1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

3D spatial and temporal depositional model of the study area

, Abstract

The glacimarine shelf‐edge is a complex depositional environment in which the interplay between accommodation and glaciation has played an important role in influencing sediment deposition and margin architecture. It can be challenging to unravel the history of basin infill in these areas, particularly where landforms are deeply buried. This study presents an integrated workflow for deciphering the architecture and evolution of erosional and depositional elements in a crucial location of the south‐western Barents Sea margin, with a focus on the comparatively poorly understood processes and patterns of glacimarine sedimentation that occurred during the Pliocene and Early Pleistocene. Wellbore interpretations of lithology are combined with the analysis of seismic facies, geomorphology and attributes using merged 3D seismic reflection data to investigate the morphology and development of buried landforms and depositional features on the outer‐shelf, shelf edge and upper‐slope. The Pliocene (preglacial) slope system is dominated by upper‐slope channels, upper‐slope channels with associated sediment lobes, and mass‐transport deposits. The first appearance of mega‐scale glacial lineations in the study area is close to the onset of the Pleistocene (around 2.58 Ma), suggesting that an ice stream reached the palaeo‐shelf edge during the earliest Pleistocene. The prevalence of upper‐slope channels and mass‐transport deposits throughout the Pleistocene stratigraphy shows that the basinwards transfer of sediment took place mainly by evacuation of sediment through relatively linear channels combined with mass‐movement events. The results presented in this study have implications for understanding the glacial history of the south‐western Barents Sea and sedimentary processes on glacimarine shelf edges more generally.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12516
2021-03-15
2024-04-18
Loading full text...

Full text loading...

References

  1. Alley, R. B., Blankenship, D. D., Rooney, S. T., & Bentley, C. R. (1989). Sedimentation beneath ice shelves — The view from ice stream B. Marine Geology, 85, 101–120.
    [Google Scholar]
  2. Alves, T. M. (2015). Submarine slide blocks and associated soft‐sediment deformation in deep‐water basins: A review. Marine and Petroleum Geology, 67, 262–285.
    [Google Scholar]
  3. Andreassen, K., Laberg, J. S., & Vorren, T. O. (2008). Seafloor geomorphology of the SW Barents Sea and its glaci‐dynamic implications. Geomorphology, 97, 157–177.
    [Google Scholar]
  4. Andreassen, K., Nilssen, L. C., Rafaelsen, B., & Kuilman, L. (2004). Three‐dimensional seismic data from the Barents Sea margin reveal evidence of past ice streams and their dynamics. Geology, 32, 729–732.
    [Google Scholar]
  5. Andreassen, K., Ødegaard, C. M., & Rafaelsen, B. (2007). Imprints of Former Ice Streams, Imaged and Interpreted Using Industry three‐dimensional Seismic Data from the south‐western Barents Sea. Geological Society, London, Special Publications, 277, 151–169.
    [Google Scholar]
  6. Andreassen, K., Winsborrow, M. C. M., Bjarnadóttir, L. R., & Rüther, D. C. (2014). Ice stream retreat dynamics inferred from an assemblage of landforms in the northern Barents Sea. Quaternary Science Reviews, 92, 246–257.
    [Google Scholar]
  7. Balco, G., & Rovey, C. W. (2010). Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology, 38, 795–798.
    [Google Scholar]
  8. Balco, G., Rovey, C. W., & Stone, J. O. H. (2005). The first glacial maximum in North America. Science, 307, 222.
    [Google Scholar]
  9. Batchelor, C. L., & Dowdeswell, J. A. (2014). The physiography of High Arctic cross‐shelf troughs. Quaternary Science Reviews, 92, 68–96.
    [Google Scholar]
  10. Batchelor, C. L., Dowdeswell, J. A., & Ottesen, D. (2018). Submarine glacial landforms. In A.Micallef, S.Krastel, & A.Savini (Eds.), Submarine geomorphology (pp. 207–234). Springer International Publishing.
    [Google Scholar]
  11. Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., & Manica, A. (2019). The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications, 10, 3713.
    [Google Scholar]
  12. Bellwald, B., & Planke, S. (2019). Shear margin moraine, mass transport deposits and soft beds revealed by high‐resolution P‐Cable three‐dimensional seismic data in the Hoop area, Barents Sea. Geological Society, London, Special Publications, 477, 537–548.
