1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

Schematic diagram showing the relationship between spatio‐temporal changes in the sedimentation rate and overpressure evolution in offshore Suriname.

, Abstract

This study investigates overpressure evolution and its relationship to the spatial and temporal changes in the sedimentation rate in the passive continental margin of offshore Suriname. We analysed well data to estimate pore pressure at the well locations and to interpret relevant overpressure‐generating mechanisms. Three‐dimensional basin modelling was performed to reconstruct overpressure evolution in the area. The well data indicated disequilibrium compaction as the main overpressure‐forming mechanism. The results of the modelling indicated a temporal variation in the sedimentation rate caused cycles of overpressure formation in the region. Periods of high sedimentation lead to overpressure formation, and this overpressure dissipates during periods of quiescent sedimentation. The latest overpressure development since the Middle–Late Miocene was triggered by a notable increase in the siliciclastic supply to the basin, which reflects the Andean uplift and reorganization of the drainage system. Spatial changes in the sedimentation rate resulted in a lateral variation in the amount of overpressure. Disequilibrium compaction generated large overpressure in the area with a high‐sedimentation rate because of the fast increasing rate of overburden load. In addition, the high‐temperature condition beneath the rapid sedimentation area could cause additional mechanisms for overpressure formation in the deeper part of the basin. This study reveals that the complex overpressure history and its lateral variation in offshore Suriname were mainly caused by a single controlling factor (i.e. the sedimentation rate). This article gives an insight into overpressure evolution in sedimentary basins by considering the perspective of the spatio‐temporal variation in the sedimentation rate and its connection with hinterland evolution.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12514
2021-03-15
2024-04-25
Loading full text...

Full text loading...

References

  1. Barabasch, J., Ducros, M., Hawie, N., Bou Daher, S., Nader, F. H., & Littke, R. (2019). Integrated 3D forward stratigraphic and petroleum system modeling of the Levant Basin, Eastern Mediterranean. Basin Research, 31, 228–252. https://doi.org/10.1111/bre.12318
    [Google Scholar]
  2. Basile, C., Maillard, A., Patriat, M., Gaullier, V., Loncke, L., Roest, W., De Lepinay, M., & Pattier, F. (2013). Structure and evolution of the Demerara Plateau, offshore French Guiana: Rifting, tectonic inversion and post‐rift tilting at transform–divergent margins intersection. Tectonophysics, 591, 16–29. https://doi.org/10.1016/j.tecto.2012.01.010
    [Google Scholar]
  3. Benkhelil, J., Mascle, J., & Tricart, P. (1995). The Guinea continental margin: An example of a structurally complex transform margin. Tectonophysics, 248, 117–137. https://doi.org/10.1016/0040‐1951(94)00246‐6
    [Google Scholar]
  4. Berrangé, J. P., & Dearnley, R. (1975). The Apoteri volcanic formation ‐ Tholeiitic flows in the North Savannas Graben of Guyana and Brazil. Geologische Rundschau, 64, 883–899. https://doi.org/10.1007/BF01820702
    [Google Scholar]
  5. Berry, F. A. (1973). High fluid potentials in California Coast Ranges and their tectonic significance. AAPG Bulletin, 57, 1219–1249.
