismic data coupled with publicly available well and core data were used to generate the first comprehensive regional basin evolution model for the deep‐water Neogene to recent southern Gulf of Mexico (GoM). This evolution is presented in the context of contemporaneous onshore tectonic drivers and predecessor basin tectonic history. Dynamic uplift to the west in North America, transpression to the south and tectonically influenced salt tectonics to the east served to collapse the margins of the southern Gulf of Mexico Basin throughout the late Neogene and into the modern. This collapse and salt inflation served to shut off efficient sediment transport into the axial deep basin. Newly developed nearshore extensional accommodation along both the western margin of the basin and salt‐rooted orogenic structures to the south and east appear to have baffled coarser‐caliber sediment input from southern (Mexican) sediment sources into the deep Gulf of Mexico Basin beginning in the late Miocene. This sequence is recorded in the southern GoM basin by a transition from large early–mid Miocene submarine channel belts to late Miocene–recent sediment wave fields and mass transport deposits. Improved resolution of new 2D and 3D subsurface seismic reflection data shows that sediment waves of the southern Gulf of Mexico are supercritical bedforms, long wavelength antidunes and cyclic steps, not contourites. These supercritical bedforms are among the most spatially expansive and morphologically largest documented globally. The location and evolution of these bedforms appears closely tied to the tectonically driven history of margin collapse, salt inflation and the starving of the deep basin of coarse‐grained sediment. Cumulatively, the tectonic drivers that intuitively should have increased sediment flux into the deep southern Gulf of Mexico acted to ‘pinch off’ the basin, starving it of sediment supplied from southern sediment sources.

,

The evolution of southern Gulf of Mexico deep‐marine depositional systems was strongly controlled by onshore dynamic and transpressional tectonics through the Neogene and into the modern. Nearshore extensional accommodation generated by margin collapse and salt inflation served to progressively starve the deep southern Gulf of sediment. This is recorded in the deep‐water basin center as a transition from large Miocene submarine channel systems to late Miocene to modern mass transport deposits and supercritical sediment waves.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12512
2021-03-15
2024-04-25
Loading full text...

Full text loading...

References

  1. Arce, L. E. P. (2017). Neogene current‐modified submarine fans and associated bed forms in mexican deep‐water areas. University of Texas at Austin, Masters Thesis, 105.
  2. Alexander, J., Bridge, J. S., Cheel, R. J., & Leclair, S. F. (2001). Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology, 48, 133–152. https://doi.org/10.1046/j.1365‐3091.2001.00357.x
    [Google Scholar]
  3. Alzaga‐Ruiz, H. M., Lopez, F., Roure, F., & Seranne, M. (2009). Interactions between the Laramide Foreland and the passive margin of the Gulf of Mexico: Tectonics and sedimentation in the Golden Lane area, Veracruz State, Mexico. Marine and Petroleum Geology, 26, 951–973. https://doi.org/10.1016/j.marpetgeo.2008.03.009
    [Google Scholar]
  4. Ambrose, W. A., Wawrzyniec, T. F., Fouad, K., Sakurai, S., Jennette, D. C., Jr, B. L. F., Guevara, E. H., Dunlap, D. B., Talukdar, S. C., Garcia, M. A., Romano, U. H., Vega, J. A., Zamora, E. M., Ruiz, H. R., & Hernandez, R. C. (2005). Neogene tectonic, stratigraphic, and play framework of the southern Laguna Madre‐Tuxpan continental shelf, Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 89, 725–751. https://doi.org/10.1306/01140504081
    [Google Scholar]
  5. Ambrose, W. A., Wawrzyniec, T. F., Fouad, K., Talukdar, S. C., Jones, R. H., Jennette, D. C., Holtz, M. H., Sakurai, S., Dutton, S. P., Dunlap, D. B., Guevara, E. H., Meneses‐Rocha, J., Lugo, J., Aguilera, L., Berlanga, J., Miranda, L., Morales, J. R., Rojas, R., & Solís, H. (2003). Geologic framework of upper Miocene and Pliocene gas plays of the Macuspana Basin, southeastern Mexico. American Association of Petroleum Geologists Bulletin, 87, 1411–1435. https://doi.org/10.1306/04140302022
    [Google Scholar]
  6. Apango, F. (2019). Analysis of Hydrocarbon Under‐Filled Miocene Deep‐Water Reservoirs, Eastern Mexico Offshore. University of Texas at Austin, Masters Thesis, 114.