    [Google Scholar]
  13. Bellwald, B., Planke, S., Becker, L. W. M., & Muklebust, R. (2020). Meltwater sediment transport as the dominating process in mid‐latitude trough mouth fan formation. Nature Communications, 11, 4645.
    [Google Scholar]
  14. Bellwald, B., Planke, S., Lebedeva‐Ivanova, N., Piasecka, E. D., & Andreassen, K. (2019). High‐resolution landform assemblage along a buried glacio‐erosive surface in the SW Barents Sea revealed by P‐Cable 3D seismic data. Geomorphology, 332, 33–50.
    [Google Scholar]
  15. Bellwald, B., Planke, S., Piasecka, E. D., Matar, M. A., & Andreassen, K. (2018). Ice‐stream dynamics of the SW Barents Sea revealed by high‐resolution 3D seismic imaging of ellglacial deposits in the Hoop area. Marine Geology, 402, 165–183.
    [Google Scholar]
  16. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data (7th ed.). Society of Exploration Geophysicists and the American Association of Petroleum Geologists.
    [Google Scholar]
  17. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151.
    [Google Scholar]
  18. Carvajal, C., & Steel, R. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668.
    [Google Scholar]
  19. Carvajal, C., Steel, R., & Petter, A. (2009). Sediment supply: The main driver of shelf‐margin growth. Earth‐Science Reviews, 96, 221–248.
    [Google Scholar]
  20. Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series.
  21. Clark, C. D. (1993). Mega‐scale glacial lineations and cross‐cutting ice‐flow landforms. Earth Surface Processes and Landforms, 18, 1–29.
    [Google Scholar]
  22. Clark, P. U., & Pollard, D. (1998). Origin of the Middle Pleistocene Transition by ice sheet erosion of regolith. Paleoceanography, 13, 1–9.
    [Google Scholar]
  23. Cohen, K. M., & Gibbard, P. L. (2019). Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI‐500. Quaternary International, 500, 20–31.
    [Google Scholar]
  24. Domack, G. W., & Powell, R. (2018). Modern glaciomarine environments and sediments. In J.Menzies & J. J.M.Van der Meer (Eds.), Past glacial environments (pp. 361–389). Amsterdam: Elsevier.
    [Google Scholar]
  25. Dowdeswell, J. A., Elverhfi, A., & Spielhagen, R. (1998). Glacimarine sedimentary processes and facies on the Polar North Atlantic margins. Quaternary Science Reviews, 17, 243–272.
    [Google Scholar]
  26. Dowdeswell, J. A., Kenyon, N. H., Elverhøi, A., Laberg, J. S., Hollender, F.‐J., Mienert, J., & Siegert, M. J. (1996). Large‐scale sedimentation on the glacier‐influenced polar North Atlantic Margins: Long‐range side‐scan sonar evidence. Geophysical Research Letters, 23, 3535–3538.
    [Google Scholar]
  27. Dowdeswell, J. A., Cofaigh, C. Ó., Taylor, J., Kenyon, N. H., Mienert, J., & Wilken, M. (2002). On the architecture of high‐latitude continental margins: The influence of ice‐sheet and sea‐ice processes in the Polar North Atlantic. Geological Society, London, Special Publications, 203, 33–54.
    [Google Scholar]
  28. Dowdeswell, J. A., & Ottesen, D. (2013). Buried iceberg ploughmarks in the early Quaternary sediments of the central North Sea: A two‐million year record of glacial influence from 3D seismic data. Marine Geology, 344, 1–9.
    [Google Scholar]
  29. Dowdeswell, J. A., Villinger, H., Whittington, R. J., & Marienfeld, P. (1993). Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf. Marine Geology, 111, 37–53.
    [Google Scholar]
  30. Eiken, O., & Hinz, K. (1993). Contourites in the Fram Strait. Sedimentary Geology, 82, 15–32.
    [Google Scholar]
  31. Elger, J., Berndt, C., Krastel, S., Piper, D. J. W., Gross, F., & Geissler, W. H. (2017). Chronology of the Fram Slide Complex offshore NW Svalbard and its implications for local and regional slope stability. Marine Geology, 393, 141–155.
