1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

Unconformity‐bounded carbonates in the Cambrian of West Avalonia reflect syn‐rift tectonic pulses associated with hydrothermal activity. These carbonate beds host vein networks of carbonate‐hosted polymetallic sulfide‐sulfate‐oxide mineral associations (Pb–Cu–Fe–barite stockworks).

, Abstract

In the Avalon Zone of SE Newfoundland, several Terreneuvian to Cambrian Series 2 carbonate bodies occur associated with paraconformities and onlapping geometries. Their stratigraphic discontinuities and related gaps represent syn‐rift episodes characterized by sharply tilted and downfaulted blocks and deposition of chaotic megabreccia beds and conglomerates on neighbouring footwall areas. Microbial and shelly carbonate production nucleated on tectonically unstable palaeohorsts, where stromatolitic crusts and mats commonly reflect the onset of hiatal stratigraphic diastems, and mud‐mounds the episodic establishment of calm conditions. Short‐term uplift episodes of rift shoulders led to unroofing of the Neoproterozoic basement (yielding granitoid clasts and input of reworked exotic clasts and allochthonous fossils from underlying Cambrian strata), localized subaerial exposure and karst features, and the development of synsedimentary fracture networks that provided favourable conduits and pathways for hydrothermal fluids. These carbonate beds host vein networks of carbonate‐hosted polymetallic sulphide‐sulphate‐oxide mineral associations (Pb–Cu–Fe–barite stockworks). The mixture of parautochthonous and allochthonous bioclastic assemblages points to the record of event‐concentration strata, which may clarify the long stratigraphic ranges of some involved microfossils. The Cambrian Avalonia rift and the offshore to basinal rift sector of the neighbouring Atlas‒Ossa‐Morena rift, preserved in the Moroccan northern High Atlas and Coastal Meseta, share common temperate‐water carbonate facies and build‐ups, lacking ‘subtropical’ indicators such as archaeocyathan‐microbial reefs, ooidal shoals or evaporitic pseudomorphs. These diagnostic facies and minerals occur only in relatively stable, shallow‐water rift branches, such as those preserved in the Anti‐Atlas and the Ossa‐Morena Zone (Iberian Massif).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12525
2021-03-15
2024-04-25
Loading full text...

Full text loading...

References

  1. Allen, M. B., Anderson, L., Searle, R. C., & Buslov, M. (2006). Oblique rift geometry of the West Siberian Basin: Tectonic setting for the Siberian flood basalts. Journal of the Geological Society of London, 163, 1–4. https://doi.org/10.1144/0016‐76492006‐096
    [Google Scholar]
  2. Álvaro, J. J. (2013). Late Ediacaran syn‐rift/post‐rift transition and related fault‐driven hydrothermal systems in the Anti‐Atlas Mountains, Morocco. Basin Research, 25, 348–360. https://doi.org/10.1111/bre.12003
    [Google Scholar]
  3. Álvaro, J. J. (2014). Rift, pull‐apart rift, and continental drift crossword puzzles across the lower–middle Cambrian transition of Iberia and Morocco. GFF, 136, 2–5. https://doi.org/10.1080/11035897.2014.886615
    [Google Scholar]
  4. Álvaro, J. J., Ahlberg, P., Babcock, L. E., Bordonaro, O. L., Choi, D. K., Cooper, R. A., Ergaliev, G. K., Gapp, I. W., Ghobadi Pour, M., Hughes, N. C., Jago, J. B., Korovnikov, I., Laurie, J. R., Lieberman, B. S., Paterson, J. R., Pegel, T. V., Popov, L. E., Rushton, A. W. A., Sukhov, S., … Żylińska, A. (2013b). Global Cambrian trilobite biogeography assessed using parsimony analysis of endemicity. In: D. A. T. Harper, & T. Servais (Eds.), Early Palaeozoic Biogeography and Palaeogeography. Geological Society, London, Special Publications, 38, 269–292.
    [Google Scholar]
  5. Álvaro, J. J., Bellido, F., Gasquet, D., Pereira, F., Quesada, C., & Sánchez‐García, T. (2014). Diachronism of late Neoproterozoic‐Cambrian arc‐rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa‐Morena Zone. Journal of African Earth Sciences, 98, 113–132.
    [Google Scholar]
  6. Álvaro, J. J., Benziane, F., Thomas, R., Walsh, G. J., & Yazidi, A. (2014). Neoproterozoic‐cambrian stratigraphic framework of the anti‐atlas and ouzellagh promontory (High Atlas), Morocco. Journal of African Earth Sciences, 98, 19–33.
