1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

During the Paleozoic, sedimentary basins developed within Gondwana without evolving to diverging plate boundaries. Such intracontinental basins present long subsidence histories with multiple phases of accelerated subsidence that are not always easily explained by far‐field tectonic forces, and may be driven by processes other than rifting and thermal subsidence. Here we investigate the subsidence of Paleozoic Australian intracontinental basins by comparing one‐dimensional backstripped tectonic subsidence histories from the western Australian Canning and Southern Carnarvon Basins and the central Australian Cooper Basin to forward subsidence models for pure shear lithospheric thinning. We make the hypothesis that differences between observed and model subsidence may be explained by mantle‐flow driven topography, in addition to tectonic forces. To test this hypothesis, we compute dynamic topography from the first geodynamic models of mantle flow spanning the entire Phanerozoic Eon, and we analyse the relationship between dynamic topography and anomalous basin subsidence to dynamic topography and mantle flow. Although reconstructions of mantle flow in deep geological times are uncertain, our results suggest that long‐wavelength dynamic topography could explain aspects of the complex tectonic histories intracontinental basins. In the presented reconstruction of mantle flow, topographic rebound following the sinking of a Cambrian aged slab resulted in a minor phase of dynamic uplift in the Cooper Basin in middle Permian times. Throughout Carboniferous‐Triassic times Australia was positioned above a mantle upwelling driven by a hot structure at the base of the mantle. Structural uplift in the Canning and Southern Carnarvon basins during the Triassic‐Jurassic interval was augmented by dynamic uplift produced by that large‐scale upwelling, and possibly augmented by a focused active mantle plume during the Permo‐Triassic. In Late Jurassic‐Cretaceous times, Australia drifted east away from the mantle upwelling, resulting in a period of subsidence in the Canning and Southern Carnarvon basins. During the Cretaceous the Cooper Basin moved over a downwelling produced by long‐lived subduction along the east Australian margin, resulting in a period of accelerated subsidence.

,

Mechanisms by which dynamic topography can influence basin subsidence.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12520
2021-03-15
2024-03-28
Loading full text...

Full text loading...

References

  1. Abbott, S., Orlov, C., Bernardel, G., Nicholson, C., Rollet, N., Nguyen, D., & Gunning, M. E. (2019a).Stratigraphic and structural architecture across the central North West Shelf ‐ implications for Triassic petroleum systems.In Proceedings Australian Petroleum Production & Exploration Association Annual Conference and Exhibition, Brisbane, CSIRO.
  2. Abbott, S., Orlov, C., Bernardel, G., Nicholson, C., Rollet, N., Nguyen, D., & Gunning, M. (2019b).Palaeogeographic evolution of the Triassic succession, central North West Shelf.Proceedings Australasian Exploration Geoscience Conference, Perth.
  3. Alexander, E., Gravestock, D., Cubitt, C., & Chaney, A. (1998).Lithostratigraphy & environments of deposition. In D. I.Gravestock, J. E.Hibburt, & J. F.Drexel (Eds.), Petroleum geology of South Australia Volume 4: Cooper Basin (Vol. 4. pp. 69–117). Primary Industries & Resources South Australia.
    [Google Scholar]
  4. Algeo, T. J., & Seslavinsky, K. B. (1995). Reconstructing eustatic and epeirogenic trends from Paleozoic continental flooding records. In B. U.Haq (Ed.), Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing (pp. 209–246). Springer.
    [Google Scholar]
  5. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons.
    [Google Scholar]
  6. Amaru, M. L. (2007). Global travel time tomography with 3‐D reference models. Utrecht University. Doctoral thesis.
    [Google Scholar]
  7. Apak, S. N. (1994). Structural development and control on stratigraphy and sedimentation in the Cooper Basin, northeastern South Australia and southwestern Queensland/by Sukru N. Apak.
  8. Apak, S., Stuart, W., & Lemon, N. (1995). Compressional control on sediment and facies distribution SW Nappamerri Syncline and adjacent Murteree High, Cooper Basin. The APPEA Journal, 35(1), 190–202. https://doi.org/10.1071/AJ94013
    [Google Scholar]
  9. Apak, S. N., Stuart, W. J., Lemon, N. M., & Wood, G. (1997). Structural evolution of the Permian‐Triassic Cooper Basin, Australia: Relation to hydrocarbon trap styles. AAPG Bulletin, 81(4), 533–555. https://doi.org/10.1306/522B43C5‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  10. Arne, D., Green, P., Duddy, I., Gleadow, A., Lambert, I., & Lovering, J. (1989). Regional thermal history of the Lennard shelf, Canning Basin, from apatite fission track analysis: Implications for the formation of Pb‐Zn ore deposits. Australian Journal of Earth Sciences, 36(4), 495–513. https://doi.org/10.1080/08120098908729506
    [Google Scholar]
  11. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14(1), 1–24. https://doi.org/10.1306/3D93289E‐16B1‐11D7‐8645000102C1865D
    [Google Scholar]
  12. Barnett‐Moore, N., Hassan, R., Flament, N., & Müller, D. (2017). The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence. Solid Earth, 8(1), 235. https://doi.org/10.5194/se‐8‐235‐2017
    [Google Scholar]
  13. Battersby, D. (1976). Cooper Basin gas and oil fields. In R. B.Leslie, H. J.Evans, & C. L.Knight (Eds.), Economic geology of Australia and Papua New Guinea (Vol. 3, pp. 321–368).