    [Google Scholar]
  32. Faleide, J. I., Gudlaugsson, S. T., & Jacquart, G. (1984). Evolution of the western Barents Sea. Marine and Petroleum Geology, 1, 123–150.
    [Google Scholar]
  33. Faleide, J. I., Solheim, A., Fiedler, A., Hjelstuen, B. O., Andersen, E. S., & Vanneste, K. (1996). Late Cenozoic evolution of the western Barents Sea‐Svalbard continental margin. Global and Planetary Change, 12, 53–74.
    [Google Scholar]
  34. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91.
    [Google Scholar]
  35. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993a). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10, 186–214.
    [Google Scholar]
  36. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993b). Late Mesozoic‐Cenozoic evolution of the southwestern Barents Sea. Geological Society of London, Petroleum Geology Conference Series, 4, 933–950.
    [Google Scholar]
  37. Gales, J., Hillenbrand, C.‐D., Larter, R., Laberg, J. S., Melles, M., Benetti, S., & Passchier, S. (2019). Processes influencing differences in Arctic and Antarctic trough mouth fan sedimentology. Geological Society, London, Special Publications, 475, 203–221.
    [Google Scholar]
  38. Gales, J. A., Larter, R. D., Mitchell, N. C., & Dowdeswell, J. A. (2013). Geomorphic signature of Antarctic submarine gullies: Implications for continental slope processes. Marine Geology, 337, 112–124.
    [Google Scholar]
  39. García, M., Dowdeswell, J. A., Ercilla, G., & Jakobsson, M. (2012). Recent glacially influenced sedimentary processes on the East Greenland continental slope and deep Greenland Basin. Quaternary Science Reviews, 49, 64–81.
    [Google Scholar]
  40. Gradstein, F. M., Anthonissen, E., Brunstad, H., Charnock, M., Hammer, O., Hellem, T., & Lervik, K. S. (2010). Norwegian offshore stratigraphic lexicon (NORLEX). Newsletters on Stratigraphy, 44, 73–86.
    [Google Scholar]
  41. Gridley, J., Lopez, J., & Partyka, G. (1999). Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge, 18, 353–360.
    [Google Scholar]
  42. Helland‐Hansen, W., Steel, R., & Sømme, T. O. (2012). Shelf genesis revisited: PERSPECTIVES. Journal of Sedimentary Research, 82, 133–148.
    [Google Scholar]
  43. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., Larssen, G., Ryseth, A., Rønning, K., & Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35, 271–281.
    [Google Scholar]
  44. Henriksen, E., Ryseth, A., Larssen, G., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. (2011). Tectonostratigraphy of the greater Barents Sea: Implications for petroleum systems. Geological Society, London, Memoirs, 35, 163–195.
    [Google Scholar]
  45. Hjelstuen, B. O., Elverhøi, A., & Faleide, J. I. (1996). Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. Global and Planetary Change, 12, 95–117.
    [Google Scholar]
  46. Hjelstuen, B. O., Eldholm, O., & Faleide, J. I. (2007). Recurrent Pleistocene mega‐failures on the SW Barents Sea margin. Earth and Planetary Science Letters, 258, 605–618.
    [Google Scholar]
  47. Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., … … .
  48. Johannessen, E. P., & Steel, R. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 17, 521–550.
    [Google Scholar]
  49. Johansen, S. E., Ostisty, B. K., Birkeland, Ø., Fedorovsky, Y. F., Martirosjan, V. N., Christensen, O. B., Cheredeev, S. I., Ignatenko, E. A., & Margulis, L. S.(1993). Hydrocarbon potential in the Barents Sea region: Play distribution and potential. In T. O.Vorren, E.Bergsager, Ø. A.Dahl‐Stamnes, E.Holter, B.Johansen, E.Lie, & T. B.Lund (Eds.), Norwegian Petroleum Society Special Publications (pp. 273–320). Elsevier.
    [Google Scholar]
  50. Kitamura, A., & Kawagoe, T. (2006). Eustatic sea‐level change at the Mid‐Pleistocene climate transition: New evidence from the shallow‐marine sediment record of Japan. Quaternary Science Reviews, 25, 323–335.
