1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Trench basins preserved along the southern margin of the Lhasa Terrane, Tibet, are sedimentologic records of convergent margin processes preceding Cenozoic India–Asia collision. We present new sedimentologic, petrographic and geochronologic data from the Rongmawa Formation and surrounding strata near Dênggar, Tibet, to determine depositional environment, provenance and age. Depositional ages range from ca. 92 to 87 Ma and lithofacies are consistent with deposition by low‐ and high‐density turbidity currents and suspension settling of pelagic detritus in a deep‐marine, trench basin setting. Sandstone modal analyses and U–Pb geochronology indicate that trench basin detritus in this region was derived from the Lhasa Terrane. We interpret that the Cretaceous subduction trench received detritus from an axial sediment dispersal system that transported sediment from headwaters in the central‐southern Lhasa terrane near Lhasa City directly to the trench and then flowed westwards parallel to the trench. The preservation of trench basin strata deposited during Late Cretaceous time compared with the lack of trench deposits prior to ca. 92 Ma and after ca. 80 Ma suggests the margin experienced a period of significant accretion during this interval. In addition, deposition of trench basin strata occurred during Late Cretaceous adakitic magmatism and high‐temperature metamorphism, which are hypothesized to be explained by subduction of an oceanic ridge or subduction zone retreat and related upper plate extension along the southern margin of the Lhasa terrane. Subduction of an oceanic ridge may provide a mechanism to potentially erode forearc basin strata and promote increased sediment delivery directly to the trench.

,

Provenance of Upper Cretaceous trench basin strata in southern Tibet are consistent with derivation from a margin‐parallel sediment dispersal system sourced near Lhasa City. Accumulation of trench strata along the southern margin of Asia during Late Cretaceous time suggests a period of accretion and increased sediment delivery directly to the trench possibly driven by a change in plate convergence and subduction of an oceanic ridge, respectively.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12521
2021-03-15
2024-04-23
Loading full text...

Full text loading...

References

  1. Abrajevitch, A., Ali, J., Aitchison, J., Davis, A., Liu, J., & Ziabrev, S. (2005). Neotethys and the India‐Asia collision: Insights from a palaeomagnetic study of the Dazhuqu ophiolite, southern Tibet. Earth and Planetary Science Letters, 233, 87–102. https://doi.org/10.1016/j.epsl.2005.02.003
    [Google Scholar]
  2. Aitchison, J. C., Davis, A. M., Liu, J., Luo, H., Malpas, J. G., McDermid, I. R. C., Wu, H., Ziabrev, S. V., & Zhou, M.‐F. (2000). Remnants of a Cretaceous intra‐oceanic subduction system within the Yarlung‐Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183, 231–244. https://doi.org/10.1016/S0012‐821X(00)00287‐9
    [Google Scholar]
  3. Aitchison, J. C., Davis, A. M., Abrajevitch, A. V., Ali, J. R., , Liu, J., Luo, H., McDermid, I. R. C., & Ziabrev, S. V. (2003). Stratigraphic and sedimentological constraints on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet. In: Y. Dilek, & P. T. Robinson (Eds.), Ophiolites in Earth History. Geological Society, London, Special Publications, 218, 147–164. https://doi.org/10.1144/GSL.SP.2003.218.01.09
    [Google Scholar]
  4. Aitchison, J. C., McDermid, I., Ali, J. R., Davis, A. M., & Zyabrev, S. (2007). Shoshonites in Southern Tibet record late Jurassic rifting of a Tethyan intraoceanic island arc. The Journal of Geology, 115, 197–213. https://doi.org/10.1086/510642
    [Google Scholar]
  5. Aitchison, J. C., Xia, X., Baxter, A. T., & Ali, J. R. (2011). Detrital zircon U‐Pb ages along the Yarlung‐Tsangpo suture zone, Tibet: Implications for oblique convergence and collision between India and Asia. Gondwana Research, 20, 691–709. https://doi.org/10.1016/j.gr.2011.04.002