    [Google Scholar]
  14. Bond, G. C., & Kominz, M. A. (1991). Disentangling middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America. Journal of Geophysical Research: Solid Earth, 96(B4), 6619–6639. https://doi.org/10.1029/90JB01432
    [Google Scholar]
  15. Bower, D. J., Gurnis, M., & Flament, N. (2015). Assimilating lithosphere and slab history in 4‐D Earth models. Physics of the Earth and Planetary Interiors, 238, 8–22. https://doi.org/10.1016/j.pepi.2014.10.013
    [Google Scholar]
  16. Braun, J. (2010). The many surface expressions of mantle dynamics. Nature Geoscience, 3(12), 825–833. https://doi.org/10.1038/ngeo1020
    [Google Scholar]
  17. Brown, S., Boserio, I., Jackson, K., & Spence, K. (1984).The geological evolution of the Canning Basin‐implications for petroleum exploration. In P. G.Purcell (Ed.), The Canning Basin WA: Proceedings of Geological Society of Australia/Petroleum Exploration Society of Australia Symposium: Perth.
  18. Bryan, S. E., & Ferrari, L. (2013). Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geological Society of America Bulletin, 125(7–8), 1053–1078. https://doi.org/10.1130/B30820.1
    [Google Scholar]
  19. Bunge, H.‐P., Richards, M. A., Lithgow‐Bertelloni, C., Baumgardner, J. R., Grand, S. P., & Romanowicz, B. A. (1998). Time scales and heterogeneous structure in geodynamic Earth models. Science, 280(5360), 91–95. http://10.1126/science.280.5360.91
    [Google Scholar]
  20. Cao, W., Lee, C.‐T.‐A., & Lackey, J. S. (2017). Episodic nature of continental arc activity since 750 Ma: A global compilation. Earth and Planetary Science Letters, 461, 85–95. https://doi.org/10.1016/j.epsl.2016.12.044
    [Google Scholar]
  21. Cazenave, A., Souriau, A., & Dominh, K. (1989). Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities. Nature, 340(6228), 54–57. https://doi.org/10.1038/340054a0
    [Google Scholar]
  22. Christensen, U. R., & Yuen, D. A. (1985). Layered convection induced by phase transitions. Journal of Geophysical Research: Solid Earth, 90(B12), 10291–10300. https://doi.org/10.1029/JB090iB12p10291
    [Google Scholar]
  23. Collins, A. S., & Pisarevsky, S. A. (2005). Amalgamating eastern Gondwana: The evolution of the Circum‐Indian Orogens. Earth‐Science Reviews, 71(3–4), 229–270. https://doi.org/10.1016/j.earscirev.2005.02.004
    [Google Scholar]
  24. Colwell, J., & Stagg, H. (1994).Structure of the offshore Canning basin: First impressions from a new regional deep‐seismic data set. In P. G.Purcell, & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia: Proceedings of West Australian Basins Symposium: Perth, pp. 757–768.
  25. Colwell, J. B., Stagg, H. M. J., Symonds, P. A., Wilcox, J. B., & O’Brien, G. W. (1994). Deep reflections on the North West Shelf: Changing perceptions of basin formation. In P. G.Purcell, & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia: Proceedings of West Australian Basins Symposium: Perth, pp. 63–76.
  26. Conolly, J., Falvey, M., Kingsley, D., Melton, B., & Russell, T. (1984).Geology and petroleum potential of the southern Canning Basin. In P. G.Purcell (Ed.), The Canning Basin WA: Proceedings of Geological Society of Australia/Petroleum Exploration Society of Australia Symposium: Perth, pp. 137–147.
  27. Crostella, A. (1995). Structural evolution and hydrocarbon potential of the Merlinleigh and Byro Sub‐basins, Carnarvon Basin, Western Australia. Geological Survey of Western Australia.
    [Google Scholar]
  28. Crostella, A., & Iasky, R. P. (1997). Structural interpretation and hydrocarbon potential of the Giralia area, Carnarvon Basin. Geological Survey of Western Australia.