    [Google Scholar]
  7. Álvaro, J. J., & Clausen, S. (2005). Major geodynamic and sedimentary constraints on the chronostratigraphic correlation of the Lower‐Middle Cambrian transition in the western Mediterranean region. Geosciences Journal, 9, 145–160. https://doi.org/10.1007/BF02910576
    [Google Scholar]
  8. Álvaro, J. J., & Clausen, S. (2006). Microbial crusts as indicators of stratigraphic diastems in the Cambrian Micmacca Breccia, Moroccan Atlas. Sedimentary Geology, 185, 255–265.
    [Google Scholar]
  9. Álvaro, J. J., & Clausen, S. (2007). Botoman (Lower Cambrian) turbid‐ and clear‐water reefs and associated environments from the High Atlas, Morocco. In J. J. Álvaro, M. Aretz, F. Boulvain, A. Munnecke, D. Vachard, & E. Vennin (Eds.), Palaeozoic reefs and bioaccumulations: climatic and evolutionary controls. Geological Society, London, Special Publications, 275, 51–70.
    [Google Scholar]
  10. Álvaro, J. J., & Clausen, S. (2008). Paleoenvironmental significance of Cambrian hiatal shell accumulations in an intracratonic aborted rift, Atlas Mountains, Morocco. In B. R. Pratt, & C. Holmden (Eds.), Geological Association of Canada, Special Paper, 48, 39–54.
    [Google Scholar]
  11. Álvaro, J. J., Clausen, S., El Albani, A., & Chellai, E. H. (2006). Facies distribution of Lower‐Cambrian cryptic microbial and epibenthic archaeocyathan‐microbial communities in the western Anti‐Atlas, Morocco. Sedimentology, 53, 35–53.
    [Google Scholar]
  12. Álvaro, J. J., & Debrenne, F. (2010). The great atlasian reef complex: An early cambrian subtropical fringing belt that bordered West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 120–132. https://doi.org/10.1016/j.palaeo.2009.11.022
    [Google Scholar]
  13. Álvaro, J. J., Elicki, O., Geyer, G., Rushton, A. W. A., & Shergold, J. H. (2003). Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 5–35.
    [Google Scholar]
  14. Álvaro, J. J., Ezzouhairi, H., Ait Ayad, N., Charif, A., Popov, L. E., & Ribeiro, M. L. (2008). Short‐term episodes of carbonate productivity in a Cambrian uplifted rift shoulder of the Coastal Meseta, Morocco. Gondwana Research, 14, 410–428.
    [Google Scholar]
  15. Álvaro, J. J., Ezzouhairi, H., Clausen, S., Ribeiro, M. L., & Solá, A. R. (2015). Syn‐rift unconformities punctuating the lower–middle Cambrian transition of the Atlas Rift, Morocco. International Journal of Earth Sciences, 104, 753–773.
    [Google Scholar]
  16. Álvaro, J. J., Rouchy, J. M., Bechstädt, T., Boucot, A., Boyer, F., Debrenne, F., Moreno‐Eiris, E., Perejón, A., & Vennin, E. (2000). Evaporitic constraints on the southward drifting of the western Gondwana margin during Early Cambrian times. Palaeogeography, Palaeoclimatology, Palaeoecology, 160, 105–122.
    [Google Scholar]
  17. Álvaro, J. J., Shields, G. A., Ahlberg, P., Jensen, S., & Palacios, T. (2016). Ediacaran‐Cambrian phosphorites from the western margins of Gondwana and Baltica. Sedimentology, 63(2), 350–377. https://doi.org/10.1111/sed.12217
    [Google Scholar]
  18. Álvaro, J. J., & Subías, I. (2011). Interplay of phosphogenesis and hydrothermalism in the latest Ediacaran rift of the High Atlas, Morocco. Journal of African Earth Sciences, 59, 51–60. https://doi.org/10.1016/j.jafrearsci.2010.08.004
    [Google Scholar]
  19. Álvaro, J. J., Van Vliet‐Lanoë, B., Vennin, E., & Blanc‐Valleron, M. M. (2003). Lower Cambrian paleosols from the Cantabrian Mountains (northern Spain): A comparison with Neogene‐Quaternary analogues. Sedimentary Geology, 163, 67–84.
    [Google Scholar]
  20. Álvaro, J. J., & Vizcaïno, D. (2003). The conocoryphid biofacies, a benthic assemblage of normal‐eyed and blind trilobites. Special Papers in Palaeontology, 70, 127–140.