    [Google Scholar]
  6. An, W., Hu, X., & Garzanti, E. (2017). Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India‐Asia collision (Yarlung‐Zangbo suture, south Tibet). Gondwana Research, 41, 222–234. https://doi.org/10.1016/j.gr.2015.08.010
    [Google Scholar]
  7. An, W., Hu, X., & Garzanti, E. (2018). Discovery of Upper Cretaceous Neo‐Tethyan trench deposits in south Tibet (Luogangcuo Formation). Lithosphere, 10, 446–459. https://doi.org/10.1130/L690.1
    [Google Scholar]
  8. An, W., Hu, X., Garzanti, E., Boudagher‐Fadel, M., Wang, J., & Sun, G. (2014). Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin, 126, 1595–1613. https://doi.org/10.1130/B31020.1
    [Google Scholar]
  9. Bao, P., Su, L., Wang, J., & Zhai, Q. (2013). Study on the tectonic setting for the ophiolites in Xigaze, Tibet. Acta Geologica Sinica (English Edition), 87(2), 395–425. https://doi.org/10.1111/1755‐6724.12058
    [Google Scholar]
  10. Baxter, A. T., Aitchison, J. C., Ali, J. R., Chan, J.‐S.‐L., & Chan, G. H. N. (2016). Detrital chrome spinel evidence for a Neotethyan intra‐oceanic island arc collision with India in the Paleocene. Journal of Asian Earth Sciences, 128, 90–104. https://doi.org/10.1016/j.jseaes.2016.06.023
    [Google Scholar]
  11. Becerra, J., Contreras‐Reyes, E., & Arriagada, C. (2013). Seismic structure and tectonics of the southern Arauco Basin, south‐central Chile (~38°S). Tectonophysics, 592, 53–66. https://doi.org/10.1016/j.tecto.2013.02.012
    [Google Scholar]
  12. Black, L., Kamo, S., Allen, C., Davis, D., Aleinikoff, J., Valley, J., Mundil, R., Campbell, I., Korsch, R., Williams, I., & Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace‐element‐related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003
    [Google Scholar]
  13. Bouma, A. H. (1962). Sedimentology of some flysch deposits (p. 168). Elsevier.
    [Google Scholar]
  14. Burg, J. P., & Chen, G. M. (1984). Tectonics and structural zonation of southern Tibet, China. Nature, 311, 219–223. https://doi.org/10.1038/311219a0
    [Google Scholar]
  15. Burg, J.‐P., Leyreloup, A., Girardeau, J., & Chen, G. (1987). Structure and metamorphism of a tectonically thickened continental crust: The Yalu Tsangpo suture zone (Tibet). Philosophical Transactions of the Royal Society of Lon‐don Series A: Mathematical, Physical and Engineering Sciences, 321, 67–86. https://doi.org/10.1098/rsta.1987.0005
    [Google Scholar]
  16. Cai, F., Ding, L., Leary, R. J., Wang, H., Xu, Q., Zhang, L., & Yue, Y. (2012). Tectonostratigraphy and provenance of an accretionary complex within the Yarlung‐Zangpo suture zone, southern Tibet: Insights into subduction–accretion processes in the Neo‐Tethys. Tectonophysics, 574–575, 181–192. https://doi.org/10.1016/j.tecto.2012.08.016
    [Google Scholar]
  17. Cai, F. L., Ding, L., Wang, H. Q., Yue, Y. H., & Lai, Q. (2013). Provenance of the Upper Paleocene to Early Eocene strata, Gyantze, South Tibet: Implications for early Himalaya thickening (in Chinese with English abstract). Scientia Geologica Sinica, 48(2), 435–448.
    [Google Scholar]
  18. Cai, F., Ding, L., & Yue, Y. (2011). Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India‐Asia collision. Earth and Planetary Science Letters, 305, 195–206. https://doi.org/10.1016/j.epsl.(2011).02.055
    [Google Scholar]
  19. Cai, F. L., Ding, L., Zhang, Q. H., Xu, X. X., Yue, Y. H., Zhang, L. Y., & Xu, Q. (2008). Provenance and tectonic evolution of the Yalu‐Zangbo peripheral foreland basin (in Chinese with English abstract). Acta Petrologica Sinica, 24, 430–446.
    [Google Scholar]
  20. Cao, R. L. (1981). Petrological characteristics of sediments within the trench and the ophiolitic belts of the Yarlung Zangbo suture zone and their geological significances. Geosciences, 3, 247–254.