  7. Atwater, T. (1970). Implications of plate tectonic for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513–3536.
    [Google Scholar]
  8. Behrens, E. W. (1994). Abyssal sediment waves in the Gulf of Mexico. Paleoceanography, 9(6), 1087–1094.
    [Google Scholar]
  9. Bird, D. E., Burke, K., Hall, S. A., & Casey, J. F. (2005). Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution. American Association of Petroleum Geologists Bulletin, 89, 311–328. https://doi.org/10.1306/10280404026
    [Google Scholar]
  10. Buffler, R. T., & Sawyer, D. S. (1985). Distribution of crust and early history, Gulf of Mexico Basin. Gulf Coast Association of Geological Societies Transactions, 35, 333–344.
    [Google Scholar]
  11. Buffler, R. T., Shaub, J., Watkins, J. S., & Worzel, J. L. (1979). Anatomy of the Mexican Ridges southwestern Gulf of Mexico: Small Basin Margins. In Watkins J.S. et al (Eds.), Geological and Geophysical Investigations of Continental Margins. AAPG Memoir, 29, 319–327.
    [Google Scholar]
  12. Cartigny, M. J., Postma, B. G., Van den Berg, J. H., & Martbergen, D. R. (2011). A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling. Marine Geology, 280, 40–56. https://doi.org/10.1016/j.margeo.2010.11.006
    [Google Scholar]
  13. Cartigny, M. J. B., Ventra, D., Postma, G., & van Den Berg, J. H. (2014). Morphodynamics and sedimentary structures of bedforms under supercritical‐flow conditions: New insights from flume experiments. Sedimentology, 61, 712–748. https://doi.org/10.1111/sed.12076
    [Google Scholar]
  14. Cather, M. C., Chapin, C. E., & Kelley, S. A. (2012). Diachronous episodes of Cenozoic erosion in southwestern North America and their relationship to surface uplift, paleoclimate, paleodrainage, and paleoaltimetry. Geosphere, 8, 1177–1206. https://doi.org/10.1130/GES00801.1
    [Google Scholar]
  15. Centeno‐García, E. (2017). Mesozoic tectono‐magmatic evolution of Mexico: An overview. Ore Geology Reviews, 81, 1035–1052. https://doi.org/10.1016/j.oregeorev.2016.10.010
    [Google Scholar]
  16. Cerca, M., Ferrari, L., Lopez‐Martinez, M., Martiny, B., & Iriondo, A. (2007). Late cretaceous shortening and early tertiary shearing in the central sierra Madre del sur, southern Mexico: insights into the evolution of the Caribbean ‐ North American Plate Interaction. Tectonics, 26, 1–34. https://doi.org/10.1029/2006TC001981
    [Google Scholar]
  17. Comisíon Nacional de Hidrocarburos (CNH)
    Comisíon Nacional de Hidrocarburos (CNH) (2019). Prospective Resources of Mexico: Perdido Area, Mexican Ridges and Saline Basin, deepwater Gulf of Mexico. Retrieved from https://rondasmexico.gob.mx/
  18. Covault, J. A., Kostic, S., Paull, C. K., Ryan, H. F., & Fildani, A. (2014). Submarine channel initiation, filling and maintenance from sea‐floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61, 1031–1054. https://doi.org/10.1111/sed.12084
    [Google Scholar]
  19. Covault, J. A., Kostic, S., Paull, C. K., Sylvester, Z., & Fildani, A. (2017). Cyclic steps and related supercritical bedforms: Building blocks of deep‐water depositional systems, western North America. Marine Geology, 393, 4–20. https://doi.org/10.1016/j.margeo.2016.12.009
    [Google Scholar]
  20. Damon, P. E., Shafiqullah, M., & Clark, K. F. (1981). Evoluciόn de los arcos magmaticos en Mexico y su relacion con la metalogenesis. Universidad Nacional Autonoma De Mexico, Instituto De Geología, Revista, 5, 223–238.