    [Google Scholar]
  6. Bethke, C. M. (1986). Inverse hydrologic analysis of the distribution and origin of Gulf Coast‐type geopressured zones. Journal of Geophysical Research: Solid Earth, 91, 6535–6545. https://doi.org/10.1029/JB091iB06p06535
    [Google Scholar]
  7. Bihariesingh, V. (2014). Is the Cretaceous an Effective Petroleum System Offshore Suriname? [Conference presentation]. Geoscience Technology Workshop (GTW), Deep Horizon and Deep Water Frontier Exploration in Latin American and the Caribbean, Port of Spain, Trinidad and Tobago. http://www.searchanddiscovery.com/documents/2014/30355bihariesingh/ndx_bihariesingh.pdf
    [Google Scholar]
  8. Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of Applied Physics, 12, 155–164. https://doi.org/10.1063/1.1712886
    [Google Scholar]
  9. Bloch, S., Lander, R. H., & Bonnell, L. (2002). Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86, 301–328. https://doi.org/10.1306/61EEDABC‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  10. Borge, H. (2002). Modelling generation and dissipation of overpressure in sedimentary basins: An example from the Halten Terrace, offshore Norway. Marine and Petroleum Geology, 19, 377–388. https://doi.org/10.1016/S0264‐8172(02)00023‐5
    [Google Scholar]
  11. Bowers, G. L. (1995). Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction. SPE Drilling & Completion, 10, 89–95. https://doi.org/10.2118/27488‐PA
    [Google Scholar]
  12. Bredehoeft, J. D., Djevanshir, R. D., & Belitz, K. R. (1988). Lateral fluid flow in a compacting sand‐shale sequence: South Caspian Basin. AAPG Bulletin, 72, 416–424. https://doi.org/10.1016/0148‐9062(88)91107‐2
    [Google Scholar]
  13. Burgreen‐Chan, B., Meisling, K. E., & Graham, S. (2016). Basin and petroleum system modelling of the East Coast Basin, New Zealand: A test of overpressure scenarios in a convergent margin. Basin Research, 28, 536–567. https://doi.org/10.1111/bre.12121
    [Google Scholar]
  14. Campbell, E. A. (2005). Shelf‐geometry response to changes in relative sea level on a mixed carbonate‐siliciclastic shelf in the Guyana Basin. Sedimentary Geology, 175, 259–275. https://doi.org/10.1016/j.sedgeo.2004.09.003
    [Google Scholar]
  15. Colten‐Bradley, V. A. (1987). Role of pressure in smectite dehydration—Effects on geopressure and smectite‐to‐illite transformation. AAPG Bulletin, 71, 1414–1427. https://doi.org/10.1306/703C8092‐1707‐11D7‐8645000102C1865D
    [Google Scholar]
  16. Crawford, F. D., Szelewski, C. E., & Alvey, G. D. (1985). Geology and exploration in the Takutu graben of Guyana Brazil. Journal of Petroleum Geology, 8, 5–36. https://doi.org/10.1111/j.1747‐5457.1985.tb00189.x
    [Google Scholar]
  17. Dobson, D. M., Dickens, G. R., & Rea, D. K. (2001). Terrigenous sediment on Ceara Rise: A Cenozoic record of South American orogeny and erosion. Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 215–229. https://doi.org/10.1016/S0031‐0182(00)00161‐9
    [Google Scholar]
  18. Dugan, B., & Sheahan, T. C. (2012). Offshore sediment overpressures of passive margins: Mechanisms, measurement, and models. Reviews of Geophysics, 50, RG3001. https://doi.org/10.1029/2011RG000379
    [Google Scholar]
  19. Dutta, N. C. (2002). Deepwater geohazard prediction using prestack inversion of large offset P‐wave data and rock model. The Leading Edge, 21, 193–198. https://doi.org/10.1190/1.1452612
    [Google Scholar]
  20. Dutta, N. C. (2016). Effect of chemical diagenesis on pore pressure in argillaceous sediment. The Leading Edge, 35, 523–527, https://doi.org/10.1190/tle35060523.1
    [Google Scholar]
  21. Eisma, D., & van der Marel, H. W. (1971). Marine muds along the Guyana coast and their origin from the Amazon basin. Contributions to Mineralogy and Petrology, 31, 321–334. https://doi.org/10.1007/BF00371152
    [Google Scholar]
  22. Erlich, R. N., & Keens‐Dumas, J. (2007). Late Cretaceous palaeogeography of north‐eastern South America: Implications for source and reservoir development. In The 4th Geological Society of Trinidad and Tobago Geological Conference, 17–22 June 2007. Port of Spain, Trinidad and Tobago: Geological Society of Trinidad & Tobago.
    [Google Scholar]
  23. Erlich, R. N., Villamil, T., & Keens‐Dumas, J. (2003).Controls on the deposition of Upper Cretaceous organic carbon‐rich rocks from Costa Rica to Suriname. In C.Bartolini, R. T.Buffler, & J. F.Blickwede (Eds.), The Circum‐Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics. (AAPG Memoir 79, pp. 1–45). American Association of Petroleum Geologists.
    [Google Scholar]
  24. Fang, H., Yongchuan, S., Sitian, L., & Qiming, Z. (1995). Overpressure retardation of organic‐matter maturation and petroleum generation: A case study from the Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 79, 551–562.