    [Google Scholar]
  21. Álvaro, J. J., Zamora, S., Clausen, S., Vizcaïno, D., & Smith, A. B. (2013). The role of abiotic factors in the Cambrian Substrate Revolution: A review from the benthic community replacements of West Gondwana. Earth‐Science Reviews, 118, 69–82.
    [Google Scholar]
  22. Anderson, F. D. (1965) Belleoram, Newfoundland. Geological Survey of Canada Map, 8–1965.
  23. Anderson, M. M. (1987). Stratigraphy of Cambrian rocks at Bacon Cove, Duffs, and Manuels River, Conception Bay, Avalon Peninsula, eastern Newfoundland. In D. C. Roy, (Ed.), Northeastern Section of the Geological Society of America. Centennial Field Trip, 5, 467–471.
    [Google Scholar]
  24. Barr, S., Hamilton, M. A., Samson, S. D., Satkoski, A. M., & White, C. E. (2012). Provenance variations in northern Appalachians Avalonia based on detrital zircon age patterns in Ediacaran and Cambrians sedimentary rocks, New Brunswick and Nova Scotia, Canada. Canadian Journal of Earth Sciences, 49, 533–546.
    [Google Scholar]
  25. Barr, S., van Rooyen, D., Miller, B., White, C. E., & Johnson, S. (2019). Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in southern New Brunswick – more pieces of the puzzle. Atlantic Geology, 55, 275–322. https://doi.org/10.4138/atlgeol.2019.010
    [Google Scholar]
  26. Bengtson, S., & Fletcher, T. P. (1983). The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20, 525–526. https://doi.org/10.1139/e83‐050
    [Google Scholar]
  27. Benssaou, M., & Hamoumi, N. (2001). L'Anti‐Atlas occidental du Maroc: étude sédimentologique et reconstitutions paléogéographiques au Cambrien inférieur. Journal of African Earth Sciences, 32, 351–372.
    [Google Scholar]
  28. Bernardin, C., Cornée, J. J., Corsini, M., Mayol, S., Muller, J., & Taychi, M. (1988). Variations d'épaisseur du Cambrien moyen en Meseta marocaine occidentale: Signification géodynamique des données de surface et de subsurface. Canadian Journal of Earth Sciences, 25, 2104–2117. https://doi.org/10.1139/e88‐194
    [Google Scholar]
  29. Brune, S. (2014). Evolution of stress and fault patterns in oblique rift systems: 3‐D numerical lithospheric‐scale experiments from rift to breakup. Geochemistry, Geophysics, Geosystems, 15(8), 3392–3415. https://doi.org/10.1002/2014GC005446
    [Google Scholar]
  30. Buggisch, W., Marzela, C., & Hügel, P. (1978). Die fazielle und paläogeographische Entwicklung der infrakambrischen bis ordovizischen Sedimente im Mittleren Antiatlas um Agdz (S‐Marokko). Geologische Rundschau, 68, 195–224. https://doi.org/10.1007/BF01821128
    [Google Scholar]
  31. Cocks, L. R. M., & Fortey, R. A. (1990). Biogeography of Ordovician and Silurian faunas. W.S. McKerrow & C. R. Scotese (Eds.), Geological Society, London, Memoirs, 12(1), 97–104. https://doi.org/10.1144/GSL.MEM.1990.012.01.08
    [Google Scholar]
  32. Cocks, L. R. M., & Fortey, R. A. (2009). Avalonia: A long‐lived terrane in the Lower Palaeozoic? In M. Bassett (Ed.), Early Palaeozoic Peri‐Gondwana Terranes: New Insights from Tectonics and Biogeography. Geological Society, London, Special Publications, 325, 131–155.
    [Google Scholar]
  33. Cocks, L. R. M., McKerrow, W. S., & Van Staal, C. R. (1997). The margins of Avalonia. Geological Magazine, 134(5), 627–636. https://doi.org/10.1017/S0016756897007425
    [Google Scholar]
  34. Courjault‐Radé, P., Debrenne, F., & Gandin, A. (1992). Paleogeographic and geodynamic evolution of the Gondwana continental margins during the Cambrian. Terra Nova, 4(6), 657–667.
    [Google Scholar]
  35. Cummins, W. A. (1962). The greywacke problem. Geological Journal, 3, 51–72. https://doi.org/10.1002/gj.3350030105
    [Google Scholar]
  36. Daradich, A., Mitrovica, J. X., Pysklywec, R. N., Willett, S. F., & Forte, A. (2003). Mantle flow, dynamic topography, and rift‐flank uplift of Arabia. Geology, 31, 901–904. https://doi.org/10.1130/G19661.1
    [Google Scholar]
  37. Destombes, J., Hollard, H., & Willefert, S. (1985). Lower Palaeozoic rocks of Morocco. In C. H.Hollard (Ed.), Lower Palaeozoic Rocks of the World: Lower Palaeozoic of North‐Western and West Central Africa (Vol. 4, pp. 157–184). : John Wiley and Sons.