    [Google Scholar]
  21. DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478. https://doi.org/10.1111/j.1365‐246X.1990.tb06579.x
    [Google Scholar]
  22. Dickinson, W. R. (2004). Evolution of the North American Cordillera. Annual Review of Earth and Planetary Sciences, 32, 13–45. https://doi.org/10.1146/annurev.earth.32.101802.120257
    [Google Scholar]
  23. Ding, F., Spiess, V., MacDonald, I. R., Brüning, M., Fekete, N., & Bohrmann, G. (2010). Shallow sediment deformation styles in north‐western Campeche Knolls, Gulf of Mexico and their controls on the occurrence of hydrocarbon seepage. Marine and Petroleum Geology, 27, 959–972. https://doi.org/10.1016/j.marpetgeo.2010.01.014
    [Google Scholar]
  24. Duller, R. A., Whittaker, A. C., Swinehart, J. B., Armitage, J. J., Sinclair, H. D., Bair, A., & Allen, P. A. (2012). Abrupt landscape change post – 6 Ma on the central Great Plains, USA. Geology, 40, 871–874. https://doi.org/10.1130/G32919.1
    [Google Scholar]
  25. Ewing, M., Worzel, J. L., Beall, O., Berggren, W. A., Bukry, D., Burk, C. A., Fischer, A. G., & Pessagno, E. A.Jr (1969). Initial reports of the deep sea drilling project v. Deep Sea Drilling Project Reports and Publications, 1, 1–672.
    [Google Scholar]
  26. Ewing, T. (1990). Tectonic map of Texas. Austin, Texas: Bureau of Economic Geology, University of Texas.
    [Google Scholar]
  27. Fedele, J. J., Hoyal, D., Barnaal, Z., Tulenko, J., & Awalt, S. (2016). Bedforms created by gravity flows, in Budd, D.A., et al., eds., Autogenic Dynamics and Self‐Organization in Sedimentary Systems. Special Publication, 106, 95–121.
    [Google Scholar]
  28. Feng, J., Buffler, R. T., & Kominz, M. A. (1994). Laramide orogenic influence on late Mesozoic‐Cenozoic subsidence history, western deep Gulf of Mexico basin. Geology, 22, 359–362. https://doi.org/10.1130/0091‐7613(1994)022<0359:LOIOLM>2.3.CO;2
    [Google Scholar]
  29. Ferrari, L. (1995). Miocene shearing along the northern boundary of the Jalisco block and the opening of the southern Gulf of California. Geology, 23, 751–754. https://doi.org/10.1130/0091‐7613(1995)023<0751:MSATNB>2.3.CO;2
    [Google Scholar]
  30. Ferrari, L., Lόpez‐Martínez, M., & Rosas‐Elguera, J. (2002). Ignimbrite flare‐up and deformation in the southern Sierra Madre Occidental, western Mexico: Implications for the late subduction history of the Farallon Plate. Tectonics, 21, 1–24. https://doi.org/10.1029/2001TC001302
    [Google Scholar]
  31. Ferrari, L., Morán‐Zenteno, D., & González‐Torres, E. A. (2007). Actualización de la Carta Geológica de México, escala 1:4,000,000. Universidad Nacional Autónoma de México, Instituto de Geografía, Nuevo Atlas Nacional de México.
  32. Ferrari, L., Orozco‐Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans‐Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018
    [Google Scholar]
  33. Fitz‐Díaz, E., Lawton, T. F., Juárez‐Arriaga, E., & Chávez‐Cabello, G. (2018). The Cretaceous‐Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics. Earth‐Science Reviews, 183, 56–84. https://doi.org/10.1016/j.earscirev.2017.03.002
    [Google Scholar]
  34. Fuhrmann, A., Kane, I. A., Clare, M. A., Ferguson, R. A., Schomacker, E., Bonamini, E., & Contreras, F. A. (2020). Hybrid turbidite‐drift channel complexes: An integrated multiscale model. Geology, 48, 562–568. https://doi.org/10.1130/G47179.1
    [Google Scholar]
  35. Galloway, W. E., Ganey‐Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico Basin. American Association of Petroleum Geologists Bulletin, 84, 1743–1774.
    [Google Scholar]
  36. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico. Geosphere, 7, 938–973.
    [Google Scholar]
  37. Gray, G. G., Pottorf, R. J., Yurewicz, D. A., Mahon, K. I., Pevear, D. R., & Chuchla, R. J. (2001). Thermal and chronological record of syn‐ to post‐Laramide burial and exhumation, Sierra Madre Oriental, Mexico. American Association of Petroleum Geologists Memoir, 75, 159–181.