    [Google Scholar]
  25. Figueiredo, J., Hoorn, C., van der Ven, P., Soares, E., Nathan, S. A., & Leckie, R. M. (2009). Late Miocene onset of the Amazon River and the Amazon deep‐sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37, 619–622. https://doi.org/10.1130/g25567a.1
    [Google Scholar]
  26. Flemings, P. B., Stump, B. B., Finkbeiner, T., & Zoback, M. (2002). Flow focusing in overpressured sandstones: Theory, observations, and applications. American Journal of Science, 302, 827–855. https://doi.org/10.2475/ajs.302.10.827
    [Google Scholar]
  27. Gluyas, J., & Cade, C. A. (1997).Prediction of porosity in compacted sands.In J. A.Kupecz, J.Gluyas, & S.Bloch (Eds.), Reservoir quality prediction in sandstones and carbonates. (AAPG Memoir 69, pp. 19–28). American Association of Petroleum Geologists.
    [Google Scholar]
  28. Gordon, D. S., & Flemings, P. B. (1998). Generation of overpressure and compaction‐driven fluid flow in a Plio‐Pleistocene growth‐faulted basin, Eugene Island 330, offshore Louisiana. Basin Research, 10, 177–196. https://doi.org/10.1046/j.1365‐2117.1998.00052.x
    [Google Scholar]
  29. Goulty, N. R., Sargent, C., Andras, P., & Aplin, A. C. (2016). Compaction of diagenetically altered mudstones – Part 1: Mechanical and chemical contributions. Marine and Petroleum Geology, 77, 703–713. https://doi.org/10.1016/j.marpetgeo.2016.07.015
    [Google Scholar]
  30. Grauls, D. (1999). Overpressures: Causal mechanisms, conventional and hydromechanical approaches. Oil and Gas Science and Technology, 54, 667–678. https://doi.org/10.2516/ogst:1999056
    [Google Scholar]
  31. Greenroyd, C. J., Peirce, C., Rodger, M., Watts, A. B., & Hobbs, R. W. (2007). Crustal structure of the French Guiana margin, West Equatorial Atlantic. Geophysical Journal International, 169, 964–987. https://doi.org/10.1111/j.1365‐246X.2007.03372.x
    [Google Scholar]
  32. Greenroyd, C. J., Peirce, C., Rodger, M., Watts, A. B., & Hobbs, R. W. (2008). Demerara Plateau ‐ The structure and evolution of a transform passive margin passive margin. Geophysical Journal International, 172, 549–564. https://doi.org/10.1111/j.1365‐246X.2007.03662.x
    [Google Scholar]
  33. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling. Springer‐Verlag. 476 p. https://doi.org/10.1007/978‐3‐540‐72318‐9
    [Google Scholar]
  34. Harrison, W. J., & Summa, L. L. (1991). Paleohydrology of the Gulf of Mexico basin. American Journal of Science, 291, 109–176. https://doi.org/10.2475/ajs.291.2.109
    [Google Scholar]
  35. Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology, 23, 45–48. https://doi.org/10.1130/0091‐7613(1995)023<0045:PAPROC>2.3.CO;2
    [Google Scholar]
  36. Hauser, M. R., Petitclerc, T., Braunsdorf, N. R., & Winker, C. D. (2013). Pressure prediction implications of a Miocene pressure regression. The Leading Edge, 32, 100–109. https://doi.org/10.1190/tle32010100.1
    [Google Scholar]
  37. Hoesni, M. J. (2004). Origins of overpressure in the Malay Basin and its influence on petroleum systems. PhD. Thesis. Durham University
    [Google Scholar]
  38. Hoorn, C. (1994). An environmental reconstruction of the palaeo‐Amazon River system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238. https://doi.org/10.1016/0031‐0182(94)90074‐4
    [Google Scholar]
  39. Hoorn, C., Guerrero, J., Sarmiento, G. A., & Lorente, M. A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240. https://doi.org/10.1130/0091‐7613(1995)023<0237
    [Google Scholar]
  40. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez‐Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931. https://doi.org/10.1126/science.1194585
    [Google Scholar]
  41. Horton, B. K., & DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Research, 13, 43–63. https://doi.org/10.1046/j.1365‐2117.2001.00137.x