    [Google Scholar]
  29. Czarnota, K., Hoggard, M. J., White, N., & Winterbourne, J. (2013). Spatial and temporal patterns of Cenozoic dynamic topography around Australia. Geochemistry, Geophysics, Geosystems, 14(3), 634–658. https://doi.org/10.1029/2012GC004392
    [Google Scholar]
  30. Czarnota, K., Roberts, G., White, N., & Fishwick, S. (2014). Spatial and temporal patterns of Australian dynamic topography from River Profile Modeling. Journal of Geophysical Research: Solid Earth, 119(2), 1384–1424. https://doi.org/10.1002/2013JB010436
    [Google Scholar]
  31. Davies, D., Valentine, A., Kramer, S., Rawlinson, N., Hoggard, M., Eakin, C., & Wilson, C. (2019). Earth’s multi‐scale topographic response to global mantle flow. Nature Geoscience, 12(10), 845–850. https://doi.org/10.1038/s41561‐019‐0441‐4
    [Google Scholar]
  32. Deighton, I., Draper, J., Hill, A., & Boreham, C. (2003). A hydrocarbon generation model for the cooper and eromanga basins. The APPEA Journal, 43(1), 433–451. https://doi.org/10.1071/AJ02023
    [Google Scholar]
  33. Deighton, I., & Hill, A. (1998).Thermal and burial history. In D. I.Gravestock, J. E.Hibburt, & J. F.Drexel (Eds.), Petroleum geology of South Australia (Vol. 4, pp. 143–155). Primary Industries & Resources South Australia.
    [Google Scholar]
  34. DiCaprio, L., Gurnis, M., & Müller, R. D. (2009). Long‐wavelength tilting of the Australian continent since the Late Cretaceous. Earth and Planetary Science Letters, 278(3–4), 175–185. https://doi.org/10.1016/j.epsl.2008.11.030
    [Google Scholar]
  35. DiCaprio, L., Gurnis, M., Müller, R. D., & Tan, E. (2011). Mantle dynamics of continentwide Cenozoic subsidence and tilting of Australia. Lithosphere, 3(5), 311–316. https://doi.org/10.1130/L140.1
    [Google Scholar]
  36. Domeier, M. (2016). A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Research, 36, 275–295. https://doi.org/10.1016/j.gr.2015.08.003
    [Google Scholar]
  37. Domeier, M. (2018). Early Paleozoic tectonics of Asia: Towards a full‐plate model. Geoscience Frontiers, 9(3), 789–862. https://doi.org/10.1016/j.gsf.2017.11.012
    [Google Scholar]
  38. Flament, N. (2019). Present‐day dynamic topography and lower‐mantle structure from palaeogeographically constrained mantle flow models. Geophysical Journal International, 216(3), 2158–2182. https://doi.org/10.1093/gji/ggy526
    [Google Scholar]
  39. Flament, N., Gurnis, M., & Müller, R. D. (2013). A review of observations and models of dynamic topography. Lithosphere, 5(2), 189–210. https://doi.org/10.1130/L245.1
    [Google Scholar]
  40. Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J., Heine, C., & Müller, R. D. (2014). Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters, 387, 107–119. https://doi.org/10.1016/j.epsl.2013.11.017
    [Google Scholar]
  41. Flament, N., Williams, S., Müller, R., Gurnis, M., & Bower, D. (2017). Origin and evolution of the deep thermochemical structure beneath Eurasia. Nature Communications, 8, 14164. https://doi.org/10.1038/ncomms14164
    [Google Scholar]
  42. Flowers, R. M., Ault, A. K., Kelley, S. A., Zhang, N., & Zhong, S. (2012). Epeirogeny or eustasy? Paleozoic‐Mesozoic vertical motion of the North American continental interior from thermochronometry and implications for mantle dynamics. Earth and Planetary Science Letters, 317, 436–445. https://doi.org/10.1016/j.epsl.2011.11.015
    [Google Scholar]
  43. Forman, D. J., & Wales, D. W. (1981). Geological evolution of the Canning Basin, Western Australia, Canberra. Australian Government Publishing Service.
    [Google Scholar]
  44. FROGTECH
    FROGTECH . (2014). Bioregional Assessment Source Dataset, Viewed 12 December 2019, http://data.bioregionalassessments.gov.au/dataset/26e0fbd9‐d8d0‐4212‐be52‐ca317e27b3bd
  45. Gallagher, K., & Lambeck, K. (1989). Subsidence, sedimentation and sea‐level changes in the Eromanga Basin, Australia. Basin Research, 2(2), 115–131. https://doi.org/10.1111/j.1365‐2117.1989.tb00030.x
    [Google Scholar]
  46. Ghori, K. (1998). Petroleum generating potential and thermal history of the Palaeozoic, Carnarvon Basin, Western Australia. In P. G.Purcell, & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia 2: Proceedings of West Australian Basins Symposium: Perth, pp. 553–569.