    [Google Scholar]
  38. Garza, R. S. M., van Hinsbergen, D. J. J., Boschman, L. M., Rogers, R. D., & Ganerød, M. (2019). Large‐scale rotations of the Chortis Block (Honduras) at the southern termination of the Laramide flat slab. Tectonophysics, 760, 36–57. https://doi.org/10.1016/j.tecto.2017.11.026
    [Google Scholar]
  39. Gόmez‐Cabrera, P. T., & Jackson, M. P. A. (2009). Regional Neogene salt tectonics in the Offshore Salina del Istmo Basin, Southeastern Mexico. American Association of Petroleum Geologists, Memoir, 90, 1–28.
    [Google Scholar]
  40. GrayG. G., VillagomezD., PindellJ., Molina‐GarzaR., O'SullivanP., StockliD., FarrellW., BlankD., SchubaJ. (2020). Late Mesozoic and Cenozoic thermotectonic history of eastern, central and southern Mexico as determined through integrated thermochronology, with implications for sediment delivery to the Gulf of Mexico. Geological Society, London, Special Publications, SP504–2019. https://doi.org/10.1144/sp504‐2019‐243.
    [Google Scholar]
  41. Gutiérrez, H. C. G., Catuneanu, O., & Romano, U. H. (2017). Sequence stratigraphy of the Miocene section, southern Gulf of Mexico. Marine and Petroleum Geology, 86, 711–732. https://doi.org/10.1016/j.marpetgeo.2017.06.022
    [Google Scholar]
  42. Hage, S., Cartigny, M. J., Clare, M. A., Sumner, E. J., Vendettuoli, D., Hughes Clarke, J. E. et al (2018). How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels. Geology, 46, 563–566. https://doi.org/10.1130/G40095.1
    [Google Scholar]
  43. Henry, C. D. (1989). Late Cenozoic Basin and Range structure in western Mexico adjacent to the Gulf of California. Geological Society of America Bulletin, 101, 1147–1156. https://doi.org/10.1130/0016‐7606(1989)101<1147:LCBARS>2.3.CO;2
    [Google Scholar]
  44. Henry, C. D., & Aranda‐Gomez, J. J. (1992). The real southern Basin and Range: Mid‐ to late Cenozoic extension in Mexico. Geology, 20, 701–704. https://doi.org/10.1130/0091‐7613(1992)020<0701:TRSBAR>2.3.CO;2
    [Google Scholar]
  45. Hernández, H. S. (2013). Stratigraphic characterization and evolution of a Mid‐Tertiary age deep water system, Holok area, SW Gulf of Mexico. Ph.D. Dissertation, University of Aberdeen, 1‐358.
  46. Hessler, A. M., Covault, J. A., Stockli, D. F., & Fildani, A. (2018). Late Cenozoic cooling favored glacial over tectonic controls on sediment supply to the western Gulf of Mexico. Geology, 46, 995–998. https://doi.org/10.1130/G45528.1
    [Google Scholar]
  47. HudecM. R., DooleyT. P., PeelF. J., SotoJ. I. (2020). Controls on the evolution of passive‐margin salt basins: Structure and evolution of the Salina del Bravo region, northeastern Mexico. GSA Bulletin, 132, 997–1012. https://doi.org/10.1130/b35283.1.
    [Google Scholar]
  48. Hudec, M. R., Norton, I. O., Jackson, M. P. A., & Peel, F. J. (2013). Jurassic evolution of the Gulf of Mexico salt basin. American Association of Petroleum Geologists Bulletin, 97, 1683–1710. https://doi.org/10.1306/04011312073
    [Google Scholar]
  49. JennetteD. C., FouadK., WawrzyniecT., DunlapD., MuñozR., Meneses‐RochaJ. (2003). Slope and basin‐floor reservoirs from the Miocene and Pliocene of the Veracruz Basin, southeastern Mexico. Marine and Petroleum Geology, 20, 587–600. https://doi.org/10.1016/j.marpetgeo.2003.01.001.
    [Google Scholar]
  50. Jones, B. R., Antoine, J. W., & Bryant, W. R. (1967). A hypothesis concerning the origin and development of salt structures in the Gulf of Mexico sedimentary basin. Gulf Coast Association of Geological Societies Transactions, 17, 211–216.