    [Google Scholar]
  21. Chan, G. H. N., Aitchison, J. C., Crowley, Q. G., Horstwood, M. S. A., Searle, M. P., Parrish, R. R., & Chan, J.‐S.‐L. (2015). U‐Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Research, 27, 719–732. https://doi.org/10.1016/j.gr.2013.06.016
    [Google Scholar]
  22. Chen, J.‐L., Xu, J.‐F., Yu, H.‐X., Wang, B.‐D., Wu, J.‐B., & Feng, Y.‐X. (2015). Late Cretaceous high‐Mg# granitoids in southern Tibet: Implications for the early crustal thickening and tectonic evolution of the Tibetan Plateau?Lithosphere, 232, 12–22. https://doi.org/10.1016/j.lithos.2015.06.020
    [Google Scholar]
  23. Chen, Y., Ding, L., Li, Z., Laskowski, A. K., Li, J., Baral, U., Qasim, M., & Yue, Y. (2020). Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: Implications to precise timing on the initial Lhasa‐Qiangtang collision. Tectonophysics, 775, 228311. https://doi.org/10.1016/j.tecto.2019.228311
    [Google Scholar]
  24. Chu, M.‐F., Chung, S.‐L., Song, B., Liu, D., O’Reilly, S., Pearson, N. J., Ji, J., & Wen, D.‐J. (2006). Zircon U‐Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34, 745–748. https://doi.org/10.1130/G22725.1
    [Google Scholar]
  25. Chung, S.‐L., Chu, M.‐F., Zhang, Y., Xie, Y., Lo, C.‐H., Lee, T.‐Y., Lan, C.‐Y., Li, X., Zhang, Q., & Wang, Y. (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post‐collisional magmatism. Earth‐Science Reviews, 68(3–4), 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001
    [Google Scholar]
  26. Clift, P., & Vannucchi, P. (2004). Controls on tectonic accretion v. erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42, 1–31. https://doi.org/10.1029/2003rg000127
    [Google Scholar]
  27. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to de‐rive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [Google Scholar]
  28. Dai, J., Wang, C., Polat, A., Santosh, M., Li, Y., & Ge, Y. (2013). Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172–173, 1–54. https://doi.org/10.1016/j.lithos.2013.03.011
    [Google Scholar]
  29. DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics, 33, 824–849. https://doi.org/10.1002/2014TC003522
    [Google Scholar]
  30. Dewey, J. F., Shackleton, R. M., Chang, C. F., & Sun, Y. Y. (1988). The tectonic evolution of the Tibetan plateau. Philosophical Transactions of the Royal Society of London, Series A, 327, 379–413. https://doi.org/10.1098/rsta.1988.0135
    [Google Scholar]
  31. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G.Zuffa (Ed.), Provenance of Arenites (pp. 333–361). NATO ASI Series D.
    [Google Scholar]
  32. Dickinson, W. R., Beard, S. L., Brakenridge, G. R., Erjavec, J. L., Furguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235. https://doi.org/10.1130/0016‐7606(1983)94<222:PONAPS>2.0.CO;2
    [Google Scholar]
  33. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  34. Ding, L., Kapp, P., & Wan, X. Q. (2005). Paleocene‐Eocene record of ophiolite obduction and initial India‐Asia collision, south central Tibet. Tectonics, 24, 1–18. https://doi.org/10.1029/2004tc001729
    [Google Scholar]
  35. Ding, L., Kapp, P., Zhong, D., & Deng, W. (2003). Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10), 1833–1865. https://doi.org/10.1093/petrology/egg061
    [Google Scholar]
  36. Dupuis, C., Hébert, R., Dubois‐Côté, V., Guilmette, C., Wang, C. S., Li, Y. L., & Li, Z. J. (2005). The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): New insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25, 937–960. https://doi.org/10.1016/j.jseaes.2004.09.004
    [Google Scholar]
  37. Dürr, S. B. (1996). Provenance of Xigaze fore‐arc basin clastic rocks (Cretaceous, south Tibet). Geological Society of America Bulletin, 108, 669–684. https://doi.org/10.1130/0016‐7606(1996)108<0669:POXFAB>2.3.CO;2
    [Google Scholar]
  38. Einsele, G., Liu, B., Dürr, S., Frisch, W., Liu, G., Luterbacher, H. P., Ratschbacher, L., Ricken, W., Wendt, J., Wetzel, A., Yu, G., & Zheng, H. (1994). The Xigaze forearc basin evolution and facies architecture (Cretaceous, Tibet). Sedimentary Geology, 90,1–32. 1016/0037‐0738(94)90014‐0
    [Google Scholar]
  39. Fu, H., Hu, X., Crouch, E. M., An, W., Wang, J., & Garzanti, E. (2018). Upper Cretaceous trench deposits of the Neo‐Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China. Science China Earth Sciences, 61, 1204–1220. https://doi.org/10.1007/s11430‐017‐9223‐5
    [Google Scholar]
  40. Garzanti, E. (2016). From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sedimentary Geology, 336, 3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010
    [Google Scholar]
  41. Gazzi, P. (1966). Le Arenarie del Flysche Sopracretaceo dell’Appennino Modenese: Correlazioni con Flysch di Monghidoro [The Upper Cretaceous Flysch of the Modenese Apennines: Correlation with the Monghi‐doro Flysch]. Mineralogica Et Petrographica Acta, 12, 69–97.