  47. Ghori, K. (1999). Silurian‐Devonian petroleum source‐rock potential and thermal history, Carnarvon Basin, Western Australia (Vol. 72). Geological Survey of Western Australia.
    [Google Scholar]
  48. Gibson, H., Marshallsea, S., & Watson, P. (1998).Thermal history reconstruction in Carnarvon Basin wells Barrabiddy 1A, Yaringa East 1, Coburn 1 and an outcrop sample using apatite fission‐track analysis and vitrinite reflectance. A report prepared for the Petroleum Exploration Initiatives Group of the Geological Survey of Western Australia, Geotrack International Pty Ltd (GEOTRACK), Report, Vol. 670.
  49. Gleadow, A., & Duddy, I. (1984).Fission track dating and thermal history analysis of apatites from wells in the north‐west Canning Basin. In P. G.Purcell (Ed.), The Canning Basin WA: Proceedings of Geological Society of Australia/Petroleum Exploration Society of Australia Symposium: Perth, pp. 377–389.
  50. Golle, O., Dumoulin, C., Choblet, G., & Cadek, O. (2012). Topography and geoid induced by a convecting mantle beneath an elastic lithosphere. Geophysical Journal International, 189(1), 55–72. https://doi.org/10.1111/j.1365‐246X.2012.05364.x
    [Google Scholar]
  51. Gorter, J. D., Nicoll, R. S., & Foster, C. B. (1994). Lower Palaeozoic facies in the Carnarvon Basin, Western Australia: Stratigraphy and hydrocarbon prospectivity. In P. G.Purcell, & R. R.Purcell (Eds.), The Sedimentary Basins Of WA: Proceedings of West Australian Basins Symposium: Perth, pp. 373–396.
  52. Gravestock, D., & Jensen‐Schmidt, B. (1998).Structural setting. In D. I.Gravestock, J. E.Hibburt, & J. F.Drexel (Eds.), Petroleum geology of South Australia Volume 4: Cooper Basin, Volume 4 (pp. 47–67). Primary Industries & Resources South Australia.
    [Google Scholar]
  53. Gurnis, M. (1990). Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, 344(6268), 754–756. https://doi.org/10.1038/344754a0
    [Google Scholar]
  54. Gurnis, M., Müller, R. D., & Moresi, L. (1998). Cretaceous vertical motion of Australia and the AustralianAntarctic discordance. Science, 279(5356), 1499–1504. https://doi.org/10.1126/science.279.5356.1499
    [Google Scholar]
  55. Hager, B., & Richards, M. (1989). Long‐wavelength variations in Earth’s geoid: Physical models and dynamical implications: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 328(1599), 309–327.
    [Google Scholar]
  56. Haines, P. (2004). Depositional facies and regional correlations of the Ordovician Goldwyer and Nita Formations, Canning Basin, Western Australia, with implications for petroleum exploration.
  57. Hall, L., Hill, A., Troup, A., Korsch, R., Radke, B., Nicoll, R., Palu, T., Wang, L., & Stacey, A. (2015).Cooper Basin architecture and lithofacies: regional hydrocarbon prospectivity of the Cooper Basin, Part 1: Geoscience Australia Record 2015, Vol. 31. https://doi.org/10.11636/Record.2015.031
  58. Hall, L., Palu, T., Murray, A., Edwards, D., Hill, A., & Troup, A. (2016).Cooper Basin Petroleum Systems Analysis: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3: Geoscience Australia Record 2016, Vol. 2016. https://doi.org/10.11636/Record.2016.029
  59. Hallam, A. (1984). Pre‐Quaternary sea‐level changes. Annual Review of Earth and Planetary Sciences, 12(1), 205–243. https://doi.org/10.1146/annurev.ea.12.050184.001225
    [Google Scholar]
  60. Hamdani, Y., Mareschal, J.‐C., & Arkani‐Hamed, J. (1994). Phase change and thermal subsidence of the Williston basin. Geophysical Journal International, 116(3), 585–597. https://doi.org/10.1111/j.1365‐246X.1994.tb03282.x
    [Google Scholar]
  61. Haq, B. U., & Schutter, S. R. (2008). A chronology of Paleozoic sea‐level changes. Science, 322(5898), 64–68. https://doi.org/10.1126/science.1161648
    [Google Scholar]
  62. Hassan, R., Flament, N., Gurnis, M., Bower, D. J., & Müller, D. (2015). Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems, 16(5), 1465–1489. https://doi.org/10.1002/2015GC005751
    [Google Scholar]
  63. Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E., & Flament, N. (2016). A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533(7602), 239. https://doi.org/10.1038/nature17422
    [Google Scholar]
  64. Heine, C., & Müller, R. (2008).The Intracontinental basins (ICONS) atlas‐applications in eastern Australia. In J.Blevin, B.Bradshaw, & C.Uruski (Eds.), Eastern Australasian Basins Symposium III: Sydney, Petroleum Exploration Society of Australia, Special Publication (pp. 275–290).
