1887
Volume 33, Issue 2
  • E-ISSN: 1365-2117
PDF

Abstract

[

A series of five corrections are made to the present level of the Miocene evaporites in the central Red Seat, suggesting that the basin remained under‐filled at the Miocene‐Pliocene boundary (i, ii).

, Abstract

Reconstructing the original depositional level of the Mesozoic and older c‘salt giants’ can reveal if their basins became filled to global sea level, but is complicated by dissolution, diapirism and because the time elapsed is so great. This is less of a problem in the Red Sea, a young rift basin that is transitioning to an ocean basin and where the evaporites away from coastal fringes are less affected by diapirism. In this study, we explore vertical movements of the evaporite surface of the central Red Sea imaged with deep seismic profiling, for the period of time after most evaporite deposition ended at 5.3 Ma (the Miocene‐Pliocene boundary). This boundary is readily mapped across the basin as a prominent reflection in seismic data correlated with stratigraphy at three DSDP sites. We quantify changes in the average elevation of the evaporite surface due to (a) thermal lithospheric subsidence, (b) isostatic loading by Plio‐Pleistocene sediments and water, (c) deflation needed to balance the volume of evaporites overflowing oceanic crust of 5.3 Ma age, (d) loss of halite by dissolution and (e) dynamic topography. Our best estimate of the evaporite level (−132 m air‐loaded or −192 m water‐loaded) lies below the range of estimated global sea level towards the end of the Miocene, suggesting that the basin remained under‐filled. If geological interpretations of shallow water conditions existing at the end of the Miocene (Zeit Formation) are correct, this implies that the water level of the Red Sea declined and was unstable. These calculations illustrate how spreading of evaporites can enhance thermal subsidence to cause rapid development of accommodation space above major evaporite bodies, which in the Red Sea case has remained largely unfilled.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12513
2021-03-15
2021-04-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12513.html?itemId=/content/journals/10.1111/bre.12513&mimeType=html&fmt=ahah

References

  1. Afifi, A. M., Tapponnier, P., & Raterman, N. S. (2014).The Messinian Unconformity in the Red Sea: Evidence for Widespread Dessication? AAPG Search and Discovery Article #90188, 11th Middle East Geosciences Conference and Exhibition, 10‐12 March 2014, Manama, Bahrain.
  2. Al‐Damegh, K., Sandvol, E., & Barazangi, M. (2005). Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions. Earth and Planetary Science Letters, 231, 177–196.
    [Google Scholar]
  3. Altherr, R., Henjes‐Kunst, F., Puchelt, H., & Baumann, A. (1988). Volcanic activity in the Red Sea Axial Trough ‐ Evidence for a large mantle diapir?Tectonophys, 150, 121–133.
    [Google Scholar]
  4. Anschutz, P., Blanc, G., Chatin, F., Geiller, M., & Pierret, M.‐C. (1999). Hydrographic changes during 20 years in the brine‐filled basins of the Red Sea. Deep‐Sea Research Part I: Oceanographic Research Papers, 46, 1779–1792.
    [Google Scholar]
  5. Arvidson, R., Becker, R., Shanabrook, A., Luo, W., Sturchio, N., Sutlan, M., Lotfy, Z., Mahmood, A. M., & el Alfy, Z. (1994). Climatic, eustatic, and tectonic controls on quaternary deposits and landforms, Red Sea coast, Egypt. Journal of Geophysical Research, 99, 12175–12190.
    [Google Scholar]
  6. Augustin, N., Devey, C. W., van der Zwan, F. M., Feldens, P., Tominaga, M., Bantan, R., & Kwasnitschka, T. (2014). The transition from rifting to spreading in the Red Sea. Earth and Planetary Science Letters, 395, 217–230.
    [Google Scholar]
  7. Augustin, N., Mitchell, N. C., van der Zwan, F. M.; SHIPBOARD SCIENTIFIC PARTY . (2019). RV Pelagia Fahrtbericht/Cruise Report 64pe‐445: SALTAX: Geomorphology and Geophysics of Submarine Salt Flows in the Red Sea Rift, Limassol (Cyprus) – Safaga (Egypt), 27.08. – 21.09.2018. GEOMAR Report, N. Ser. 050, GEOMAR Helmholtz‐Zentrum für Ozeanforschung, Kiel, Germany, 46.
  8. Augustin, N., van der Zwan, F. M., Devey, C. W., Ligi, M., Kwasnitschka, T., Feldens, P., Bantan, R., & Basaham, A. S. (2016). Geomorphology of the central Red Sea Rift: Determining spreading processes. Geomorphology, 274, 162–179. https://doi.org/10.1016/j.geomorph.2016.08.028
    [Google Scholar]
  9. Bantan, R. A., Abu‐Zied, R. H., & Haredy, R. A. (2015). Lithology, fauna and environmental conditions of the Late Pleistocene raised reefal limestone of the Jeddah coastal plain, Saudi Arabia. Arabian Journal of Geosciences, 8, 9887–9904.
    [Google Scholar]
  10. Bonatti, E. (1985). Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature, 316, 33–37. https://doi.org/10.1038/316033a0
    [Google Scholar]
  11. Bonatti, E., Colantoni, P., & Della Vedova, B. & Taviani, M. (1984). Geology of the red sea transitional zone (22°N‐25°N). Oceanologica Acta, 7, 385–398.
    [Google Scholar]
  12. Bosworth, W.(2015). Geological evolution of the Red Sea: Historical background, review and synthesis. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences.
    [Google Scholar]
  13. Bosworth, W., & Burke, K. (2005). Evolution of the Red Sea‐Gulf of Aden rift system. In P. J.Post, N. C.Rosen, D. L.Olson, S. L.Palmes, K. T.Lyons, & G. B.Newton (Eds.), Petroleum systems of divergent continental margin basins. 2005 Gulf Coast Section SEPM Foundation 25th Bob F. Perkins Annual Research Conference, Houston, 4–7 Dec, 2005 (pp. 342–372). Houston, Texas, USA.
    [Google Scholar]
  14. Bosworth, W., Huchon, P., & McClay, K. (2005). The red sea and gulf of aden basins. Journal of African Earth Sciences, 43, 334–378.
    [Google Scholar]
  15. Bosworth, W., & Stockli, D. F. (2016). Early magmatism in the greater red sea rift: Timing and significance. Canadian Journal of Earth Sciences, 53, 1158–1176.