    [Google Scholar]
  51. Jones, J. O., & Freed, R. L. (1996). Structural framework of the northern Gulf of Mexico. Gulf Coast Association of Geological Societies Special Publication, 754 p. https://store.beg.utexas.edu/gcags/1980‐gcags‐507sv‐structural‐framework‐of‐the‐northern‐gulf‐of‐mexico.html.
    [Google Scholar]
  52. Kenning, J. J., & Mann, P. (2020). Control of structural style by large, Paleogene, mass transport deposits in the Mexican Ridges fold‐belt and Salina del Bravo, western Gulf of Mexico. Marine and Petroleum Geology, 115, 104254. https://doi.org/10.1016/j.marpetgeo.2020.104254
    [Google Scholar]
  53. Kostic, S. (2011). Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture. Geosphere, 7, 294–304. https://doi.org/10.1130/GES00601.1
    [Google Scholar]
  54. Kostic, S. (2014). Upper flow regime bedforms on levees and continental slopes: Turbidity current flow dynamics in response to fine‐grained sediment waves. Geosphere, 10, 1094–1110. https://doi.org/10.1130/GES01015.1
    [Google Scholar]
  55. Lang, J., Brandes, C., & Winsemann, J. (2017). Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse‐grained deepwater channel‐levée complexes (Sandino Forearc Basin, southern Central America). Sedimentary Geology, 349, 79–102. https://doi.org/10.1016/j.sedgeo.2017.01.002
    [Google Scholar]
  56. LangJ., WinsemannJ. (2013). Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes. Sedimentary Geology, 296, 36–54. https://doi.org/10.1016/j.sedgeo.2013.08.005.
    [Google Scholar]
  57. Lawton, T. F., Bradford, I. A., Vega, F. J., Gehrels, G. E., & Amato, J. M. (2009). Provenance of Upper Cretaceous‐Paleogene sandstones in the foreland basin system of the Sierra Madre Oriental, northeastern Mexico, and its bearing on fluvial dispersal systems of the Mexican Laramide province. Geological Society of America Bulletin, 121, 820–836. https://doi.org/10.1130/B26450.1
    [Google Scholar]
  58. Lawton, T. F., Pindell, J., Beltran‐Triviño, A., Juárez‐Arriaga, E., Molina‐Garza, R., & Stockli, D. (2015). Late Cretaceous‐Paleogene foreland sediment‐dispersal systems in northern and eastern Mexico: Interpretations from preliminary detrital‐zircon analysis. AAPG Search and Discovery Article 30423, AAPG Annual Convention, Denver, Colorado.
  59. Le RoyC., RanginC., Le PichonX., Thi NgocH. N., AndreaniL., Aranda‐GarciaM. (2008). Neogene crustal shear zone along the western Gulf of Mexico margin and its implications for gravity sliding processes. Evidences from 2D and 3D multichannel seismic data. Bulletin de la Société Géologique de France, 179, 175–193. https://doi.org/10.2113/gssgfbull.179.2.175.
    [Google Scholar]
  60. Marton, G. L., & Buffler, R. T. (1994). Jurassic reconstruction of the Gulf of Mexico Basin. International Geology Review, 36, 545–586. https://doi.org/10.1080/00206819409465475
    [Google Scholar]
  61. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs – Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  62. McMillan, M. E., Angevine, C. L., & Heller, P. L. (2002). Postdepositional tilt of the Miocene‐Pliocene Ogallala Group on the western Great Plains: Evidence of late Cenozoic uplift of the Rocky Mountains. Geology, 30, 63–66. https://doi.org/10.1130/0091‐7613(2002)030<0063:PTOTMP>2.0.CO;2
    [Google Scholar]
  63. Mitra, S., Figeuroa, G., Garcia, J., & Alvarado, A. (2005). Three‐dimensional structural model of the Cantarell and Sihil structures, Campeche Bay, Mexico. American Association of Petroleum Geologists Bulletin, 89, 1–26. https://doi.org/10.1306/08310403108
    [Google Scholar]
  64. Mitrovica, J. X., Beaumont, C., & Jarvis, G. T. (1989). Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8, 1079–1094. https://doi.org/10.1029/TC008i005p01079
    [Google Scholar]
  65. MorleyC. K., KingR., HillisR., TingayM., BackeG. (2011). Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review. Earth‐Science Reviews, 104, 41–91. https://doi.org/10.1016/j.earscirev.2010.09.010.