    [Google Scholar]
  42. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, A., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., & Yin, A. (2011). Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30, 1–27. https://doi.org/10.1029/2011tc002868
    [Google Scholar]
  43. Gehrels, G., & Pecha, M. (2014). Detrital zircon U‐Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10(1), 49–65. https://doi.org/10.1130/ges00889.1
    [Google Scholar]
  44. Gehrels, G. E., Valencia, V., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9, Q03017. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  45. Gibbons, A. D., Zahirovic, S., Müller, R. D., Whittaker, J. M., & Yatheesh, V. (2015). A tectonic model reconciling evidence for the collisions between India, Eurasia and intra‐oceanic arcs of the central‐eastern Tethys. Gondwana Research, 28(2), 451–492. https://doi.org/10.1016/j.gr.2015.01.001
    [Google Scholar]
  46. Göpel, C., Allègre, C. J., & Xu, R.‐H. (1984). Lead isotopic study of the Xigaze ophiolite (Tibet): The problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth and Planetary Science Letters, 69, 301–310. https://doi.org/10.1016/0012‐821X(84)90189‐4
    [Google Scholar]
  47. Guilmette, C., Hébert, R., Bédard, É., Wang, C. S., Ullrich, T. D., & Dostal, J. (2007). Saga ophiolite, Yarlung Zangbo suture Zone, Tibet: field relationships, discovery of garnet–pyroxene amphibolite and Ar/Ar ages. In: The 22nd Himalayan–Karakoram–Tibet Workshop, 22–25 May 2007, Hong Kong, Abstracts Volume, 37.
  48. Guilmette, C., Hébert, R., Dostal, J., Indares, A., Ullrich, T., Bédard, É., & Wang, C. (2012). Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo‐Tethyan supra‐subduction zone and consequences on basin closing. Gondwana Research, 22, 398–414. https://doi.org/10.1016/j.gr.2011.10.012
    [Google Scholar]
  49. Guilmette, C., Hébert, R., Dupuis, C., Wang, C., & Li, Z. (2008). Metamorphic history and geodynamic significance of high‐grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area. Tibet. Journal of Asian Earth Sciences, 32, 423–437. https://doi.org/10.1016/j.jseaes.2007.11.013
    [Google Scholar]
  50. Guo, L., Liu, Y., Liu, S., Cawood, P. A., Wang, Z., & Liu, H. (2013). Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: Implications for early history of the Neo‐Tethys. Lithos, 179, 320–333. https://doi.org/10.1016/j.lithos.2013.06.011
    [Google Scholar]
  51. He, S., Kapp, P., DeCelles, P. G., Gehrels, G. E., & Heizler, M. (2007). Cretaceous‐Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics, 433, 15–37. https://doi.org/10.1016/j.tecto.2007.01.005
    [Google Scholar]
  52. Hebert, R., Bezard, R., Guilmette, C., Dostal, J., Wang, C. S., & Liu, Z. F. (2012). The Indus‐Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo‐Tethys. Gondwana Research, 22, 377–397. https://doi.org/10.1016/j.gr.2011.10.013
    [Google Scholar]
  53. Hu, X., Garzanti, E., & An, W. (2015). Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology. Journal of Paleogeography, 4, 85–98. https://doi.org/10.3724/SP.J.1261.2015.00069
    [Google Scholar]
  54. Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., & Webb, A. (2016). The timing of India‐Asia collision onset – facts, theories, controversies. Earth‐Science Reviews, 160, 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
    [Google Scholar]
  55. Huang, W., Van Hinsbergen, D. J. J., Maffione, M., Orme, D. A., Dupont‐Nivet, G., Guilmette, C., Ding, L., Guo, Z., & Kapp, P. (2015). Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth and Planetary Science Letters, 415, 142–153. https://doi.org/10.1016/j.epsl.2015.01.032
    [Google Scholar]
  56. Jessup, M. J., Langille, J. M., Diedesch, T. F., & Cottle, J. M. (2019). Gneiss dome formation in the Himalaya and southern Tibet. Geological Society, London, Special Publications, 483, 401–422. https://doi.org/10.1144/SP483.15
    [Google Scholar]
  57. Ji, W. Q., Wu, F. Y., Liu, C. Z., & Chung, S. L. (2009). Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China Series D: Earth Sciences, 52(9), 1240–1261. https://doi.org/10.1007/s11430‐009‐0131‐y
    [Google Scholar]
  58. Jiang, Z.‐Q., Wang, Q., Li, Z.‐X., Wyman, D. A., Tang, G.‐J., Jia, X.‐H., & Yang, Y.‐H. (2012). Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): Slab melting and implications for Cu‐Au mineralization. Journal of Asian Earth Sciences, 53, 67–81. https://doi.org/10.1016/j.jseaes.2012.02.010
    [Google Scholar]
  59. Kang, Z.‐Q., Xu, J.‐F., Wilde, S. A., Feng, Z. H., Chen, J. L., Wang, B. D., Fu, W. C., & Pan, H. B. (2014). Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo‐Tethys and Gangdese Magmatic Arc. Lithos, 200–201, 157–168. https://doi.org/10.1016/j.lithos.2014.04.019
    [Google Scholar]
  60. Kapp, P., & DeCelles, P. G. (2019). Mesozoic‐Cenozoic geological evolution of the Himalayan‐Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319(3), 159–254. https://doi.org/10.2475/03.2019.01
    [Google Scholar]
  61. Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M., & Ding, L. (2007). Geological records of the Cretaceous Lhasa‐Qiangtang and Indo‐Asian collisions in the Nima basin area, central Tibet. Geological Society of America Bulletin, 119, 917–932.