    [Google Scholar]
  51. Knies, J., Matthiessen, J., Vogt, C., Laberg, J. S., Hjelstuen, B. O., Smelror, M., Larsen, E., Andreassen, K., Eidvin, T., & Vorren, T. O. (2009). The Plio‐Pleistocene glaciation of the Barents Sea‐Svalbard region: A new model based on revised chronostratigraphy. Quaternary Science Reviews, 28, 812–829.
    [Google Scholar]
  52. Knutsen, S. M., & Larsen, K. I. (1997). The late Mesozoic and Cenozoic evolution of the Sørvestsnaget Basin: A tectonostratigraphic mirror for regional events along the Southwestern Barents Sea margin?Marine and Petroleum Geology, 14, 27–54.
    [Google Scholar]
  53. Knutz, P. C., Newton, A. M. W., Hopper, J. R., Huuse, M., Gregersen, U., Sheldon, E., & Dybkjær, K. (2019). Eleven phases of Greenland Ice Sheet shelf‐edge advance over the past 2.7 million years. Nature Geoscience, 12, 361–368.
    [Google Scholar]
  54. Laberg, J. S., & Andreassen, K. (2007). Submarine paleo‐failure morphology on a glaciated continental margin from 3d seismic data. In V.Lykousis, D.Sakellariou, & J.Locat (Eds.), Submarine mass movements and their consequences: 3 International symposium (pp. 11–18). Springer.
    [Google Scholar]
  55. Laberg, J. S., Andreassen, K., Knies, J., Vorren, T. O., & Winsborrow, M. (2010). Late Pliocene‐Pleistocene development of the Barents Sea Ice Sheet. Geology, 38, 107–110.
    [Google Scholar]
  56. Laberg, J. S., Andreassen, K., & Vorren, T. O. (2012). Late Cenozoic erosion of the high‐latitude southwestern Barents Sea shelf revisited. GSA Bulletin, 124, 77–88.
    [Google Scholar]
  57. Laberg, J. S., & Vorren, T. O. (1995). Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan. Marine Geology, 127, 45–72.
    [Google Scholar]
  58. Laberg, J. S., & Vorren, T. O. (2000). Flow behaviour of the submarine glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea. Sedimentology, 47, 1105–1117.
    [Google Scholar]
  59. Lasabuda, A., Geissler, W. H., Laberg, J. S., Knutsen, S.‐M., Rydningen, T. A., & Berglar, K. (2018). Late Cenozoic erosion estimates for the northern Barents Sea: Quantifying glacial sediment input to the Arctic Ocean. Geochemistry, Geophysics, Geosystems, 19, 4876–4903.
    [Google Scholar]
  60. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Høgseth, G. (2018). Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass‐balance approach. Marine and Petroleum Geology, 96, 501–521.
    [Google Scholar]
  61. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Safronova, P. (2018). Cenozoic tectonostratigraphy and pre‐glacial erosion: A mass‐balance study of the northwestern Barents Sea margin, Norwegian Arctic. Journal of Geodynamics, 119, 149–166.
    [Google Scholar]
  62. Lien, R., Solheim, A., Elverhøi, A., & Rokoengen, K. (1989). Iceberg scouring and sea bed morphology on the eastern Weddell Sea shelf, Antarctica. Polar Research, 7, 43–57.
    [Google Scholar]
  63. Løseth, H., Ottesen, D., Batchelor, C. L., & Dowdeswell, J. A. (2020). 3D sedimentary architecture showing the inception of an Ice Age. Nature Communications, 11, 2975.
    [Google Scholar]
  64. Marfurt, K. J. (2015). Techniques and best practices in multiattribute display. Interpretation, 3, B1–B23.
    [Google Scholar]
  65. Martinsen, O. (1994). Mass movements. In A.Maltman (Ed.), The geological deformation of sediments (pp. 127–165). Berlin: Springer.
    [Google Scholar]
  66. Mayall, M., & Stewart, I. 2000.The architecture of turbidite slope channels.In P.Weimer (Ed.), Deep‐water reservoirs of the world (Vol. 20). GCSSEPM. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  67. Metz, J. M., Dowdeswell, J. A., & Woodworth‐Lynas, C. M. T. (2008). Sea‐floor scour at the mouth of Hudson Strait by deep‐keeled icebergs from the Laurentide Ice Sheet. Marine Geology, 253, 149–159.