    [Google Scholar]
  42. Issler, D. R. (1992). A new approach to shale compaction and stratigraphic restoration, Beaufort‐Mackenzie Basin and Mackenzie Corridor, northern Canada. AAPG Bulletin, 76(8), 1170–1189. https://doi.org/10.1306/BDFF8998‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  43. Kong, L., Chen, H., Ping, H., Zhai, P., Liu, Y., & Zhu, J. (2018). Formation pressure modeling in the Baiyun Sag, northern South China Sea: Implications for petroleum exploration in deep‐water areas. Marine and Petroleum Geology, 97, 154–168. https://doi.org/10.1016/j.marpetgeo.2018.07.004
    [Google Scholar]
  44. Lahann, R. W. (2017). Gulf of Mexico overpressure and clay diagenesis without unloading: An anomaly?AAPG Bulletin, 101, 1859–1877. https://doi.org/10.1306/02071716191
    [Google Scholar]
  45. Lahann, R. W., & Swarbrick, R. E. (2011). Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis. Geofluids, 11, 362–375. https://doi.org/10.1111/j.1468‐8123.2011.00350.x
    [Google Scholar]
  46. Latrubesse, E. M., Cozzuol, M., da Silva‐Caminha, S. A. F., Rigsby, C. A., Absy, M. L., & Jaramillo, C. (2010). The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth‐Science Reviews, 99, 99–124. https://doi.org/10.1016/j.earscirev.2010.02.005
    [Google Scholar]
  47. Law, B. E., & Spencer, C. W. (1998).Abnormal pressure in hydrocarbon environments. In B. E.Law, G. F.Ulmishek, & V. I.Slavin (Eds.), Abnormal pressures in hydrocarbon environments. (AAPG Memoir 70, pp. 1–11). American Association of Petroleum Geologists.
    [Google Scholar]
  48. Lee, M. K., & Williams, D. D. (2000). Paleohydrology of the Delaware basin, western Texas: Overpressure development, hydrocarbon migration, and ore genesis. AAPG Bulletin, 84, 961–974.
    [Google Scholar]
  49. Lindseth, R. O., & Beraldo, V. L. (1985).A late Cretaceous submarine canyon in Brazil. In O. R.Berg, & D. G.Woolverton (Eds.), Seismic stratigraphy II—An integrated approach. (AAPG Memoir 39, pp. 168–181). American Association of Petroleum Geologists.
    [Google Scholar]
  50. Luo, G., Hudec, M. R., Flemings, P. B., & Nikolinakou, M. A. (2017). Deformation, stress, and pore pressure in an evolving suprasalt basin. Journal of Geophysical Research: Solid Earth, 122, 5663–5690. https://doi.org/10.1002/2016JB013779
    [Google Scholar]
  51. Luo, M., Baker, M. R., & LeMone, D. V. (1994). Distribution and generation of the overpressure system, eastern Delaware Basin, western Texas and southern New Mexico. AAPG Bulletin, 78, 1386–1405.
    [Google Scholar]
  52. Madon, M. (2007). Overpressure development in rift basins: An example from the Malay Basin, offshore Peninsular Malaysia. Petroleum Geoscience, 13, 169–180. https://doi.org/10.1144/1354‐079307‐744
    [Google Scholar]
  53. Mascle, J., & Blarez, E. (1987). Evidence for transform margin evolution from the Cote d’Ivoire‐Ghana continental margin. Nature, 326, 378–381.
    [Google Scholar]
  54. Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis in porous media (2nd ed.). 524 p. Cambridge University Press.
    [Google Scholar]
  55. McPherson, B. J., & Garven, G. (1999). Hydrodynamics and overpressure mechanisms in the Sacramento Basin, California. American Journal of Science, 299, 429–466. https://doi.org/10.2475/ajs.299.6.429
    [Google Scholar]
  56. Meissner, F. F. (1978). Petroleum geology of the Bakken Formation, Williston Basin, North Dakota and Montana. In D.Estelle, & R.Miller (Eds.), The economic geology of the Williston Basin, 1978 Williston Basin Symposium: Billings, Montana (pp. 207–227). Montana Geological Society.
    [Google Scholar]
  57. Mello, U. T., & Karner, G. D. (1996). Development of sediment overpressure and its effect on thermal maturation: Application to the Gulf of Mexico basin. AAPG Bulletin, 80, 1367–1396.