  65. Heine, C., Müller, R. D., Steinberger, B., & DiCaprio, L. (2010). Integrating deep Earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics, 483(1–2), 135–150. http://10.1016/j.tecto.2009.08.028
    [Google Scholar]
  66. Heine, C., Müller, R. D., Steinberger, B., & Torsvik, T. H. (2008). Subsidence in intracontinental basins due to dynamic topography. Physics of the Earth and Planetary Interiors, 171(1–4), 252–264. https://doi.org/10.1016/j.pepi.2008.05.008
    [Google Scholar]
  67. Hoggard, M. J., White, N., & Al‐Attar, D. (2016). Global dynamic topography observations reveal limited influence of large‐scale mantle flow. Nature Geoscience, 9(6), 456. https://doi.org/10.1038/ngeo2709
    [Google Scholar]
  68. Iasky, R., D’ercole, C., Ghori, K., Mory, A., & Lockwood, A. (2003).Structure and petroleum prospectivity of the Gascoyne Platform, Western Australia: Geological Survey of Western Australia, Report, Vol. 87, pp. 1–56.
  69. Iasky, R. P., & Mory, A. J. (1999). Geology and petroleum potential of the Gascoyne platform southern Carnarvon basin Western Australia (Vol. 69). Geological Survey of Western Australia.
    [Google Scholar]
  70. Iasky, R. P., Mory, A., Ghori, K., & Shevchenko, S. (1998). Structure and petroleum potential of the southern Merlinleigh Sub‐basin, Carnarvon Basin, Western Australia. Geological Survey of Western Australia.
    [Google Scholar]
  71. Isem, A. R., Brakel, A. T., Olissoff, S., Strusz, D. L., Langford, R. P., Truswell, E. M., Yeung, M., Cook, P. J., Bradshaw, M. T., Wilford, G. E., Yeates, A. N., & Totterdell, J. M. (2001). Palaeogeographic Atlas of Australia (a set of ten volumes).Commonwealth of Australia (Geoscience Australia).
  72. Jarvis, G. T., & Mckenzie, D. P. (1980). Sedimentary basin formation with finite extension rates. Earth and Planetary Science Letters, 48(1), 42–52. https://doi.org/10.1016/0012‐821X(80)90168‐5
    [Google Scholar]
  73. Kaminski, E., & Jaupart, C. (2000). Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth and Planetary Science Letters, 178(1–2), 139–149. https://doi.org/10.1016/S0012‐821X(00)00067‐4
    [Google Scholar]
  74. Kennard, J. M., Jackson, M. J., Romine, K. K., Shaw, R. D., Southgate, P. N., Purcell, P. G., & Purcell, R. R. (1994). Depositional sequences and associated petroleum systems of the Canning Basin, WA. In Purcell, P. G., & Purcell, R. R. (Eds.), The Sedimentary Basins of Western Australia: Proceedings of West Australian Basins Symposium: Perth, pp. 657–676.
  75. Kennard, J. M., Jackson, M. J., Romine, R. R., & Southgate, P. N. (1994). Canning Basin Project Stage II‐Geohistory Modelling. Australian Geological Survey Organisation.
    [Google Scholar]
  76. Kennett, B., Salmon, M., Saygin, E., & Group, A. W.. (2011). AusMoho: The variation of Moho depth in Australia. Geophysical Journal International, 187(2), 946–958. https://doi.org/10.1111/j.1365‐246X.2011.05194.x
    [Google Scholar]
  77. Kohn, B. P., Gleadow, A. J. W., Brown, R. W., Gallagher, K., O'Sullivan, P. B., & Foster, D. A. (2002). Shaping the Australian crust over the last 300 million years: Insights from fission track thermotectonic imaging and denudation studies of key terranes. Australian Journal of Earth Sciences, 49(4), 697–717. https://doi.org/10.1046/j.1440‐0952.2002.00942.x
    [Google Scholar]
  78. Kominz, M. A., & Bond, G. C. (1991). Unusually large subsidence and sea‐level events during middle Paleozoic time: New evidence supporting mantle convection models, for supercontinent assembly. Geology, 19(1), 56–60. https://doi.org/10.1130/0091‐7613(1991)019<0056:ULSASL>2.3.CO;2
    [Google Scholar]
  79. Kuang, K. (1985). History and style of Cooper‐Eromanga Basin structures. Exploration Geophysics, 16(3), 245–248. https://doi.org/10.1071/EG985245
    [Google Scholar]
  80. Lithgow‐Bertelloni, C., & Richards, M. A. (1998). The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1), 27–78. https://doi.org/10.1029/97RG02282
    [Google Scholar]
  81. Liu, L., Spasojević, S., & Gurnis, M. (2008). Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322(5903), 934–938. http://10.1126/science.1162921
    [Google Scholar]