    [Google Scholar]
  16. Bosworth, W., & Taviani, M. (1996). Late Quaternary reorientation of stress field and extension direction in the southern Gulf of Suez, Egypt: Evidence from uplifted coral terraces, meoscopic fault arrays, and borehole breakouts. Tectonics, 15, 791–802. https://doi.org/10.1029/95TC03851
    [Google Scholar]
  17. Boudreaux, J. E.(1974). Calcareous nannoplankton ranges, deep sea drilling project leg 23. In R. B.Whitmarsh, D. E.Wesser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 1073–1090). US Govt. Printing Office.
    [Google Scholar]
  18. Bunter, M. A. G. & Abdel Magid, A. E. M. (1989). The Sudanese Red Sea: 1. New developments in stratigraphy and petroleum‐geological evolution. Journal of Petroleum Geology, 12, 145–166.
    [Google Scholar]
  19. Burke, K. (1996). The African Plate. South African Journal of Geology, 56, 339–410.
    [Google Scholar]
  20. Chang, S. J., Merino, M., van der Lee, S., Stein, S., & Stein, C. A. (2011). Mantle flow beneath Arabia offset from the opening Red Sea. Geophysical Research Letters, 38, article L04301, https://doi.org/10.1029/2010GL045852
    [Google Scholar]
  21. Choukri, A., Hakam, O. K., Reyss, J. L., & Plaziat, J. C. (2007). Radiochemical data obtained by spectrometry on unrecrystallized fossil coral samples from the Egyptian shoreline of the north‐western Red Sea. Radiation Measurements, 42, 271–280. https://doi.org/10.1016/j.radmeas.2006.12.005
    [Google Scholar]
  22. Chu, D., & Gordon, R. G. (1998). Current plate motions across the Red Sea. Geophysical Journal International, 135, 313–328.
    [Google Scholar]
  23. Cochran, J. R. (1979). An analysis of isostasy in the world’s oceans 2. Mid‐ocean ridge crests. Journal of Geophysical Research: Solid Earth, 84, 4713–4729.
    [Google Scholar]
  24. Cochran, J. R. (1983). A model for the development of the Red Sea. American Association of Petroleum Geologists Bulletin, 67, 41–69.
    [Google Scholar]
  25. Cochran, J. R. (2005). Northern Red Sea: Nucleation of an oceanic spreading center within a continental rift. Geochemistry, Geophysics, Geosystems, 6, art. Q03006, https://doi.org/10.1029/2004GC000826
    [Google Scholar]
  26. Cochran, J. R., Gaulier, J. M., & le Pichon, X. (1991). Crustal structure and the mechanism of extension in the northern Red Sea: Constraints from gravity anomalies. Tectonics, 10, 1018–1037. https://doi.org/10.1029/91TC00926
    [Google Scholar]
  27. Coleman, R. G. (1974). Geologic background of the Red Sea. In R. B.Whitmarsh, O. E.Weser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 813–819). U.S. Govt. Printing Office.
    [Google Scholar]
  28. Colombo, D., McNeice, G., Raterman, N., Zinger, M., Rovetta, D., & Sandoval Curiel, E. (2014). Exploration beyond seismic: The role of electromagnetics and gravity gradiometry in deep water subsalt plays of the Red Sea. Interpretation, 2, SH33–SH53. https://doi.org/10.1190/INT‐2013‐0149.1
    [Google Scholar]
  29. Contrucci, I., Matias, L., Moulin, M., GéLI, L., Klingelhofer, F., Nouzé, H., Aslanian, D., Olivet, J.‐L., Réhault, J.‐P., & Sibuet, J.‐C. (2004). Deep structure of the West African continental margin (Congo, Zaïre, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 158, 529–553. https://doi.org/10.1111/j.1365‐246X.2004.02303.x
    [Google Scholar]
  30. Cowie, L., Angelo, R. M., Kuznir, N., Manatschal, G., & Horn, B. (2017). Structure of the ocean‐continent transition, location of the continent‐ocean boundary and magmatic type of the northern Angolan margin from integrated quantitative analysis of deep seismic reflection and gravity anomaly data. In Petroleum Geoscience of the West Africa Margin, Geol. Soc. Lond. Spec. Publ. 438 (Ed. by T. Sabato Ceraldi, R. A. Hodgkinson & G. Backe). Geological Society, London, Special Publications, 438(1), 159–176.
    [Google Scholar]
  31. Crosby, A. G., & McKenzie, D. (2009). An analysis of young ocean depth, gravity and global residual topography. Geophysical Journal International, 178, 1198–1219.
    [Google Scholar]
  32. Crossley, R., Watkins, C., Raven, M., Cripps, D., Carnell, A., & Williams, D. (1992). The sedimentary evolution of the Red Sea and Gulf of Aden. Journal of Petroleum Geology, 15, 157–172.
    [Google Scholar]
  33. Dadet, P., Marchesseau, J., Millon, R., Motti, E., & Schürmann, H. M. E. (1970). Mineral occurrences related to stratigraphy and tectonics in tertiary sediments near Umm Lajj, Eastern Red Sea Area, Saudi Arabia. Philosophical Transactions of the Royal Society A, A267, 99–106.
    [Google Scholar]
  34. Davies, D., & Tramontini, C. (1970). The deep structure of the Red Sea. Philosophical Transactions of the Royal Society A, A267, 181–189.
    [Google Scholar]
  35. Davison, I., Bosence, D., Alsop, G. I., & Al‐Aawah, M. H. (1996). Deformation and sedimentation around active Miocene salt diapirs on the Tihama Plain, northwest Yemen. In: Salt Tectonics, Geol. Soc. Spec. Publ. 100 (Ed. by G. I. Alsop, D. J. Blundell & I. Davison). Geological Society, London, Special Publications, 100(1), 23–39.
    [Google Scholar]
  36. Dawood, Y. H., Aref, M. A., Mandurah, M. H., Hakami, A., & Gameil, M. (2013). Isotope geochemistry of the Miocene and Quaternary carbonate rocks in Rabigh Area, Red Sea Coast, Saudi Arabia. Journal of Asian Earth Sciences, 77, 151–162.