    [Google Scholar]
  58. Meyers, P. A., Bernasconi, S. M., & Forster, A. (2006). Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry, 37, 1816–1830. https://doi.org/10.1016/j.orggeochem.2006.08.009
    [Google Scholar]
  59. Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., & Espurt, N. (2010). Tectonic history of the Andes and sub‐Andean zones: Implications for the development of the Amazon drainage basin. In C.Hoorn, & F. P.Wesselingh (Eds.), Amazonia, landscape and species evolution: A look into the past (pp. 38–60). Blackwell Publishing.
    [Google Scholar]
  60. Mosca, F., Djordjevic, O., Hantschel, T., McCarthy, J., Krueger, A., Phelps, D., Akintokunbo, T., Joppen, T., Koster, K., Schupbach, M., Hampshire, K., & MacGregor, A. (2018). Pore pressure prediction while drilling: Three‐dimensional earth model in the Gulf of Mexico. AAPG Bulletin, 102, 545–547. https://doi.org/10.1306/0605171619617050
    [Google Scholar]
  61. Mouchet, J. P., & Mitchell, A. (1989). Abnormal pressures while drilling. Origins‐prediction‐detection‐evaluation (Vol. 2, 255 p.). Elf Aquitaine.
    [Google Scholar]
  62. Nederbragt, A. J., Thurow, J., & Pearce, R. (2007). Sediment composition and cyclicity in the mid‐Cretaceous at Demerara Rise, ODP Leg 207. In D. C.Mosher, J.Erbacher, & M. J.Malone (Eds.), Proceedings of the Ocean Drilling Program, 207 Scientific Results (Vol. 207, pp. 1–31). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.207.103.2007
    [Google Scholar]
  63. Nemčok, M., Rybár, S., Odegard, M., Dickson, W., Pelech, O., Ledvényiová, L., Matejová, M., Molčan, M., Hermeston, S., Jones, D., Cuervo, E., Cheng, R., & Forero, G. (2016). Development history of the southern terminus of the Central Atlantic; Guyana‐Suriname case study. In M.Nemčok, S.Rybár, S. T.Sinha, S.Hermeston, & L.Ledvényiová (Eds.), Transform margins: Development, controls and petroleum systems. (Geological Society, London, Special Publications 431, pp. 145–178). Geological Society of London. https://doi.org/10.1144/sp431.10
    [Google Scholar]
  64. Neumaier, M., Littke, R., Hantschel, T., Maerten, L., Joonnekindt, J. P., & Kukla, P. (2014). Integrated charge and seal assessment in the Monagas fold and thrust belt of Venezuela. AAPG Bulletin, 98, 1325–1350. https://doi.org/10.1306/01131412157
    [Google Scholar]
  65. Nguyen, B. T. T., Kido, M., Okawa, N., Fu, H., Kakizaki, S., & Imahori, S. (2016). Compaction of smectite‐rich mudstone and its influence on pore pressure in the deepwater Joetsu Basin, Sea of Japan. Marine and Petroleum Geology, 78, 848–869. https://doi.org/10.1016/j.marpetgeo.2016.07.011
    [Google Scholar]
  66. O’Connor, S., Swarbrick, R. E., & Jones, D. (2008). Where has all the pressure gone? Evidence from pressure reversals and hydrodynamic flow. First Break, 26, 55–61. https://doi.org/10.3997/1365‐2397.2008013
    [Google Scholar]
  67. Obradors‐Prats, J., Rouainia, M., Aplin, A. C., & Crook, A. J. L. (2017). Hydromechanical modeling of stress, pore pressure, and porosity evolution in fold‐and‐thrust belt systems. Journal of Geophysical Research: Solid Earth, 122, 9383–9403. https://doi.org/10.1002/2017JB014074
    [Google Scholar]
  68. Obradors‐Prats, J., Rouainia, M., Aplin, A. C., & Crook, A. J. L. (2019). A diagenesis model for geomechanical simulations: Formulation and implications for pore pressure and development of geological structures. Journal of Geophysical Research: Solid Earth, 124, 4452–4472. https://doi.org/10.1029/2018JB016673
    [Google Scholar]