    [Google Scholar]
  62. Karig, D. E. (1974). Tectonic erosion at trenches. Earth and Planetary Science Letters, 21, 209–212. https://doi.org/10.1016/0012‐821X(74)90056‐9
    [Google Scholar]
  63. Karig, D. E., & Sharman, G. F. (1975). Subduction and Accretion in Trenches. Geological Society of America Bulletin, 86, 377–389. https://doi.org/10.1130/0016‐7606(1975)86<377:SAAIT>2.0.CO;2
    [Google Scholar]
  64. Laskowski, A. K., Kapp, P., Ding, L., Campbell, C., & Liu, X. H. (2017). Tectonic evolution of the Yarlungsuture zone, Lopu Range region, southern Tibet. Tectonics, 36(1), 108–136. https://doi.org/10.1002/2016TC004334
    [Google Scholar]
  65. Laskowski, A. K., Orme, D. A., Cai, F., & Ding, L. (2019). The Ancestral Lhasa River: A Late Cretaceous trans‐arc river that drained the proto–Tibetan Plateau. Geology, 47(11), 1029–1033. https://doi.org/10.1130/g46823.1
    [Google Scholar]
  66. Leier, A. L., DeCelles, P. G., Kapp, P., & Gehrels, G. E. (2007). Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77, 809–825. http://dx.doi.org/10.2110/jsr.2007.078
    [Google Scholar]
  67. Li, G., Sandiford, M., Boger, S., Liu, X., & Wei, L. (2015). Provenance of the Upper Cretaceous to Lower Tertiary sedimentary relicts in the Renbu Mélange Zone, within the Indus‐Yarlung Suture Zone. The Journal of Geology, 123, 39–54. https://doi.org/10.1086/680207?ref=no‐x‐route:f9fa42b40529df98fc7109d33c73e439
    [Google Scholar]
  68. Liu, F., Yang, J.‐S., Dilek, Y., Xu, Z.‐Q., Xu, X.‐Z., Liang, F.‐H., Chen, S.‐Y., & Lian, D.‐Y. (2015). Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung‐Zangbo Suture zone: Plume‐influenced continental margin‐type oceanic lithosphere in southern Tibet. Gondwana Research, 27, 701–718. https://doi.org/10.1016/j.gr.2014.08.002
    [Google Scholar]
  69. Lowe, D. R. (1982). Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Petrology, 52, 279–297.
    [Google Scholar]
  70. Ma, A. L., Hu, X. M., Garzanti, E., Han, Z., & Lai, W. (2017). Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa‐Qiangtang collision timing. Journal of Geophysical Research: Solid Earth, 122(7), 4790–4813. https://doi.org/10.1002/2017JB014211
    [Google Scholar]
  71. Ma, L., Wang, Q., Wyman, D. A., Jiang, Z.‐Q., Wu, F.‐Y., Li, X.‐H., Yang, J.‐H., Gou, G.‐N., & Guo, H.‐F. (2015). Late Cretaceous back‐arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr‐Nd‐Hf‐O isotopic evidence from Dagze diabases. Journal of Geophysical Research‐Solid Earth, 120(9), 6159–6181. https://doi.org/10.1002/2015JB011966
    [Google Scholar]
  72. Ma, X., Xu, Z., Meert, J., & Santosh, M. (2017). Early Jurassic intra‐oceanic arc system of the Neotethys Ocean: Constraints from andesites in the Gangdese magmatic belt, south Tibet. Island Arc, 26, 1–14. https://doi.org/10.1016/j.epsl.2010.11.005
    [Google Scholar]
  73. Maffione, M., Thieulot, C., Van Hinsbergen, D. J. J., Morris, A., Plümper, O., & Spakman, W. (2015). Dynamics of intra‐oceanic subduction initiation, part 1: Oceanic detachment fault inversion and the formation of forearc ophiolites. Geochemistry, Geophysics, Geosystems, 16, 1753–1770. https://doi.org/10.1002/2015GC005746
    [Google Scholar]
  74. Malpas, J., Zhou, M.‐F., Robinson, P. T., & Reynolds, P. H.2003). Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. In: Y. Dilek, & P. T. Robinson (Eds.), Ophiolites in earth history. Geological Society, London, Special Publications, 218, 191–206. https://doi.org/10.1144/GSL.SP.2003.218.01.11
    [Google Scholar]