    [Google Scholar]
  66. Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. R., Quéré, S., Simmons, N. A., & Grand, S. P. (2008). Dynamic topography and long‐term sea‐level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271, 101–108. https://doi.org/10.1016/j.epsl.2008.03.056
    [Google Scholar]
  67. O’Reilly, C., Birch‐Hawkins, A., Dirkx, R., Winter, F., & Cooke, R. (2017). Seismic facies analysis of the western Gulf of Mexico and implications for play types. Gulf Coast Association of Geological Societies Transactions, 67, 471–475.
    [Google Scholar]
  68. Ortega‐Gutiérrez, F., Elías‐Herrera, M., Morán‐Zenteno, D. J., Solari, L., Luna‐González, L., & Schaaf, P. (2014). A review of batholiths and other plutonic intrusions of Mexico. Gondwana Research, 26, 834–868. https://doi.org/10.1016/j.gr.2014.05.002
    [Google Scholar]
  69. Ortuño, A. S., Soriano, E. M., Romero, C. M., Rosales, J. R., Bahena, E. R., Hernandez, S. G., & Cardenas, A. (2009). Two‐dimensional and three‐dimensional numerical simulation of petroleum systems approaching the deep‐water Gulf of Mexico (Kayab Area, Campeche Sound, Mexico): Definition of thermally mature and prospective areas. American Association of Petroleum Geologists, Memoir, 90, 117–136.
    [Google Scholar]
  70. Padilla y Sánchez, R. J., DomínguezT., LópezA., MotaN., FuentesM., RosiqueN. F., GermánC.(2013). Tectonic Map of Mexico: AAPG Datapages. Retrieved from http://www.datapages.com/AssociatedWebsites/GISOpenFiles/TectonicMapMexico.aspx
  71. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geological Society, London, Special Publications, 328(1), 1–55. https://doi.org/10.1144/SP328.1
    [Google Scholar]
  72. Pindell, J., & Miranda, E. (2011). Linked Kinematic Histories of the Macuspana, Akal‐Reforma, Comalcalco, and Deepwater Campeche Basin Tectonic Elements, Southern Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 61, 353–361.
    [Google Scholar]
  73. Postma, G., & Cartigny, M. J. B. (2014). Supercritical turbidity currents and their deposits – A synthesis. Geology, 42, 987–990.
    [Google Scholar]
  74. Rebesco, M., Hernandez‐Molina, F. J., Van Rooji, D., & Wahlin, A. (2014). Contourites and associated sediments controlled by Deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  75. Rodriguez, A. B. (2011). Regional Structure, Stratigraphy, and Hydrocarbon Potential of the Mexican Sector of the Gulf of Mexico. The University of Texas at Austin, Master’s Thesis, 194 p.
  76. Roure, F., Alzaga‐Ruiz, H., Callot, J. –P., Ferket, H., Granjeon, D., Gonzalez‐Mercado, G. E., Guilhaumou, N., Lopez, M., Mougin, P., Ortuno‐Arzate, S., & Séranne, M. (2009). Long lasting interactions between tectonic loading, unroofing, post‐rift thermal subsidence and sedimentary transfers along the western margin of the Gulf of Mexico: Some insights from integrated quantitative studies. Tectonophysics, 475(1), 169–189. https://doi.org/10.1016/j.tecto.2009.04.012
    [Google Scholar]
  77. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven Fold Belts on Passive Margins. K. R.McClayThrust Tectonics and Hydrocarbon Systems, 82, 157–182. American Association of Petroleum Geologists Special Volume. https://pubs.geoscienceworld.org/books/book/1289/chapter/107126175/Gravity‐driven‐Fold‐Belts‐on‐Passive‐Margins.
    [Google Scholar]
  78. Salomon‐Mora, L. E., Aranda‐Garcia, M., & Roman‐Ramos, J. R. (2009). Contractional growth faulting in the Mexican Ridges, Gulf of Mexico. American Association of Petroleum Geologists, Memoir, 90, 93–116.