  69. Osborne, M. J., & Swarbick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81, 1023–1041.
    [Google Scholar]
  70. Osborne, M. J., & Swarbrick, R. E. (1999). Diagenesis in North Sea HPHT clastic reservoirs‐consequences for porosity and overpressure prediction. Marine and Petroleum Geology, 16, 337–353. https://doi.org/10.1016/S0264‐8172(98)00043‐9
    [Google Scholar]
  71. Pindell, J. L. (1985). Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto‐Caribbean. Tectonics, 4, 1–39. https://doi.org/10.1029/TC004i001p00001
    [Google Scholar]
  72. Pindell, J., & Kennan, L. (2001). Processes and events in the terrane assembly of Trinidad and eastern Venezuela. In R. H.Fillon, N. C.Rosen, P.Weimer, A.Lowrie, H.Pettingill, R. L.Phair, H. H.Roberts, & B.van Hoorn (Eds.), GCSSEPM Foundation 21st Annual Research Conference Transactions, Petroleum Systems of Deep‐Water Basins (pp. 159–192). Gulf Coast Section SEPM Foundation. https://doi.org/10.5724/gcs.01.21.0159
    [Google Scholar]
  73. Pinkston, F. W. M., & Flemings, P. B. (2019). Overpressure at the Macondo Well and its impact on the Deepwater Horizon blowout. Scientific Reports, 9, 1–11. https://doi.org/10.1038/s41598‐019‐42496‐0
    [Google Scholar]
  74. Ramdhan, A. M., & Goulty, N. R. (2010). Overpressure‐generating mechanisms in the Peciko field, lower Kutai Basin, Indonesia. Petroleum Geoscience, 16, 367–376. https://doi.org/10.1144/1354‐079309‐027
    [Google Scholar]
  75. Ramm, M., & Bjørlykke, K. (1994). Porosity/depth trends in reservoir sandstones: Assessing the quantitative effects of varying pore‐pressure, temperature history and mineralogy, Norwegian Shelf data. Clay Minerals, 29, 475–490. https://doi.org/10.1180/claymin.1994.029.4.07
    [Google Scholar]
  76. Reuber, K. R., Pindell, J., & Horn, B. W. (2016). Demerara Rise, offshore Suriname: Magma‐rich segment of the Central Atlantic Ocean, and conjugate to the Bahamas hot spot. Interpretation, 4, T141–T155. https://doi.org/10.1190/INT‐2014‐0246.1
    [Google Scholar]
  77. Rine, J. M., & Ginsburg, R. N. (1985). Depositional facies of a mud shoreface in Suriname, South America–A mud analogue to sandy, shallow‐marine deposits. Journal of Sedimentary Research, 55, 633–652. https://doi.org/10.1306/212F87A6‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  78. Robertson, J., Goulty, N. R., & Swarbrick, R. E. (2013). Overpressure distributions in Palaeogene reservoirs of the UK Central North Sea and implications for lateral and vertical fluid flow. Petroleum Geoscience, 19, 223–236. https://doi.org/10.1144/petgeo2012‐060
    [Google Scholar]
  79. Rubey, W. W., & Hubbert, M. K. (1959). Overthrust belt in geosynclinal area of western Wyoming in light of fluid pressure hypothesis, 2: Role of fluid pressure in mechanics of overthrust faulting. Geological Society of America Bulletin, 70, 167–205. https://doi.org/10.1130/0016‐7606(1959)70[167:ROFPIM]2.0.CO;2
    [Google Scholar]
  80. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332
    [Google Scholar]
  81. Sathar, S., & Jones, S. J. (2016). Fluid overpressure as a control on sandstone reservoir quality in a mechanical compaction dominated setting: Magnolia Field, Gulf of Mexico. Terra Nova, 28, 155–162. https://doi.org/10.1111/ter.12203
    [Google Scholar]
  82. Scherer, M. (1987). Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bulletin, 71, 485–491.
    [Google Scholar]
  83. Schlumberger
    Schlumberger . (2013). Log interpretation charts (2013 Edition). Schlumberger.