  75. Meng, F.‐Y., Zhao, Z., Zhu, D.‐C., Mo, X., Guan, Q., Huang, Y., Dong, G., Zhou, S., DePaolo, D. J., Harrison, T. M., Zhang, Z., Liu, J., Liu, Y., Hu, Z., & Yuan, H. (2014). Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: Products of back‐arc extension of Neo‐Tethyan Ocean?Gondwana Research, 26(2), 505–520. https://doi.org/10.1016/j.gr.2013.07.017
    [Google Scholar]
  76. Metcalf, K., & Kapp, P. (2017). The Yarlung suture Mélange, Lopu Range, southern Tibet: Provenance of sandstone blocks and transition from oceanic subduction to continental collision. Gondwana Research, 48, 15–33. https://doi.org/10.1016/j.gr.2017.03.002
    [Google Scholar]
  77. Metcalf, K., & Kapp, P. (2019). History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet Geological Society. London, Special Publications, 483(1), 517–554. https://doi.org/10.1144/sp483.12
    [Google Scholar]
  78. Moore, G. F., & Karig, D. E. (1976). Development of sedimentary basins on the lower trench slope. Geology, 4(11), 693–697. https://doi.org/10.1130/0091‐7613(1976)4<693:DOSBOT>2.0.CO;2
    [Google Scholar]
  79. Murphy, M. A., & Yin, A. (2003). Structural evolution and sequence of thrusting in the Tethyan fold‐thrust belt and Indus‐Yalu suture zone, southwest Tibet. Geological Society of America Bulletin, 115, 21–34. https://doi.org/10.1130/0016‐7606(2003)115<0021:SEASOT>2.0.CO;2
    [Google Scholar]
  80. Mutti, E. (1992). Turbidite Sandstones (p. 275). Asip, Istituto di Geologia Universita di Parma, Parma.
    [Google Scholar]
  81. Orme, D. A., Carrapa, B., & Kapp, P. (2015). Sedimentology provenance and geochronology of the Upper Creta‐ceous–Lower Eocene Western Xigaze Forearc Basin, Southern Tibet. Basin Research, 27, 387–411. https://doi.org/10.1111/bre.12080
    [Google Scholar]
  82. Orme, D. A., & Laskowski, A. K. (2016). Basin analysis of the Albian‐Santonian Xigaze Forearc, Lazi Region, South‐Central Tibet. Journal of Sedimentary Research, 86, 894–913. https://doi.org/10.2110/jsr.2016.59
    [Google Scholar]
  83. Paces, J. B., & Miller, J. D. (1993). Precise U‐Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98, 13997–14013. https://doi.org/10.1029/93JB01159
    [Google Scholar]
  84. Pan, G., Ding, J., Yao, D., & Wang, L. (2004). Geological map of Qinghai‐Xizang (Tibet) and adjacent areas: Chengdu Cartographic Publishing House, scale 1:1,500,000, 6 sheets.
  85. Pullen, A., Ibanez‐Mejia, M., Gehrels, G., Giesler, D., & Pecha, M. (2018). Optimization of a laser ablation–single collector–inductively coupled plasma–mass spectrometer (Thermo Element 2) for accurate, precise, and efficient zircon U‐Th‐Pb geochronology. Geochemistry Geo‐physics Geosystems, 19, 3689–3705. https://doi.org/10.1029/2018GC007889
    [Google Scholar]
  86. Ratschbacher, L., Frisch, W., Liu, G., & Chen, C. (1994). Distributed deformation in southern and western Tibet during and after the India‐Asia collision. Journal of Geophysical Research: Solid Earth, 99, 19917–19945. https://doi.org/10.1029/94JB00932
    [Google Scholar]
  87. Royden, L. H. (1993). The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12(2), 303–325. https://doi.org/10.1029/92TC02248
    [Google Scholar]
  88. Schmitz, M. D., Bowring, S. A., & Ireland, T. (2003). Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U‐Pb geochronological standard: New high‐precision isotope dilution thermal ionization mass spectrometry results. Geochimicaet Cosmochimica Acta, 67(19), 3665–3672. https://doi.org/10.1016/S0016‐7037(03)00200‐X
    [Google Scholar]
  89. Scholl, D. W., Christensen, M. N., von Huene, R., & Marlow, M. S. (1970). Peru‐Chile trench sediments and sea‐floor spreading. Geological Society of America Bulletin, 81, 1339–1360. https://doi.org/10.1130/0016‐7606(1970)81[1339:PTSASS]2.0.CO;2
    [Google Scholar]