    [Google Scholar]
  68. Mienert, J., Thiede, J., Kenyon, N. H., & Hollender, F.‐J. (1993). Polar continental margins: Studies off East Greenland. Eos, Transactions American Geophysical Union, 74, 225–236.
    [Google Scholar]
  69. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6, eaaz1346.
    [Google Scholar]
  70. Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24, 40–53.
    [Google Scholar]
  71. Milton, N. J., & Emery, D. (1996).Outcrop and well data.In D.Emery, & K.Myers (Eds.), Sequence stratigraphy (pp. 61–79). Blackwell Science Ltd.
    [Google Scholar]
  72. Mitchum, R. M.Jr., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.AAPG Memoir 26.
  73. Mjelde, R., Breivik, A. J., Elstad, H., Ryseth, A. E., Skilbrei, J. R., Opsal, J. G., Murai, Y., & Nishimura, Y. (2002). Geological development of the Sørvestsnaget Basin, SW Barents Sea, from ocean bottom seismic, surface seismic and potential field data. Norwegian Journal of Geology, 82.
    [Google Scholar]
  74. Montelli, A., Dowdeswell, J. A., Ottesen, D., & Johansen, S. E. (2017). Ice‐sheet dynamics through the Quaternary on the mid‐Norwegian continental margin inferred from 3D seismic data. Marine and Petroleum Geology, 80, 228–242.
    [Google Scholar]
  75. Montelli, A., Dowdeswell, J. A., Ottesen, D., & Johansen, S. E. (2018). 3D seismic evidence of buried iceberg ploughmarks from the mid‐Norwegian continental margin reveals largely persistent North Atlantic Current through the Quaternary. Marine Geology, 399, 66–83.
    [Google Scholar]
  76. Mudelsee, M., & Raymo, M. E. (2005). Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography, 20.
    [Google Scholar]
  77. Mudelsee, M., & Stattegger, K. (1997). Exploring the structure of the mid‐Pleistocene revolution with advanced methods of time‐series analysis. Geologische Rundschau, 86, 499–511.
    [Google Scholar]
  78. Mutti, E. (1985). Turbidite systems and their relations to depositional sequences. In G. G.Zuffa (Ed.), Provenance of arenites (pp. 65–93). Springer.
    [Google Scholar]
  79. Mutti, E. (1992). Turbidite sandstones. Agip, Istituto di geologia, Università di Parma.
    [Google Scholar]
  80. Newton, A. M. W., & Huuse, M. (2017). Glacial geomorphology of the central Barents Sea: Implications for the dynamic deglaciation of the Barents Sea Ice Sheet. Marine Geology, 387, 114–131.
    [Google Scholar]
  81. Newton, A. M. W., Huuse, M., & Brocklehurst, S. H. (2018). A persistent Norwegian Atlantic current through the Pleistocene glacials. Geophysical Research Letters, 45, 5599–5608.
    [Google Scholar]
  82. Cofaigh, C. Ó., Dowdeswell, J. A., Evans, J., Kenyon, N. H., Taylor, J., Mienert, J., & Wilken, M. (2004). Timing and significance of glacially influenced mass‐wasting in the submarine channels of the Greenland Basin. Marine Geology, 207, 39–54.
    [Google Scholar]
  83. Cofaigh, C. Ó., Taylor, J., Dowdeswell, J. A., & Pudsey, C. J. (2003). Palaeo‐ice streams, trough mouth fans and high‐latitude continental slope sedimentation. Boreas, 32, 37–55.
    [Google Scholar]
  84. O’Grady, D. B.., & Syvitski, J. P. M. (2002). Large‐scale morphology of Arctic continental slopes: The influence of sediment delivery on slope form. Geological Society, London, Special Publications, 203, 11–31.
    [Google Scholar]
  85. Omosanya, K. O., & Alves, T. M. (2014). Mass‐transport deposits controlling fault propagation, reactivation and structural decoupling on continental margins (Espírito Santo Basin, SE Brazil). Tectonophysics, 628, 158–171.
    [Google Scholar]
  86. Omosanya, K. O., & Harishidayat, D. (2019). Seismic geomorphology of Cenozoic slope deposits and deltaic clinoforms in the Great South Basin (GSB) offshore New Zealand. Geo‐Marine Letters, 39, 77–99.