  82. MacNeill, M., Marshall, N., & McNamara, C. (2018). New Insights into a major Early‐Middle Triassic Rift Episode in the NW Shelf of Australia. ASEG Extended Abstracts, 2018(1), 1–5. https://doi.org/10.1071/ASEG2018abM3_3B
    [Google Scholar]
  83. Matthews, K. J., Hale, A. J., Gurnis, M., Müller, R. D., & DiCaprio, L. (2011). Dynamic subsidence of Eastern Australia during the Cretaceous. Gondwana Research, 19(2), 372–383. https://doi.org/10.1016/j.gr.2010.06.006
    [Google Scholar]
  84. Mavromatidis, A. (2006). Burial/exhumation histories for the Cooper‐Eromanga Basins and implications for hydrocarbon exploration. Eastern Australia: Basin Research, 18(3), 351–373. https://doi.org/10.1111/j.1365‐2117.2006.00294.x
    [Google Scholar]
  85. McNamara, A. K., & Zhong, S. (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136–1139. https://doi.org/10.1038/nature04066
    [Google Scholar]
  86. Merdith, A. S., Collins, A. S., Williams, S. E., Pisarevsky, S., Foden, J. D., Archibald, D. B., Blades, M. L., Alessio, B. L., Armistead, S., Plavsa, D., Clark, C., & Müller, R. D. (2017). A full‐plate global reconstruction of the Neoproterozoic. Gondwana Research, 50, 84–134. https://doi.org/10.1016/j.gr.2017.04.001
    [Google Scholar]
  87. Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S., & Müller, R. D. (2019). Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change, 173, 1–14. https://doi.org/10.1016/j.gloplacha.2018.11.006
    [Google Scholar]
  88. Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., & Müller, R. D. (2021). Extending full‐plate tectonic models into deep time: Linking the neoproterozoic and the phanerozoic: Earth‐Science Reviews, 103477. https://doi.org/10.1016/j.earscirev.2020.103477
  89. Middleton, M. (1980). A model of intracratonic basin formation, entailing deep crustal metamorphism. Geophysical Journal International, 62(1), 1–14. https://doi.org/10.1111/j.1365‐246X.1980.tb04839.x
    [Google Scholar]
  90. Mitrovica, J., Beaumont, C., & Jarvis, G. (1989). Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8(5), 1079–1094. https://doi.org/10.1029/TC008i005p01079
    [Google Scholar]
  91. Mory, A. J. (2010). A review of mid‐Carboniferous to Triassic stratigraphy, Canning Basin, Western Australia. Geological Survey of Western Australia, Report 107, 130 pp.
    [Google Scholar]
  92. Mory, A. J., & Backhouse, J. (1997). Permian stratigraphy and palynology of the Carnarvon Basin, Western Australia. Western Australia Geological Survey, Report 51, 46 pp.
    [Google Scholar]
  93. Mory, A. J., Iasky, R. P., & Ghori, K. (2003). A summary of the geological evolution and petroleum potential of the Southern Carnarvon Basin, Western Australia. Geological Survey of Western Australia.
    [Google Scholar]
  94. Mory, A. J., Nicoll, R. S., & Gorter, J. D. (1998).Lower Palaeozoic correlations and thermal maturity, Carnarvon Basin, WA. In P. G.Purcell, & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia 2: Proceedings of West Australian Basins Symposium: Perth, pp. 599–611.
  95. Moussavi Harami, S. R. (1996). Burial history of the Cooper Basin region in South Australia. PESA Journal, 24, 57–76. https://doi.org/10.1111/j.1365‐2117.2006.00294.x
    [Google Scholar]
  96. Müller, R. D., Flament, N., Matthews, K. J., Williams, S. E., & Gurnis, M. (2016). Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 441, 60–70. https://doi.org/10.1016/j.epsl.2016.02.025
    [Google Scholar]
  97. Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett‐Moore, N., Hosseinpour, M., Bower, D. J., & Cannon, J. (2016). Ocean basin evolution and global‐scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44, 107–138. https://doi.org/10.1146/annurev‐earth‐060115‐012211
    [Google Scholar]
  98. Naimark, B. M., & Ismail‐Zadeh, A. T. (1995). Numerical models of a subsidence mechanism in intracratonic basins: Application to North American basins. Geophysical Journal International, 123(1), 149–160. https://doi.org/10.1111/j.1365‐246X.1995.tb06667.x
    [Google Scholar]
  99. Nicoll, R., Mory, A., Backhouse, J., Shafik, S., & Glenn, K. (1998).Southern Carnarvon Basin Biozonation and Stratigraphy.