  90. Shackleton, R. M. (1981). Structure of Southern Tibet: Report on a traverse from Lhasa to Khatmandu organised by Academia Sinica. Journal of Structural Geology, 3, 97–105. https://doi.org/10.1016/0191‐8141(81)90060‐2
    [Google Scholar]
  91. Sharman, G. R., Sharman, J. P., & Sylvester, Z.(2018). detritalPy: A Python‐based toolset for visualizing and analyzing detrital geo‐thermochronologic data. The Depositional Record, 4, 202–215. https://doi.org/10.1002/dep2.45
    [Google Scholar]
  92. Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 1012. https://doi.org/10.1029/2001RG000108
    [Google Scholar]
  93. Sun, G., Hu, X., Xu, Y., & BouDagher‐Fadel, M. K. (2019). Discovery of Middle Jurassic trench deposits in the Bangong‐Nujiang suture zone: Implications for the timing of Lhasa‐Qiangtang initial collision. Tectonophysics, 750, 344–358. https://doi.org/10.1016/j.tecto.2018.12.001
    [Google Scholar]
  94. Sun, G.‐Y., Hu, X.‐M., Zhu, D.‐C., Hong, W.‐T., Wang, J.‐G., & Wang, Q. (2015). Thickened juvenile lower crust‐derived ~90 Ma adakitic rocks in the central Lhasa terrane. Tibet. Lithos, 224–225, 225–239. https://doi.org/10.1016/j.lithos.2015.03.010
    [Google Scholar]
  95. Tapponnier, P., Mercier, J. L., Proust, F., Andrieux, J., Armijo, R., Bassoullet, J. P., Brunel, M., Burg, J. P., Colchen, M., Dupré, B., Girardeau, J., Marcoux, J., Mascle, G., Matte, P., Nicolas, A., Tingdong, L. I., Xuchang, X., Chenfa, C., Paoyu, L., … Hongrong, Q. (1981). The Tibetan side of the India‐Eurasia collision. Nature, 294, 405–410. https://doi.org/10.1038/294405a0
    [Google Scholar]
  96. Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., & Gassmoller, R. (2011). Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. Journal of Geophysical Research. Solid Earth, 116, B06101. https://doi.org/10.1029/2010jb008051
    [Google Scholar]
  97. Vannucchi, P., Sak, P., Morgan, J., Ohkushi, K., & Ujiie, K. (2013). Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology, 41(9), 995–998. https://doi.org/10.1130/g34355.1
    [Google Scholar]
  98. von Huene, R., & Scholl, D. W. (1991). Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Reviews of Geophysics, 29, 279–316. https://doi.org/10.1029/91RG00969
    [Google Scholar]
  99. Wang, C., Li, X., Liu, Z., Li, Y., Jansa, L., Dai, J., & Wei, Y. (2012). Revision of the Cretaceous‐Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 22(2), 415–433. https://doi.org/10.1016/j.gr.2011.09.014
    [Google Scholar]
  100. Wang, H.‐Q., Ding, L., Cai, F., Xu, Q., Li, S., Fu, J.‐J., Lai, Q.‐Z., Yue, Y.‐H., & Li, X. (2017). Early Tertiary deformation of the Zhongba‐Gyangze Thrust in central‐southern Tibet. Gondwana Research, 41, 235–248. https://doi.org/10.1016/j.gr.2015.02.017
    [Google Scholar]
  101. Wang, H.‐Q., Ding, L., Kapp, P., Cai, F., Clinkscales, C., Xu, Q., Yue, Y. H., Li, S., & Fan, S. Q. (2018). Earliest Cretaceous accretion of Neo‐Tethys oceanic subduction along the Yarlung Zangbo Suture Zone, Sangsang area, southern Tibet. Tectonophysics, 744, 373–389. https://doi.org/10.1016/j.tecto.2018.07.024
    [Google Scholar]
  102. Wang, Q., Zhu, D.‐C., Zhao, Z.‐D., Liu, S.‐A., Chung, S.‐L., Li, S.‐M., Liu, D., Dai, J.‐G., Wang, L.‐Q., & Mo, X.‐X. (2014). Origin of the ca. 90 Ma magnesia‐rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa‐Qiangtang collision zone. Lithos, 198–199, 24–37. https://doi.org/10.1016/j.lithos.2014.03.019
    [Google Scholar]
  103. Wei, Y. S., Wang, C. S., Li, X. H., & Cao, K. (2006). Provenance analysis of Paleogene Gyachala Formation in Southern Tibet: Implication for the initiation of collision between India and Asia. Journal of Mineralogical and Petrological Sciences, 26, 46–55.