    [Google Scholar]
  87. Omosanya, K. O., Harishidayat, D., Marheni, L., Johansen, S. E., Felix, M., & Abrahamson, P. (2016). Recurrent mass‐wasting in the Sørvestsnaget Basin Southwestern Barents Sea: A test of multiple hypotheses. Marine Geology, 376, 175–193.
    [Google Scholar]
  88. Omosanya, K. O., Johansen, S. E., & Harishidayat, D. (2015). Evolution and character of supra‐salt faults in the Easternmost Hammerfest Basin, SW Barents Sea. Marine and Petroleum Geology, 66, 1013–1028.
    [Google Scholar]
  89. Osti, G., Waghorn, K. A., Waage, M., Plaza‐Faverola, A., & Ferré, B. (2019). Evolution of contourite drifts in regions of slope failures at eastern Fram Strait. Arktos, 5, 105–120.
    [Google Scholar]
  90. Ottesen, D., Batchelor, C. L., Dowdeswell, J. A., & Løseth, H. (2018). Morphology and pattern of Quaternary sedimentation in the North Sea Basin (52–62°N). Marine and Petroleum Geology, 98, 836–859.
    [Google Scholar]
  91. Ottesen, D., Rise, L., Knies, J., Olsen, L., & Henriksen, S. (2005). The Vestfjorden‐Trænadjupet palaeo‐ice stream drainage system, mid‐Norwegian continental shelf. Marine Geology, 218, 175–189.
    [Google Scholar]
  92. Piasecka, E. D., Stokes, C. R., Winsborrow, M. C. M., & Andreassen, K. (2018). Relationship between mega‐scale glacial lineations and iceberg ploughmarks on the Bjørnøyrenna Palaeo‐Ice Stream bed, Barents Sea. Marine Geology, 402, 153–164.
    [Google Scholar]
  93. Piasecka, E. D., Winsborrow, M. C. M., Andreassen, K., & Stokes, C. R. (2016). Reconstructing the retreat dynamics of the Bjørnøyrenna Ice Stream based on new 3D seismic data from the central Barents Sea. Quaternary Science Reviews, 151, 212–227.
    [Google Scholar]
  94. Pope, E. L., Normandeau, A., Cofaigh, C. Ó., Stokes, C. R., & Talling, P. J. (2019). Controls on the formation of turbidity current channels associated with marine‐terminating glaciers and ice sheets. Marine Geology, 415, 105951.
    [Google Scholar]
  95. Pope, E. L., Talling, P. J., Hunt, J. E., Dowdeswell, J. A., Allin, J. R., Cartigny, M. J. B., Long, D., Mozzato, A., Stanford, J. D., Tappin, D. R., & Watts, M. (2016). Long‐term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record. Quaternary Science Reviews, 150, 55–66.
    [Google Scholar]
  96. Porębski, S. J., & Steel, R. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326.
    [Google Scholar]
  97. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388.
    [Google Scholar]
  98. Posamentier, H. W., & Walker, R. G. (2006). Deep‐water turbidites and submarine fans. In H. W.Posamentier, & R. G.Walker (Eds.), Facies models revisited. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  99. Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A., & Wara, M. W. (2004). Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429, 263–267.
    [Google Scholar]
  100. Rea, B. R., Newton, A. M. W., Lamb, R. M., Harding, R., Bigg, G. R., Rose, P., Spagnolo, M., Huuse, M., Cater, J. M. L., Archer, S., Buckley, F., Halliyeva, M., Huuse, J., Cornwell, D. G., Brocklehurst, S. H., & Howell, J. A. (2018). Extensive marine‐terminating ice sheets in Europe from 2.5 million years ago. Science Advances, 4, eaar8327.
    [Google Scholar]
  101. Rider, M. H. (1986). The geological interpretation of well logs. John Wiley and Sons Inc.
    [Google Scholar]
  102. Ronnevik, H., Beskow, B., & Jacobsen, H. P. (1982).Structural and stratigraphic evolution of the Barents Sea. Canadian Society of Petroleum Geologists: Arctic Geology and Geophysics: Proceedings of the Third International Symposium on Arctic Geology Memoir 8.