    [Google Scholar]
  37. Demets, C., & Merkouriev, S. (2016). High‐resolution estimates of Nubia‐Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden. Geophysical Journal International, 207, 317–332. https://doi.org/10.1093/gji/ggw276
    [Google Scholar]
  38. Drake, C. L., & Girdler, R. W. (1964). A geophysical study of the Red Sea. Geophysical Journal of the Royal Astronomical Society, 8, 473–495.
    [Google Scholar]
  39. Dullo, W.‐C. (1990). Facies, fossil record, and age of Pleistocene reefs from the Red Sea (Saudi Arabia). Facies, 22, 1–45. https://doi.org/10.1007/BF02536943
    [Google Scholar]
  40. Dyment, J., Tapponnier, P., Afifi, A. M., Zinger, M. A., Franken, D., & Muzaiyen, E. (2013). A new seafloor spreading model of the Red Sea: Magnetic anomalies and plate kinematics. American Geophysical Union 2013 Fall Meeting.
    [Google Scholar]
  41. Eagles, G., Gloaguen, R., & Ebinger, C. (2002). Kinematics of the Danakil microplate. Earth and Planetary Science Letters, 203, 607–620.
    [Google Scholar]
  42. Eagles, G., Pérez‐Díaz, L., & Scarselli, N. (2015). Getting over continent ocean boundaries. Earth Science Reviews, 151, 244–265.
    [Google Scholar]
  43. Egloff, F., Rihm, R., Makris, J., Izzeldin, Y. A., Bobsien, M., Meier, K., Junge, P., Noman, T., & Warsi, W. (1991). Contrasting structural styles of the eastern and western margins of the southern Red Sea: The 1988 Sonne experiment. Tectonophys, 198, 329–353. https://doi.org/10.1016/0040‐1951(91)90159‐P
    [Google Scholar]
  44. Ehrhardt, A. & Hübscher, C., (2015). The northern Red Sea in transition from rifting to drifting ‐ Lessons learned from ocean deeps. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin (pp. 99–121). Springer Earth System Sciences.
    [Google Scholar]
  45. el Moursi, M., Hoang, C. T., el Fayoumy, I. F., Hegab, O., & Faure, H. (1994). Pleistocene evolution of the Red Sea coastal plain, Egypt: Evidence from uranium‐series dating of emerged reef terraces. Quaternary Science Reviews, 13, 345–359. https://doi.org/10.1016/0277‐3791(94)90112‐0
    [Google Scholar]
  46. El‐Asmar, H. M. (1997). Quaternary isotope stratigraphy and paleoclimate of coral reef terraces, Gulf of Aqaba, South Sinai, Egypt. Quaternary Science Reviews, 16, 911–924.
    [Google Scholar]
  47. Emery, K. O. (1977).Structure and stratigraphy of divergent continental margins. In H.Yarborough, et al. (Eds.), Geology of continental margins (Vol. 5, pp. B1–B20). Am. Assoc. Petrol. Geol.
    [Google Scholar]
  48. Evans, R. (1978). Origin and significance of evaporites in basins around Atlantic margin. American Association of Petroleum Geologists Bulletin, 62, 223–234.
    [Google Scholar]
  49. Fauquette, S., Suc, J.‐P., Bertini, A., Popescu, S.‐M., Warny, S., Taoufiq, N. B., Villa, M.‐J.‐P., Chikhi, H., Feddi, N., Subally, D., Clauzon, G., & Ferrier, J. (2006). How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 281–301.
    [Google Scholar]
  50. Feldens, P., Schmidt, M., Mücke, I., Augustin, N., Al‐Farawati, R., Orif, M., & Faber, E. (2016). Expelled subsalt fluids form a pockmark field in the eastern Red Sea. Geo‐Marine Letters, 36, 339–352.
    [Google Scholar]
  51. Fournier, M., Chamot‐Rooke, N., Petit, C., Huchon, P., Al‐Kathiri, A., Audin, L., Beslier, M.‐O., D’Acremont, E., Fabbri, O., Fleury, J. M., Khanbari, K., Lepvrier, C., Leroy, S., Maillot, B., & Merkouriev, S. (2010). Arabia‐somalia plate kinematics, evolution of the Aden‐Owen‐Carlsberg triple junction, and opening of the Gulf of Aden. Journal of Geophysical Research, 116. https://doi.org/10.1029/2008JB006257
    [Google Scholar]
  52. Frostick, L., & Reid, I. (1989). Is structure the main control of river drainage and sedimentation in rifts?Journal of African Earth Sciences, 8, 165–182.
    [Google Scholar]
  53. Garcia, S. F. M., Letouzey, J., Rudkiewicz, J.‐L., Filho, A. D., & Lamotte, D. F. (2012). Structural modeling based on sequential restoration of gravitational salt deformation in the Santos basin (Brazil). Marine and Petroleum Geology, 35, 337–353.
    [Google Scholar]
  54. Gargani, J., Moretti, I., & Letouzey, J. (2008). Evaporite accumulation during the Messinian Salinity Crisis: The Suez Rift case. Geophysical Research Letters, 35, art. L02401, https://doi.org/10.1029/2007GL032494
    [Google Scholar]
  55. Gass, I. G., Mallick, D. I. J., & Cox, K. G. (1973). Volcanic Islands of the Red Sea. Journal of the Geological Society of London, 129, 275–310. https://doi.org/10.1144/gsjgs.129.3.0275
    [Google Scholar]
  56. Gaulier, J. M., Lepichon, X., Lyberis, N., Avedik, F., Gely, L., Moretti, I., Deschamps, A., & Hafez, S. (1988). Seismic study of the crustal thickness, northern Red Sea and Gulf of Suez. Tectonophysics, 153, 55–88.
    [Google Scholar]
  57. Girdler, R. W., & Southren, T. C. (1987). Structure and evolution of the northern Red Sea. Nature, 330, 716–721. https://doi.org/10.1038/330716a0
    [Google Scholar]
  58. Girdler, R. W., & Whitmarsh, R. B. (1974). Miocene evaporites in Red Sea cores, their relevance to the problem of the width and age of oceanic crust beneath the Red Sea. In R. B.Whitmarsh, O. E.Weser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 913–921). U.S. Govt. Printing Office.