  100. Parra Garcia, M., Sanchez, G., Dentith, M., & George, A. (2014). Regional Structural and Stratigraphic Study of the Canning Basin, Western Australia, Perth. Department of Mines and Petroleum Government of Western Australia.
    [Google Scholar]
  101. Parsons, B., & Daly, S. (1983). The relationship between surface topography, gravity anomalies, and temperature structure of convection. Journal of Geophysical Research: Solid Earth, 88(B2), 1129–1144. https://doi.org/10.1029/JB088iB02p01129
    [Google Scholar]
  102. Pekeris, C. L. (1935). Thermal convection in the interior of the Earth. Geophysical Journal International, 3, 343–367. https://doi.org/10.1111/j.1365‐246X.1935.tb01742.x
    [Google Scholar]
  103. Powell, C. M., Roots, S., & Veevers, J. (1988). Pre‐breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, 155(1–4), 261–283. https://doi.org/10.1016/0040‐1951(88)90269‐7
    [Google Scholar]
  104. Pysklywec, R. N., & Mitrovica, J. X. (1999). The role of subduction‐induced Subsidence in the Evolution of the Karoo Basin. The Journal of Geology, 107(2), 155–164. https://doi.org/10.1086/314338
    [Google Scholar]
  105. Reeckmann, S., & Mebberson, A. (1984). Igneous intrusions in the north‐west Canning Basin and their impact on oil exploration. In P. G.Purcell (Ed.), The Canning Basin WA: Proceedings of Geological Society of Australia/Petroleum Exploration Society of Australia Symposium: Perth, pp. 389–401.
  106. Ricard, Y., Richards, M., Lithgow‐Bertelloni, C., & Le Stunff, Y. (1993). A geodynamic model of mantle density heterogeneity. Journal of Geophysical Research: Solid Earth, 98(B12), 21895–21909. https://doi.org/10.1029/93JB02216
    [Google Scholar]
  107. Richards, M. A., & Hager, B. H. (1984). Geoid anomalies in a dynamic Earth. Journal of Geophysical Research: Solid Earth, 89(B7), 5987–6002. https://doi.org/10.1029/JB089iB07p05987
    [Google Scholar]
  108. Rider, M. H., & Kennedy, M. (2011). The geological interpretation of well logs (3rd ed.). Rider‐French.
    [Google Scholar]
  109. Roberts, G. G., & White, N. (2010). Estimating uplift rate histories from river profiles using African examples. Journal of Geophysical Research: Solid Earth, 115(B2), B02406. https://doi.org/10.1029/2009JB006692
    [Google Scholar]
  110. Rohrman, M. (2015). Delineating the Exmouth mantle plume (NW Australia) from denudation and magmatic addition estimates. Lithosphere, 7(5), 589–600. https://doi.org/10.1130/L445.1
    [Google Scholar]
  111. Romine, K., Southgate, P., Kennard, J., & Jackson, M. (1994).The Ordovician to Silurian phase of the Canning Basin, WA: Structure and sequence evolution. In P. G.Purcell, & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia: Proceedings of West Australian Basins Symposium: Perth, pp. 677–696.
  112. Rudolph, M. L., & Zhong, S. (2014). History and dynamics of net rotation of the mantle and lithosphere. Geochemistry, Geophysics, Geosystems, 15(9), 3645–3657. https://doi.org/10.1002/2014GC005457
    [Google Scholar]
  113. Russell, M., & Gurnis, M. (1994). The planform of epeirogeny: Vertical motions of Australia during the Cretaceous. Basin Research, 6(2–3), 63–76. https://doi.org/10.1111/j.1365‐2117.1994.tb00076.x
    [Google Scholar]
  114. Sandiford, M. (2007). The tilting continent: A new constraint on the dynamic topographic field from Australia. Earth and Planetary Science Letters, 261(1–2), 152–163. https://doi.org/10.1016/j.epsl.2007.06.023
    [Google Scholar]
  115. Sembroni, A., Kiraly, A., Faccenna, C., Funiciello, F., Becker, T. W., Globig, J., & Fernandez, M. (2017). Impact of the lithosphere on dynamic topography: Insights from analogue modeling. Geophysical Research Letters, 44(6), 2693–2702. https://doi.org/10.1002/2017GL072668
    [Google Scholar]
  116. Seton, M., Flament, N., Whittaker, J., Müller, R. D., Gurnis, M., & Bower, D. J. (2015). Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago. Geophysical Research Letters, 42(6), 1732–1740. https://doi.org/10.1002/2015GL063057
    [Google Scholar]
  117. Shaw, R. D., Sexton, M. J., & Zeilinger, I. (1994). The tectonic framework of the Canning Basin, WA, including 1: 2 million structural elements map of the Canning Basin. Australian Geological Survey Organisation.