  103. Rovey, C. W., & Balco, G. (2010). Periglacial climate at the 2.5 Ma onset of Northern Hemisphere glaciation inferred from the Whippoorwill Formation, northern Missouri, USA. Quaternary Research, 73, 151–161.
    [Google Scholar]
  104. Rydningen, T. A., Laberg, J. S., & Kolstad, V. (2016). Late Cenozoic evolution of high‐gradient trough mouth fans and cabyons on the glaciated continental margin offshore Troms, northern Norway ‐ Paleoclimatic implications and sediment yield. GSA Bulletin, 128, 576–596.
    [Google Scholar]
  105. Ryseth, A., Augustson, J. H., Charnock, M., Haugerud, O., Knutsen, S.‐M., Midbøe, P. S., Opsal, J. G., & Sundsbø, G. (2003). Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Norwegian Journal of Geology/Norsk Geologisk Forening, 83, 107–130.
    [Google Scholar]
  106. Saller, A., & Blake, G. (2003). Sequence stratigraphy and syndepositional tectonics of upper Miocene and Pliocene deltaic sediments, offshore Brunei Darussalam. In F. H.Sidi, D.Nummedal, P.Imbert, H.Darman, & H. W.Posamentier (Eds.), Tropical deltas of Southeast Asia—Sedimentology, stratigraphy, and petroleum geology. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  107. Smelror, M. (1999). Pliocene–Pleistocene and redeposited dinoflagellate cysts from the western Svalbard Margin (Site 986): biostratigraphy, paleoenvironments and sediment provenance. Proceedings of the Ocean Drilling Program, scientific results, pp. 83–97.
  108. Steel, R., Carvajal, C., Petter, A. L., & Uroza, C. (2008). Shelf and shelf‐margin growth in scenarios of rising and falling sea level. In G. J.Hampson, R. J.Steel, P. M.Burgess, & R. W.Dalrymple (Eds.), Recent advances in models of siliciclastic shallow‐marine stratigraphy. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  109. Stokes, C. R., & Clark, C. D. (2001). Palaeo‐ice streams. Quaternary Science Reviews, 20, 1437–1457.
    [Google Scholar]
  110. Stow, D. A. V., & Mayall, M. (2000). Deep‐water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17, 125–135.
    [Google Scholar]
  111. Stow, D. A. V., Reading, H. G., & Collinson, J. D. (1996). Deep seas. In H. G.Reading (Ed.), Sedimentary environments: Processes, facies and stratigraphy (3rd ed., pp. 395–453). Blackwell Scientific Publications.
    [Google Scholar]
  112. Varnes, D. J. (1978). Slope movement types and processes. In R. l.Schuster, & R. J.Krizek (Eds.), Landslides, analysis and control. Special report 176 (pp. 11–33). National Academy of Sciences.
    [Google Scholar]
  113. Vorren, T. O., & Laberg, J. S. (1996). Late glacial air temperature, oceanographic and ice sheet interactions in the southern Barents Sea region. Geological Society, London, Special Publications, 111, 303–321.
    [Google Scholar]
  114. Vorren, T. O., & Laberg, J. S. (1997). Trough mouth fans — Palaeoclimate and ice‐sheet monitors. Quaternary Science Reviews, 16, 865–881.
    [Google Scholar]
  115. Vorren, T. O., Landvik, J. Y., Andreassen, K., & Laberg, J. S. (2011). Chapter 27 ‐ Glacial history of the Barents Sea region. In J.Ehlers, P. L.Gibbard, & P. D.Hughes (Eds.), Developments in quaternary sciences (pp. 361–372). Elsevier.
    [Google Scholar]
  116. Vorren, T. O., Richardsen, G., Knutsen, S.‐M., & Henriksen, E. (1991). Cenozoic erosion and sedimentation in the western Barents Sea. Marine and Petroleum Geology, 8, 317–340.
    [Google Scholar]
  117. Waage, M., Bünz, S., Bøe, R., & Mienert, J. (2018). High‐resolution 3D seismic exhibits new insights into the middle‐late Pleistocene stratigraphic evolution and sedimentary processes of the Bear Island trough mouth fan. Marine Geology, 403, 139–149.
    [Google Scholar]
  118. Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451, 279.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12516
Loading
/content/journals/10.1111/bre.12516
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error