    [Google Scholar]
  59. Gordon, G., Hansen, B., Scott, J., Hirst, C., Graham, R., Grow, T., Spedding, A., Fairhead, S., Fullarton, L., & Griffin, D. (2010). The hydrocarbon prospectivity of the Egyptian North Red Sea basin. Geological Society, London, Petroleum Geology Conference Series, 7, 783–789. In: Petroleum Geology: From Mature Basins to New Frontiers ‐ Proceedings of the 7th Petroleum Geology Conference (Ed. by B. A. Vining & S. C. Pickering). https://doi.org/10.1144/0070783
    [Google Scholar]
  60. Govers, R. (2009). Choking the mediterranean to dehydration: The Messinian salinity crisis. Geology, 37, 167–170. https://doi.org/10.1130/G25141A.1
    [Google Scholar]
  61. Griffin, D. L. (1999). The late Miocene climate of northeast Africa: Unravelling the signals in the sedimentary succession. Journal of the Geological Society, 156, 817–826.
    [Google Scholar]
  62. Guennoc, R., Pautot, G., & Coutelle, A. (1988). Surficial structures of the northern Red Sea axial valley from 23°N to 28°N: Time and space evolution of the neooceanic structures. Tectonophysics, 153, 1–23.
    [Google Scholar]
  63. Gvirtzman, G., & Friedman, G. M. (1977).Sequence of progressive diagenesis in coral reefs. In S. H.Frost, M. P.Weiss, & J. B.Saunders (Eds.), AAPG special volumes (Sg 4): Reefs and related carbonates‐ecology and sedimentology (pp. 357–380). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  64. Haase, K. M., Mühe, R. & Stoffers, P. (2000). Magmatism during extension of the lithosphere: Geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geology, 166, 225–239. https://doi.org/10.1016/S0009‐2541(99)00221‐1
    [Google Scholar]
  65. Hall, S. A.(1979). A Total Intensity Magnetic Anomaly Map of the Red Sea and Its Interpretation, U.S. Geological Survey Saudi Arabian Project Report 275, U.S. Geological Survey. Jeddah, Saudi Arabia, 260 p.
  66. Hamed, B., Bussert, R., & Dominik, W. (2015). Stratigraphy and evolution of emerged pleistocene reefs at the Red Sea coast of Sudan. Journal of African Earth Sciences, 114, 133–142.
    [Google Scholar]
  67. Hansen, E., Rodgers, A. J., Schwartz, S. Y., & Al‐Amri, A. M. S. (2007). Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth and Planetary Science Letters, 259, 256–265.
    [Google Scholar]
  68. Hansen, E., Schwartz, S. Y., Al‐Amri, A. M. S., & Rodgers, A. J. (2006). Combined plate motion and density‐driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear‐wave splitting and seismic anisotropy. Geology, 34, 869–872. https://doi.org/10.1130/G22713.1
    [Google Scholar]
  69. Heaton, R. C., Jackson, M. P. A., Bamahmoud, M., & Nani, A. S. O. (1995).Superimposed neogene extension, contraction, and salt canopy emplacement in the Yemeni Red Sea. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective. AAPG Memoir 65, 333–351. Am. Assoc. Petrol. Geol.
    [Google Scholar]
  70. Hoang, C. T., Dalongeville, R., & Sanlaville, P. (1996). Stratigraphy, tectonics and palaeoclimatic implications of uranium‐series‐dated coral reefs from the Sudanese coast of the Red Sea. Quaternary International, 31, 47–51.
    [Google Scholar]
  71. Hoang, C. T., & Taviani, M. (1991). Stratigraphic and tectonic implications of uranium‐series‐dated coral reefs from uplifted Red Sea Islands. Quaternary International, 35, 274–373.
    [Google Scholar]
  72. Hudec, M. R., Norton, I. O., Jackson, M. P. A., & Peel, F. J. (2013). Jurassic evolution of the Gulf of Mexico salt basin. American Association of Petroleum Geologists Bulletin, 97, 1683–1710.
    [Google Scholar]
  73. Hughes, G. W. (2014). Micropalaeontology and palaeoenvironments of the Miocene Wadi Waqb carbonate of the northern Saudi Arabian Red Sea. GeoArabia, 19, 59–108.
    [Google Scholar]
  74. Hughes, G. W., Abdine, S., & Girgis, M. H. (1992). Miocene biofacies development and geological history of the Gulf of Suez, Egypt. Marine and Petroleum Geology, 9, 2–28.
    [Google Scholar]
  75. Hughes, G. W., & Beydoun, Z. R. (1992). The Red Sea ‐ Gulf of Aden: Biostratigraphy, lithostratigraphy and palaeoenvironments. Journal of Petroleum Geology, 15, 135–156.
    [Google Scholar]
  76. Hughes, G. W., Varol, O., & Beydoun, Z. R. (1991). Evidence for Middle Oligocene rifting of the Gulf of Aden and for Late Oligocene rifting of the southern Red Sea. Marine and Petroleum Geology, 8, 354–358. https://doi.org/10.1016/0264‐8172(91)90088‐I
    [Google Scholar]
  77. Imbert, P. (2005). The mesozoic opening of the Gulf of Mexico: Part 1, Evidence for oceanic accretion during and after salt deposition. In P. J.Post (Ed.), Transactions of the 25th Annual GCS‐SEPM: Petroleum systems of divergent continental margins (pp. 119–1150). SEPM, OK: Tulsa.
    [Google Scholar]
  78. Izzeldin, A. Y. (1982). On the structure and evolution of the Red Sea, Strasbourg, France: PhD Thesis, Université Louis Pasteur, 163 p.
    [Google Scholar]
  79. Izzeldin, A. Y. (1987). Seismic, gravity and magnetic surveys in the central part of the Red Sea: Their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics, 143, 269–306. https://doi.org/10.1016/0040‐1951(87)90214‐9
    [Google Scholar]
  80. Izzeldin, A. Y. (1989). Transverse structures in the central part of the Red Sea and implications on early stages of oceanic accretion. Geophysical Journal, 96, 117–129.
    [Google Scholar]
  81. Jackson, M. P. A., Cramez, C., & Fonck, J.‐M. (2000). Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: Implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17, 477–498. https://doi.org/10.1016/S0264‐8172(00)00006‐4
    [Google Scholar]
  82. Jado, A. R., & Zötl, J. (1984). Quaternary period in Saudi Arabia. Springer‐Verlag.
    [Google Scholar]
  83. Karner, G. D., & Gamboa, L. A. P. (2007). Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporites. In: Evaporites through Space and Time (Ed. by B. C. Schreiber, S. Lugli & M. Babel). Geological Society, London, Special Publications, 285(1), 15–35.