    [Google Scholar]
  79. Silva‐Romo, G., Mendoza‐Rosales, C. C., Campos‐Madrigal, E., Hernández‐Marmolejo, Y. B., de la Rosa‐Mora, O. A., de la Torre‐González, A. I., Bonifacio‐Serralde, C., López‐García, N., & Nápoles‐Valenzuela, J. I. (2018). Timing of the Cenozoic basins of Southern Mexico and its relationship with the Pacific truncation process: Subduction erosion or detachment of the Chortís block. Journal of South American Earth Sciences, 83, 178–194. https://doi.org/10.1016/j.jsames.2018.01.007
    [Google Scholar]
  80. Snedden, J. W., Decker, J., Arce, E., & Bate, D. (2017). Diversity of Large‐scale, deepwater bed forms in Mexico offshore areas: Neogene to Modern. AAPG Annual Meeting Abstract for Houston, April 2017 (abstract).
  81. Snedden, J. W., & Galloway, W. E. (2019). The Gulf of Mexico Sedimentary Basin: Depositional Evolution and Practical Applications. Cambridge, United Kingdom: Cambridge University Press; 344 p.
    [Google Scholar]
  82. Snedden, J. W., Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. E. (2012). Eastward Shift of Deepwater Fan Axes during the Miocene in the Gulf of Mexico: Possible Causes and Models. Gulf Coast Association of Geological Societies Journal, 1, 131–144.
    [Google Scholar]
  83. Snyder, F., & Ysaccis, R. (2018). New offshore exploration opportunities within the Salina del Istmo Basin, Mexico. AAPG Search and Discovery Article 90323.
  84. Stephenson, S. N., Roberts, G. G., Hoggard, M. J., & Whittaker, A. C. (2014). A Cenozoic uplift history of Mexico and its surroundings from longitudinal river profiles. Geochemistry, Geophysics, Geosystems, 15, 4734–4758. https://doi.org/10.1002/2014GC005425
    [Google Scholar]
  85. Stern, R. J., & Dickinson, W. R. (2010). The Gulf of Mexico is a Jurassic backarc basin. Geoshpere, 6, 739–754. https://doi.org/10.1130/GES00585.1
    [Google Scholar]
  86. Symons, W. O., Sumner, E. J., Talling, P. J., Cartigny, M. J. B., & Clare, M. A. (2016). Large‐scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Marine Geology, 371, 130–148. https://doi.org/10.1016/j.margeo.2015.11.009
    [Google Scholar]
  87. van Wijk, J., Koning, D., Axen, G., Coblentz, D., Gragg, E., & Sion, B. (2018). Tectonic subsidence, geoid analysis, and the Miocene‐Pliocene unconformity in the Rio Grande rift, southwestern United States: Implications for mantle upwelling as a driving force for rift opening. Geosphere, 14, 684–709. https://doi.org/10.1130/GES01522.1
    [Google Scholar]
  88. West, L. M., Perillo, M. M., Olariu, C., & Steel, R. J. (2019). Multi‐event organization of deepwater sediments into bedforms: Long‐lived, large‐scale antidunes preserved in deepwater slopes. Geology, 47, 391–394. https://doi.org/10.1130/G45825.1
    [Google Scholar]
  89. Winter, R. R. (2018). Course‐grained deep water, slope & basin‐floor systems: Influence of tectonic processes om internal and external architecture. University of Texas at Austin, PhD Thesis, 1–149.
  90. Witt, C., Brichau, S., & Carter, A. (2012). New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry. Tectonics, 31, 1–15. https://doi.org/10.1029/2012TC003141
    [Google Scholar]
  91. Worzel, J. L., Bryant, W., Beall, A. O. R.Jr, Capo, R., Dickinson, K., Foreman, H. P., Laury, R., McNeely, B. W., & Smith, L. A. (1973). Initial reports of the deep sea drilling project v. 10. Deep Sea Drilling Project Reports and Publications, 1–748.
  92. Wynn, R. B., & Stow, D. A. V. (2002). Classification and characterisation of deep‐water sediment waves. Marine Geology, 192, 7–22. https://doi.org/10.1016/S0025‐3227(02)00547‐9
    [Google Scholar]
  93. Yarbuh, I., González‐Fernández, A., Spelz‐Madero, R. M., Negrete‐Aranda, R., & Contreras, J. (2018). Development of detachment folds in the Mexican Ridges Foldbelt, western Gulf of Mexico Basin. Tectonics, 37, 2013–2028. https://doi.org/10.1029/2017TC004948
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12512
Loading
/content/journals/10.1111/bre.12512
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error