    [Google Scholar]
  84. Schneider, F., Potdevin, J. L., Wolf, S., & Faille, I. (1996). Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics, 263, 307–317. https://doi.org/10.1016/S0040‐1951(96)00027‐3
    [Google Scholar]
  85. Staatsolie
    Staatsolie . (2015). Geology of the Guyana‐Suriname Basin.http://opportunities.staatsolie.com/geology‐of‐the‐guyana‐suriname‐basin/
  86. Stricker, S., Jones, S. J., Sathar, S., Bowen, L., & Oxtoby, N. (2016). Exceptional reservoir quality in HPHT reservoir settings: Examples from the Skagerrak Formation of the Heron Cluster, North Sea, UK. Marine and Petroleum Geology, 77, 198–215. https://doi.org/10.1016/j.marpetgeo.2016.02.003
    [Google Scholar]
  87. Swarbrick, R. E. (2012). Review of pore‐pressure prediction challenges in high‐temperature areas. The Leading Edge, 31, 1288–1294. https://doi.org/10.1190/tle31111288.1
    [Google Scholar]
  88. Swarbrick, R. E., Lahann, R. W., O’Connor, S. A., & Mallon, A. J. (2011). Role of the Chalk in development of deep overpressure in the Central North Sea. Geological Society, London, Petroleum Geology Conference Series, 7, 493–507. https://doi.org/10.1144/0070493
    [Google Scholar]
  89. Swarbrick, R. E., Osborne, M. J., & Yardley, G. S. (2002). Comparision of overpressure magnitude resulting from the main generating mechanisms generating mechanisms. In A.Huffman, & G. L.Bowers (Eds.), Pressure regimes in sedimentary basins and their prediction. (AAPG Memoir, Vol. 76, pp. 1–12). American Association of Petroleum Geologists.
    [Google Scholar]
  90. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  91. Terzaghi, K. (1923). Die Berechnung der Durchlässigkeitsziffer des Tones im Verlauf der hydrodynamischen Spannungserscheinungen. Szber Akademie Wissenschaft Vienna, Math‐Naturwissenschaft Klasse IIa, 132, 125–138.
    [Google Scholar]
  92. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons.
    [Google Scholar]
  93. Uba, C. E., Strecker, M. R., & Schmitt, A. K. (2007). Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979. https://doi.org/10.1130/G224025A.1
    [Google Scholar]
  94. Ungerer, P., Béhar, E., & Discamps, D. (1981). Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data. Implications for primary migration. Advances in Organic Geochemistry, 10, 129–135.
    [Google Scholar]
  95. Webster, M., O’Connor, S., Pindar, B., & Swarbrick, R. E. (2011). Overpressures in the Taranaki basin: Distribution, causes, and implications for exploration. AAPG Bulletin, 95, 339–370. https://doi.org/10.1306/06301009149
    [Google Scholar]
  96. Wong, T. E. (1998). Hydrocarbon exploration and exploitation in Suriname. In T. E.Wong, D. R.De Vletter, L.Krook, J. I. S.Zonneveld, & A. J.Van Loon (Eds.), The history of earth sciences in Suriname (pp. 377–393). Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Applied Geoscience TNO.
    [Google Scholar]
  97. Workman, W. (2000). Guyana Basin: A new exploration focus. World Oil, May, 55–64. Retrieved from https://www.worldoil.com/magazine/2000
    [Google Scholar]
  98. Wygrala, B. P. (1989). Inegrated study of an oil field in the southern Po Basin, Northern Italy (217 p.). University of Cologne. Ph.D. thesis.
    [Google Scholar]
  99. Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1), 41–70. https://doi.org/10.1190/1.1438217
    [Google Scholar]
  100. Yang, W., & Escalona, A. (2011). Tectonostratigraphic evolution of the Guyana Basin. AAPG Bulletin, 95, 1339–1368. https://doi.org/10.1306/01031110106
    [Google Scholar]
  101. Yang, Y., & Aplin, A. C. (2010). A permeability–porosity relationship for mudstones. Marine and Petroleum Geology, 27, 1692–1697. https://doi.org/10.1016/j.marpetgeo.2009.07.001
    [Google Scholar]
  102. Yardley, G. S., & Swarbrick, R. E. (2000). Lateral transfer: A source of additional overpressure?Marine and Petroleum Geology, 17, 523–537. https://doi.org/10.1016/S0264‐8172(00)00007‐6
    [Google Scholar]
  103. Zhang, J. (2011). Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth‐Science Reviews, 108, 50–63. https://doi.org/10.1016/j.earscirev.2011.06.001
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12514
Loading
/content/journals/10.1111/bre.12514
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error