    [Google Scholar]
  84. Knott, S. T., Bunce, E. T., & Chase, R. L. (1966).Red Sea Seismic Reflection Studies. In: The World Rift System, Geol. Surv. Canada, Paper 66‐14, pp. 78–97.
  85. Kozdroj, W., Kattan, F. H., Kadi, K. A., Al Alfy, Z. S. A., Qweiss, K. A., & Mansour, M. M. (2012). SGS‐EMRA Project for Trans‐Red Sea Correlaton between the Central Eastern Terrane (Egypt) and Midyan Terrane (Saudi Arabia): Saudi Geological Survey Technical Report SGS‐TR‐2011‐5, 62 pages, 65 pls.
  86. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655. https://doi.org/10.1038/23231
    [Google Scholar]
  87. Lambeck, K., & Chappell, J. (2001). Sea level change through the last glacial cycle. Science, 292, 679–686. https://doi.org/10.1126/science.1059549
    [Google Scholar]
  88. Lambeck, K., Purcell, A., Flemming, N. C., Vita‐Finzi, C., Alsharekh, A. M., & Bailey, G. N. (2011). Sea level and shoreline reconstructions for the Red Sea: Isostatic and tectonic considerations and implications for hominin migration out of Africa. Quaternary Science Reviews, 30, 3542–3574. https://doi.org/10.1016/j.quascirev.2011.08.008
    [Google Scholar]
  89. Ligi, M., Bonatti, E., Bortoluzzi, G., Cipriani, A., Cocchi, L.,Caratori Tontini, F., Carminati, E., Ottolini, L., & Schettino, A. (2012). Birth of an ocean in the Red Sea: Initial pangs. Geochemistry, Geophysics, Geosystems, 13, Paper Q08009. https://doi.org/10.1029/2012GC004155
    [Google Scholar]
  90. Ligi, M., Bonatti, E., Bosworth, W., Cai, Y., Cipriani, A., Palmiotto, C., Ronca, S., & Seyler, M. (2018). Birth of an ocean in the Red Sea: Oceanic‐type basaltic melt intrusions precede continental rupture. Gondwana Research, 54, 150–160. https://doi.org/10.1016/j.gr.2017.11.002
    [Google Scholar]
  91. Ligi, M., Bonatti, E., Tontini, F. C., Cipriani, A., Cocchi, L., Schettino, A., Bortoluzzi, G., Ferrante, V., Khalil, S., Mitchell, N. C., & Rasul, N. (2011). Initial burst of oceanic crust accretion in the Red Sea due to edge‐driven mantle convection. Geology, 39, 1019–1022. https://doi.org/10.1130/G32243.1
    [Google Scholar]
  92. Ligi, M., Bosworth, W., & Ronca, S. (2019). Oceanization starts at depth during continental rupturing in the northern Red Sea. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), geological setting, palaeoenvironment and archaeology of the Red Sea (pp. 131–157). Springer Nature Switzerland.
    [Google Scholar]
  93. Makris, J., Henke, C. H., Egloff, F., & Akamaluk, T. (1991). The gravity field of the Red Sea and East Africa. Tectonophysics, 198, 369–381. https://doi.org/10.1016/0040‐1951(91)90161‐K
    [Google Scholar]
  94. Makris, J., Tsironidis, J., & Richter, H. (1991). Heatflow density distribution in the Red Sea. Tectonophysics, 198, 383–393. https://doi.org/10.1016/0040‐1951(91)90162‐L
    [Google Scholar]
  95. Manheim, F. T., Dwight, L., & Belastock, R. A. (1974).Porosity, density, grain density, and related physical properties of sediments from the Red Sea drill cores. In R. B.Whitmarsh, O. E.Weser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 887–907). U.S. Govt. Printing Office.
    [Google Scholar]
  96. Manheim, F. T., Waterman, L. S., Woo, C. C., & Sayles, F. L. (1974). Interstitial water studies on small core samples, leg 23 (Red Sea). In R. B.Whitmarsh, O. E.Weser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 955–967). U.S. Govt. Printing Office.
    [Google Scholar]
  97. Mansour, A. B., & Madkour, H. A. (2015). Raised coral reefs and sediments in the coastal area of the Red Sea. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin (pp. 379–393). Springer Earth System Sciences.
    [Google Scholar]
  98. Martinez, F., & Cochran, J. R. (1989). Geothermal measurements in the northern Red Sea: Implications for lithospheric thermal structure and mode of extension during continental rifting. Journal of Geophysical Research, 94, 12239–212266. https://doi.org/10.1029/JB094iB09p12239
    [Google Scholar]
  99. McKenzie, D. P. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32.
    [Google Scholar]
  100. McKenzie, D. P., Davies, D., & Molnar, P. (1970). Plate tectonics of the Red Sea and East Africa. Nature, 226, 243–248. https://doi.org/10.1038/226243a0
    [Google Scholar]
  101. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6, art. eaaz1346.
    [Google Scholar]
  102. Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24, 40–53. https://doi.org/10.5670/oceanog.2011.26
    [Google Scholar]
  103. Miller, P. M., & Barakat, H. (1988). Geology of the safaga concession, northern Red Sea, Egypt. Tectonophysics, 153, 123–136.
    [Google Scholar]
  104. Miller, S. P., Macdonald, K. C., & Lonsdale, P. (1985). Near bottom magnetic profile across the Red Sea. Marine Geophysical Researches, 7, 401–418.
    [Google Scholar]
  105. Mitchell, N. C. (1995). Characterising the extent of volcanism at the galapagos spreading centre using deep tow profiler records. Earth and Planetary Science Letters, 134, 459–472.
    [Google Scholar]
  106. Mitchell, N. C. (2015). Lineaments in gravity data of the Red Sea. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin (pp. 123–133). Springer Earth System Sciences.
    [Google Scholar]
  107. Mitchell, N. C., & Augustin, N. (2017). Halokinetics and other features of GLORIA long‐range sidescan sonar data from the Red Sea. Mar. and Pet. Geol., 88, 724–738.
    [Google Scholar]
  108. Mitchell, N. C., Ligi, M., Farrante, V., Bonatti, E., & Rutter, E. (2010). Submarine salt flows in the central Red Sea. Geological Society of America Bulletin, 122, 701–713.