    [Google Scholar]
  104. Wei, Y., Zhao, Z., Niu, Y., Zhu, D.‐C., Liu, D., Wang, Q., Hou, Z., Mo, X., & Wei, J. (2017). Geochronology and geo‐chemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back‐arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 278–281, 477–490. https://doi.org/10.1016/j.lithos.2017.02.013
    [Google Scholar]
  105. Wen, D.‐R., Liu, D., Chung, S.‐L., Chu, M.‐F., Ji, J., Zhang, Q., Song, B., Lee, T.‐Y., Yeh, M.‐W., & Lo, C.‐H. (2008). Zircon SHRIMP U‐Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3–4), 191–201. https://doi.org/10.1016/j.chemgeo.2008.03.003
    [Google Scholar]
  106. Wu, F.‐Y., Ji, W.‐Q., Liu, C.‐Z., & Chung, S.‐L. (2010). Detrital zircon U‐Pb and Hf isotopic data from the Xigaze fore‐arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271, 13–25. https://doi.org/10.1016/J.Chemgeo.2009.12.007
    [Google Scholar]
  107. Wu, F. Y., Ji, W. Q., Wang, J. G., Liu, C. Z., Chung, S. L., & Clift, P. D. (2014). Zircon U‐Pb and Hf isotopic constraints on the onset time of India‐Asia collision. American Journal of Science, 314, 548–579.
    [Google Scholar]
  108. Xiong, Q., Griffin, W. L., Zheng, J.‐P., O’Reilly, S. Y., Pearson, N. J., Xu, B., & Belousova, E. A. (2016). South‐ward trench migration at c. 130–120 Ma caused accretion of the Neo‐Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 438, 57–65. https://doi.org/10.1016/j.epsl.2016.01.014
    [Google Scholar]
  109. Xiong, Q., Griffin, W. L., Zheng, J. P., Pearson, N. J., & O’Reilly, S. Y. (2017). Two‐layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry, Geophysics, Geosystems, 18, 1189–1213. https://doi.org/10.1002/2016GC006681
    [Google Scholar]
  110. Zhang, L. L., Liu, C. Z., Wu, F. Y., Ji, W. Q., & Wang, J. G. (2014). Zedong terrane revisited: An intra‐oceanic arc within Neo‐Tethys or a part of the Asian active continental margin?Journal of Asian Earth Sciences, 80, 34–55. https://doi.org/10.1016/j.jseaes.2013.10.029
    [Google Scholar]
  111. Zhang, Z., Zhao, G., Santosh, M., Wang, J., Dong, X., & Shen, K. (2010). Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo‐Tethyan mid‐ocean ridge subduction?Gondwana Research, 17(4), 615–631. https://doi.org/10.1016/j.gr.2009.10.007
    [Google Scholar]
  112. Zhou, Y., Wu, H., Zheng, X., Wang, D., Zhang, Q., Li, D., & Zhang, X. (1982). Geology of the ophiolite of Xigaze Prefecture in South Xizang (Tibet). China. Dizhi Kexue (Sci. Geol., Sin.), 11, 30–40.
    [Google Scholar]
  113. Zhu, D. C., Pan, G. T., Chung, S. L., Liao, Z. L., Wang, L. Q., & Li, G. M. (2008). SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50, 442–471. https://doi.org/10.2747/0020‐6814.50.5.442
    [Google Scholar]
  114. Zhu, D.‐C., Wang, Q., Chung, S. L., Cawood, P. A., & Zhao, Z.‐D. (2018). Gangdese magmatism in southern Tibet and India‐Asia convergence since 120 Ma. Geological Society of London, Special Publications, 483, 583–604. https://doi.org/10.1144/SP483.14
    [Google Scholar]
  115. Zhu, D. C., Zhao, Z. D., Niu, Y., Mo, X. X., & Chung, S. L. (2011). The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301, 241–255. https://doi.org/10.1016/j.epsl.2010.11.005
    [Google Scholar]
  116. Ziabrev, S. V., Aitchison, J. C., Abrajevitch, A. V., , Davis, A. M., & Luo, H. (2003). Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung‐Tsangpo suture zone. Tibet. Journal of the Geological Society, London, 160, 591–599. https://doi.org/10.1144/0016‐764902‐107
    [Google Scholar]
  117. Ziabrev, S. V., Aitchison, J. C., Abrajevitch, A. V., Davis, A. M., & Luo, H. (2004). Bainang Terrane, Yarlung‐Tsangpo suture, southern Tibet (Xizang, China): A record of intra‐Neotethyan subduction–accretion processes preserved on the roof of the world. Journal of the Geological Society, London, 161, 523–539. https://doi.org/10.1144/0016‐764903‐099
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12521
Loading
/content/journals/10.1111/bre.12521
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error