    [Google Scholar]
  118. Shephard, G., Flament, N., Williams, S., Seton, M., Gurnis, M., & Müller, R. (2014). Circum‐Arctic mantle structure and long‐wavelength topography since the Jurassic. Journal of Geophysical Research: Solid Earth, 119(10), 7889–7908. https://doi.org/10.1002/2014JB011078
    [Google Scholar]
  119. Smith, T., Edwards, D., Kelman, A. P., Laurie, J., le Poidevin, S., Nicoll, R., Mory, A., Haines, P., & Hocking, R. (2013). Canning Basin Biozonation and Stratigraphy.
  120. Steckler, M., & Watts, A. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41(1), 1–13. https://doi.org/10.1016/0012‐821X(78)90036‐5
    [Google Scholar]
  121. Sutherland, R., Spasojevic, S., & Gurnis, M. (2010). Mantle upwelling after Gondwana subduction death explains anomalous topography and subsidence histories of eastern New Zealand and West Antarctica. Geology, 38(2), 155–158. https://doi.org/10.1130/G30613.1
    [Google Scholar]
  122. Tipsword, H., Setzer, F., & Smith, F. L.Jr. (1966).Interpretation of depositional environment in Gulf Coast petroleum exploration from paleoecology and related stratigraphy.
  123. Torsvik, T. H., Steinberger, B., Gurnis, M., & Gaina, C. (2010). Plate tectonics and net lithosphere rotation over the past 150 My. Earth and Planetary Science Letters, 291(1–4), 106–112. https://doi.org/10.1016/j.epsl.2009.12.055
    [Google Scholar]
  124. Vail, P., Mitchum, R.Jr, & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level: Part 4. Global cycles of relative changes of sea level: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. https://doi.org/10.1306/M26490C6
  125. Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., & Liu, M. (2015). 3D palaeogeographic reconstructions of the Phanerozoic versus sea‐level and Sr‐ratio variations. Journal of Palaeogeography, 4(1), 64–84. https://doi.org/10.3724/SP.J.1261.2015.00068
    [Google Scholar]
  126. Vibe, Y., Bunge, H.‐P., & Clark, S. R. (2018). Anomalous subsidence history of the West Siberian Basin as an indicator for episodes of mantle induced dynamic topography. Gondwana Research, 53, 99–109. https://doi.org/10.1016/j.gr.2017.03.011
    [Google Scholar]
  127. Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
    [Google Scholar]
  128. White, N. (1993). Recovery of strain rate variation from inversion of subsidence data. Nature, 366(6454), 449. https://doi.org/10.1038/366449a0
    [Google Scholar]
  129. White, N. (1994). An inverse method for determining lithospheric strain rate variation on geological timescales. Earth and Planetary Science Letters, 122(3–4), 351–371. https://doi.org/10.1016/0012‐821X(94)90008‐6
    [Google Scholar]
  130. Winterbourne, J., White, N., & Crosby, A. (2014). Accurate measurements of residual topography from the oceanic realm. Tectonics, 33(6), 982–1015. https://doi.org/10.1002/2013TC003372
    [Google Scholar]
  131. Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121(1–2), 55–64. https://doi.org/10.1130/B26398.1
    [Google Scholar]
  132. Xie, X., Müller, R. D., Li, S., Gong, Z., & Steinberger, B. (2006). Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7), 745–765. https://doi.org/10.1016/j.marpetgeo.2006.03.004
    [Google Scholar]
  133. Yeates, A., Gibson, D., Towner, R., & Crowe, R. (1984).Regional geology of the onshore Canning Basin, WA. In P. G.Purcell (Ed.), The Canning Basin WA: Proceedings of Geological Society of Australia/Petroleum Exploration Society of Australia Symposium: Perth, pp. 23–57.
  134. Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S., & Müller, R. D. (2019). Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers, 10(3), 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011
    [Google Scholar]
  135. Zhang, N., Zhong, S., & Flowers, R. M. (2012). Predicting and testing continental vertical motion histories since the Paleozoic. Earth and Planetary Science Letters, 317, 426–435. https://doi.org/10.1016/j.epsl.2011.10.041
    [Google Scholar]
  136. Zhong, S., McNamara, A., Tan, E., Moresi, L., & Gurnis, M. (2008). A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9(10), Q10017. https://doi.org/10.1029/2008GC002048
    [Google Scholar]
  137. Zhou, S. (1989). Subsidence history of the Eromanga Basin, Australia. In B. J.O'Neil (Ed.), The Cooper and Eromanga Basins, Australia, Proceedings of Petroleum Exploration Society of Australia, Society of Petroleum Engineers, Australian Society of Exploration Geophysicists (SA Branches), Adelaide, 1989, PESA, pp. 329–335.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12520
Loading
/content/journals/10.1111/bre.12520
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Australia; basin subsidence; dynamic topography; mantle flow; Paleozoic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error