    [Google Scholar]
  109. Mitchell, N. C., Ligi, M., Feldens, P., & HüBSCHER, C. (2017). Deformation of a young salt giant: Regional topography of the Red Sea Miocene evaporites. Basin Research, 29, 352–369. https://doi.org/10.1111/bre.12153
    [Google Scholar]
  110. Mitchell, N. C., Ligi, M., & Rasul, N. M. A. (2019) Variations in Plio‐Pleistocene deposition in the Red Sea.In N. M. A.Rasul & I. C. F.Stewart (Eds.), Geological setting, Palaeoenvironment and archaeology of the Red Sea. Springer Earth System Science Series, 323–340. Springer Nature.
    [Google Scholar]
  111. Mitchell, N. C., Ligi, M., & Rohling, E. J. (2015). Red Sea isolation history suggested by Plio‐Pleistocene seismic reflection sequences. Earth and Planetary Science Letters, 430, 387–397.
    [Google Scholar]
  112. Mitchell, N. C., & Park, Y. (2014). Nature of crust in the central Red Sea. Tectonophysics, 628, 123–139.
    [Google Scholar]
  113. Mohn, G., Karner, G. D., Manatschal, G., & Johnson, C. A. (2015). Structural and stratigraphic evolution of the Iberia–Newfoundland hyper‐extended rifted margin: a quantitative modelling approach. In: Sedimentary Basins and Crustal Processes at Continental Margins: From Modern Hyper‐Extended Margins to Deformed Ancient Analogues, Geol. Soc. Spec. Publ. 413 (Ed. by G. M. Gibson, F. Roure & G. Manatschal). Geological Society, London, Special Publications, 413(1), 53–89.
    [Google Scholar]
  114. Mougenot, D., & Al‐Shakhis, A. (1999). Depth imaging sub‐salt structures: A case study in the Midyan Peninsula (Red Sea). GeoArabia, 4, 445–464.
    [Google Scholar]
  115. Mutter, J., Talwani, M., & Stoffa, P. L. (1982). Origin of seaward‐dipping reflectors in oceanic crust off the Norwegian margin by "Subaerial Seafloor Spreading". Geology, 10, 353–357. https://doi.org/10.1130/0091‐7613(1982)10<353:OOSRIO>2.0.CO;2
    [Google Scholar]
  116. Orszag‐Sperber, F., Harwood, G., Kendall, A., & Purser, B. H. (1998). Review of the evaporites of the Red Sea‐Gulf of Suez rift. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea‐Gulf of Aden (pp. 409–426). Chapman & Hall.
    [Google Scholar]
  117. Park, Y., Nyblade, A. A., Rodgers, A. J., & Al‐Amri, A. (2007). Upper mantle structure beneath the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography: Implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield. Geochemistry, Geophysics, Geosystems, 8, Paper Q06021, https://doi.org/10.1029/2006GC001566
    [Google Scholar]
  118. Park, Y., Nyblade, A. A., Rodgers, A. J., & Al‐Amri, A. (2008). S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochemistry, Geophysics, Geosystems, 9, Paper Q07020, https://doi.org/10.1029/2007GC001895
    [Google Scholar]
  119. Pautot, G., Auzende, J. M., & Lepichon, X. (1970). Continuous deep salt layer along north Atlantic margins related to early phase of rifting. Nature, 227, 351–354.
    [Google Scholar]
  120. Perrin, C., Plaziat, J.‐C., & Rosen, B. R. (1998). Miocene isolated platform and shallow‐shelf carbonates in the Red Sea coastal plain, North‐East Sudan. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea‐Gulf of Aden (pp. 296–319). Chapman & Hall.
    [Google Scholar]
  121. Phillips, J. D., & Ross, D. A. (1970).Continuous Seismic Reflexion Profiles in the Red Sea. Phil. Trans. Roy. Soc. London, 267 series A, 143–152.
  122. Pindell, J., & Kennan, L. (2007).Rift Models and the Salt‐Cored Marginal Wedge in the Northern Gulf of Mexico: Implications for Deep‐Water Paleogene Wilcox Deposition and Basin‐Wide Maturation. GCS‐SEPM Foundation Annual Bob F. Perkins Research Conference Proceedings: Houston, Texas, USA, Houston, Texas.
  123. Plaziat, J.‐C., Baltzer, F., Choukri, A., Conchon, O., Freytet, P., Orszag‐Sperber, F., Raguideau, A., & Purser, B. H. (1998). Quaternary marine and continental sedimentation in the northern Red Sea and Gulf of Suez (Egyptian Coast): Influences of rift tectonics, climatic changes and sea‐level fluctuations. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea‐Gulf of Aden (pp. 537–573). Chapman & Hall.
    [Google Scholar]
  124. Plaziat, J.‐C., Reyss, J. L., Choukri, A., & Cazala, C. (2008).Diagenetic Rejuvenation of Raised Coral Reefs and Precision of Dating. The Contribution of the Red Sea Reefs to the Question of Reliability of the Uranium‐Series Datings of Middle to Late Pleistocene Key Reef‐Terraces of the World, Carnets De Geologie Cg2008 (A04).
  125. Pound, M. J., Haywood, A. M., Salzmann, U., & Riding, J. B. (2012). Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97–5.33 Ma). Earth Science Reviews, 112, 1–22.
    [Google Scholar]
  126. Priestly, K., McKenzie, D., Debayle, E., & Pilidou, S. (2008). The African upper mantle and its relationship to tectonics and surface geology. Geophysical Journal International, 175, 1108–1126.
    [Google Scholar]
  127. Purkis, S. J., Harris, P. M., & Ellis, J. (2012). Patterns of sedimentation in the contemporary Red Sea as an analog for ancient carbonates in rift settings. Journal of Sedimenatry Petrology, 82, 859–870.
    [Google Scholar]
  128. Purser, B. H., & Hötzl, H. (1988). The sedimentary evolution of the Red Sea rift: A comparison of the northwest (Egyptian) and northeast (Saudi Arabian) margins. Tectonophysics, 153, 193–208. https://doi.org/10.1016/0040‐1951(88)90015‐7
    [Google Scholar]
  129. Qaysi, S., Liu, K. H., & Gao, S. S. (2018). A database of shear‐wave splitting measurements for the Arabian Plate. Seismological Research Letters, 89, 2294–2298.
    [Google Scholar]
  130. Ranganathan, V. (1991). Salt diffusion in interstitial waters and halite removal from sediments: Examples from the Red Sea and Illinois basins. Geochimica Et Cosmochimica Acta, 55, 1615–1625. https://doi.org/10.1016/0016‐7037(91)90133‐P
    [Google Scholar]
  131. Rasul, N. M. A., Stewart, I. C. F., & Nawab, Z. A. (2015). Introduction to the Red Sea: Its origin, structure, and environment. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin (pp. 1–28). Springer Earth System Sciences.
    [Google Scholar]
  132. Reilinger, R., McClusky, S., & Arrajehi, A. (2015).Geodetic constraints on the geodynamic evolution of the Red Sea. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, 135–150. Springer Earth System Sciences.
    [Google Scholar]
  133. Richardson, M., & Arthur, M. A. (1988). The Gulf of Suez ‐ Northern Red Sea neogene rift: A quantitative basin analysis. Marine and Petroleum Geology, 5, 247–270.
    [Google Scholar]
  134. Richter, H., Makris, J., & Rihm, R. (1991). Geophysical observations offshore Saudi Arabia: Seismic and magnetic observations. Tectonophysics, 198, 297–310.
    [Google Scholar]
  135. Rihm, R., & Henke, C. H. (1998). Geophysical studies on early tectonic controls on Red Sea rifting, opening and sedimentation. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea‐Gulf of Aden (pp. 27–49). Chapman & Hall.
    [Google Scholar]
  136. Ritsema, J., & van Heijst, H. (2000). New seismic model of the upper mantle beneath Africa. Geology, 28, 63–66. https://doi.org/10.1130/0091‐7613(2000)28<63:NSMOTU>2.0.CO;2
    [Google Scholar]
  137. Rodriguez, C. R., Jackson, C.‐A.‐L., Rotevatn, A., Bell, R. E., & Francis, M. (2018). Dual tectonic‐climatic controls on salt giant deposition in the Santos basin, Offshore Brazil. Geosphere, 14, 215–242. 210.1130/GES01434.01431
    [Google Scholar]
  138. Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E., & Williams, F. (2014). Sea‐level and deep‐sea‐temperature variability over the past 5.3 million years. Nature, 508, 477–482. https://doi.org/10.1038/nature13230
    [Google Scholar]
  139. Rona, P. A. (1982). Evaporites at Passive Margins.In R. A.Scrutton (Ed.), Dynamics of passive margins. Geodyn. Ser. (Vol. 6, pp. 116–132). Am. Geophys. Union and Geol. Soc. Am.
    [Google Scholar]
  140. Roobol, M. J., & Kadi, K. A. (2008).Cenozoic Faulting in the Rabigh Area, Central‐West Saudi Arabia (Including the Sites of King Abdullah Economic City and King Abdullah University of Science and Technology), Saudi Geological Survey Technical Report SGS‐TR‐2008‐6, Saudi Geological Survey. Jeddah, Saudi Arabia, 12 pages, 12 pls.
  141. Ross, D. A., & Schlee, J. (1973). Shallow structure and geologic development of the southern Red Sea. Geological Society of America Bulletin, 84, 3827–3848.
    [Google Scholar]
  142. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154–182. https://doi.org/10.1111/bre.12043
    [Google Scholar]
  143. Rowan, M. G., & Ratliff, R. A. (2012). Cross‐section restoration of salt‐related deformation: Best practices and potential pitfalls. Journal of Structural Geology, 41, 24–37. https://doi.org/10.1016/j.jsg.2011.12.012
    [Google Scholar]
  144. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Wiessel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Paper Q03014. https://doi.org/10.1029/2008GC002332
    [Google Scholar]
  145. Sandvol, E., Seber, D., Barazangi, M., Vernon, F., Mellors, R., & Al‐Amri, A. (1998). Lithospheric seismic velocity discontinuities beneath the Arabian Shield. Geophysical Research Letters, 25, 2873–2876.
    [Google Scholar]
  146. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from Cryosat‐2 and Jason‐1 reveals buried tectonic structure. Science, 346, 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  147. Savoyat, E., Shiferaw, A., & Balcha, T. (1989). Petroleum exploration in the Ethiopian Red Sea. Journal of Petroleum Geology, 12, 187–204.
    [Google Scholar]
  148. Schmidt, M., Al‐Farawati, R., & Botz, R. (2015). Geochemical classification of brine‐filled Red Sea deeps. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin (pp. 219–233). Springer Earth System Sciences.
    [Google Scholar]
  149. Schroeder, J. H., Toleikis, R., Wunderlich, H., & Kuhnert, H. (1998). Miocene isolated platform and shallow‐shelf carbonates in the Red Sea coastal plain, North‐East Sudan. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea‐Gulf of Aden (pp. 190–210). Chapman & Hall.
    [Google Scholar]
  150. Searle, R. C., & Ross, D. A. (1975). A geophysical study of the Red Sea axial trough between 20.5° and 22°N. Geophysical Journal of the Royal Astronomical Society, 43, 555–572.
    [Google Scholar]
  151. Shi, W. (2019). Geophysical study of the crust in the central Red Sea (p. 1–220). University of Manchester. PhD thesis.
    [Google Scholar]
  152. Shi, W., Mitchell, N. C., Kalnins, L., & Izzeldin, A. Y. (2018). Oceanic‐like axial crustal high in the central Red Sea. Tectonophysics, 747–748, 327–342. https://doi.org/10.1016/j.tecto.2018.10.011
    [Google Scholar]
  153. Sicilia, D., Montagner, J.‐P., Cara, M., Stutzmann, E., Debayle, E., Lépine, J.‐C., Lévêque, J.‐J., Beucler, E., Sebai, A., Roult, G., Ayele, A., & Sholan, J. M. (2008). Upper mantle structure of shear‐waves velocities and stratification of anisotropy in the Afar Hotspot region. Tectonophysics, 462, 164–177.
    [Google Scholar]
  154. Smith, W. H. F., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship soundings. Science, 277, 1956–1962.
    [Google Scholar]
  155. Smith, W. H. F., & Wessel, P. (1990). Gridding with continuous curvature splines in tension. Geophysics, 55, 293–305. https://doi.org/10.1190/1.1442837
    [Google Scholar]
  156. Sofianos, S. S., & Johns, E. W. (2007). Observations of the summer Red Sea circulation. Journal of Geophysical Research, 112, Paper C06025. https://doi.org/10.1029/2006JC003886
    [Google Scholar]
  157. Stockli, D. F., & Bosworth, W. (2019). Timing of extensional faulting along the magma‐poor central and northern Red Sea Rift margin ‐ Transition from regional extension to necking along a hyperextended rifted margin. In N. M. A.Rasul, & I. C. F.Stewart (Eds.), Geological setting, palaeoenvironment and archaeology of the Red Sea (pp. 81–111). Springer Nature Switzerland.
    [Google Scholar]
  158. Stoffers, P. & Kühn, R. (1974).Red Sea evaporites: A petrographic and geochemical study. In R. B.Whitmarsh, O. E.Weser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 821–847). U.S. Govt. Printing Office.
    [Google Scholar]
  159. Stoffers, P., Ross, D. A. et al (1974). Sedimentary history of the Red Sea. In R. B.Whitmarsh, O. E.Weser, & D. A.Ross (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 849–865). U.S. Govt. Printing Office.
    [Google Scholar]
  160. Strozyk, F., Back, S., & Kukla, P. A. (2017). Comparison of the rift and post‐rift architecture of conjugated salt and salt‐free basins offshore Brazil and Angola/Namibia, South Atlantic. Tectonphysics, 716, 204–224. https://doi.org/10.1016/j.tecto.2016.12.012
    [Google Scholar]
  161. Sultan, M., Becker, R., Arvidson, R. E., Shore, P., Stern, R. J., el Alfy, Z., & Guinness, E. A. (1993). New constraints on Red Sea rifting from correlation of Arabian and Nubian Neoproterozoic outcrops. Tectonics, 12, 1303–1319.
    [Google Scholar]
  162. Taviani, M. (1998). Post‐miocene reef faunas of the Red Sea: Glacio‐isostatic controls. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea‐Gulf of Aden (pp. 574–582). Chapman & Hall.
    [Google Scholar]
  163. Taylor, J. R. (1982). An introduction to error analysis, the study of uncertainties in physical measurements. Oxford University Press.
    [Google Scholar]
  164. Tedeschi, L. R., Jenkyns, H. C., Robinson, S. A., Sanjinés, A. E. S., Viviers, M. C., Quintaes, C. M. S. P., & Vazquez, J. C. (2017). New age constraints on aptian evaporites and carbonates from the South Atlantic: Implications for oceanic anoxic event 1a. Geology, 45, 543–546. https://doi.org/10.1130/G38886.1
    [Google Scholar]
  165. Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic ocean and the dissection of an Aptian Salt basin. Geophysical Journal International, 177, 1315–1333.
    [Google Scholar]
  166. Tramontini, C., & Davies, D. (1969). A seismic refraction survey in the Red Sea. Geophysical Journal of Royal Astronomical Society, 17, 225–241.
    [Google Scholar]
  167. Turcotte, D. L., & Schubert, G. (1982). Geodynamics: Applications of continuum physics to geological problems. John Wiley and Sons.
    [Google Scholar]
  168. Uchupi, E., & Ross, D. A. (1986). The tectonic style of the northern Red Sea. Geo‐Marine Letters, 5, 203–209. https://doi.org/10.1007/BF02233804
    [Google Scholar]
  169. van der Zwan, F. M., Augustin, N., Devey, C. W., Bantan, R., & Kwasnitschka, T. (2015). New insights into volcanism and tectonics in the Red Sea rift. Chemical Geology, 405, 63–81.
    [Google Scholar]
  170. Volker, F., McCulloch, M. T., & Altherr, R. (1993). Submarine basalts from the Red Sea: New Pb, Sr, and Nd isotopic data. Geophysical Research Letters, 20, 927–930.
    [Google Scholar]
  171. Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Science Reviews, 98, 217–268.
    [Google Scholar]
  172. Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213, 113–131.
    [Google Scholar]
  173. Wessel, P., & Smith, W. H. F. (1991). Free Software helps map and display data. EOS, Transactions, American Geophysical Union, 72, 441. https://doi.org/10.1029/90EO00319
    [Google Scholar]
  174. Wheildon, J., Evans, T. R., & Girdler, R. W. (1974).Thermal conductivity, density, and sonic velocity measurements of samples of anhydrite and halite from sites 225 and 227. In R. B.Whitmarsh, O. E.Weser, D. A.Ross, et al. (Eds.), Initial reports of the deep sea drilling project (Vol. 23, pp. 909–911). U.S. Govt. Printing Office.
    [Google Scholar]
  175. Whipple, K. X. (2001). Fluvial landscape response time: How plausible is steady‐state denudation?American Journal of Science, 301, 313–325. https://doi.org/10.2475/ajs.301.4‐5.313
    [Google Scholar]
  176. Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma‐poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154. https://doi.org/10.1038/35093085
    [Google Scholar]
  177. Whitmarsh, R. B., Weser, O. E., & Ross, D. A. (1974). Initial reports of the deep sea drilling project, 23b, Washington, D.C.: U. S. Government Printing Office.
    [Google Scholar]
  178. Wilson, J. W. P., Roberts, G. G., Hoggard, M. J., & White, N. J. (2014). Cenozoic epeirogeny of the Arabian Peninsula from drainage modeling. Geochemistry, Geophysics, Geosystems, 15, 3723–3761. 3710.1002/2014GC005283
    [Google Scholar]
  179. Wolfe, C. J., Vernon, F. L., & Al‐Amri, A. (1999). Shear‐wave splitting across western Saudi Arabia: The pattern of upper mantle anisotropy at a Proterozoic shield. Geophysical Research Letters, 26, 779–782. https://doi.org/10.1029/1999GL900056
    [Google Scholar]
  180. Zahran, H. M., Stewart, I. C. F., Johnson, P. R., & Basahel, M. H. (2003).Aeromagnetic‐ Anomaly Maps of Central and Western Saudi Arabia.Saudi Geological Survey. Scale 1:2 Million. Saudi Geological Survey Open‐File Report SGS‐OF‐2002‐8, 6 p., 4 plates.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12513
Loading
/content/journals/10.1111/bre.12513
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): central Red Sea , Messinian , rift basins , Salt giant , sediment flux and tectonics and sedimentation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error