    [Google Scholar]
  38. Devaere, L., Clausen, S., Steiner, M., Álvaro, J. J., & Vachard, D. (2013). Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France. Palaeontologica Electronica, 16(2), 17A–91.
    [Google Scholar]
  39. Fletcher, T. P. (2003). Ovatoryctocara granulata: The key to a global correlation stage boundary and the correlation of the Olenellid, Redlichiid and Paradoxidid realms. Special Papers in Palaeontology, 70, 73–102.
    [Google Scholar]
  40. Fletcher, T. P. (2006). Bedrock geology of the Cape St. Mary’s Peninsula, southwest Avalon Peninsula, Newfoundland. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Report, 06–02, 1–117.
  41. Fortey, R. A., & Cocks, L. R. M. (2003). Palaeontological evidence bearing on global Ordovician‐Silurian continental reconstructions. Earth‐Science Reviews, 61, 245–307. https://doi.org/10.1016/S0012‐8252(02)00115‐0
    [Google Scholar]
  42. Geilfus, N. X., Carnat, G., Dieckmann, G. S., Halden, N., Nehrke, G., Papakyriakou, T., Tison, J. L., & Delille, B. (2013). First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth. Journal of Geophysical Research: Oceans, 118, 244–255.
    [Google Scholar]
  43. Greinert, J., & Derkachev, A. (2004). Glendonites and methane‐derived Mg‐calcites in the Sea of Okhotsk, East Siberia: Implications of a venting‐related ikaite/glendonite formation. Marine Geology, 204, 129–144.
    [Google Scholar]
  44. Hamilton, M. A., & Murphy, J. B. (2004). Tectonic significance of a Llanvirn age for the Dunn Point volcanic rocks, Avalon terrane, Nova Scotia, Canada: Implications for the evolution of the Iapetus and Rheic Oceans. Tectonophysics, 379, 199–209. https://doi.org/10.1016/j.tecto.2003.11.006
    [Google Scholar]
  45. Hibbard, J. P., & Karabinos, P. (2013). Disparate paths in the geologic evolution of the Northern and Southern Appalachians: A case for inherited contrasting crustal/lithospheric substrates. Geoscience Canada Reprint Series, 10, 105–119. https://doi.org/10.12789/geocanj.2013.40.021
    [Google Scholar]
  46. Hibbard, J. P., van Staal, C. R., & Miller, B. V. (2007). Links between Carolinia, Avalonia, and Ganderia in the Appalachian peri‐Gondwanan realm. In J. W. Sears, T. A. Harms & C. A. Evenchick (Eds.), Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price. Geological Society of America, Special Papers, 433, 291–311.
    [Google Scholar]
  47. Hiscott, R. N. (1982). Tidal deposits of the Lower Cambrian Random Formation, eastern Newfoundland: Facies and paleoenvironments. Canadian Journal of Earth Sciences, 19, 2028–2042. https://doi.org/10.1139/e82‐180
    [Google Scholar]
  48. Howell, B. F. (1925). The faunas of the Cambrian Paradoxides beds at Manuels. Newfoundland. Bulletin of American Paleontology, 11(43), 1–140.
    [Google Scholar]
  49. Hu, Y. B., Wolf‐Gladrow, D. A., Dieckmann, G. S., Völker, C., & Nehrke, G. (2014). A laboratory study of ikaite (CaCO3·6H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration. Marine Chemistry, 162, 10–18. https://doi.org/10.1016/j.marchem.2014.02.003
    [Google Scholar]
  50. Hutchinson, R. D. (1962). Cambrian stratigraphy and trilobite faunas in southeast Newfoundland. Geological Survey of Canada Bulletin, 88, 1–156.
    [Google Scholar]
  51. Jenness, S. E. (1963). Terra Nova and Bonavista map‐areas, Newfoundland. Geological Survey of Canada, Memoir, 327, 1–184.
    [Google Scholar]
  52. Keppie, J. D., & Keppie, F. (2014). Ediacaran‐Middle Paleozoic oceanic voyage of Avalonia from Baltica via Gondwana to Laurentia: Paleomagnetic, faunal and geological constraints. Geoscience Canada, 41, 5–18. https://doi.org/10.12789/geocanj.2014.41.039
    [Google Scholar]
  53. King, A. F. (1988). Geology of the Avalon Peninsula, Newfoundland. Newfoundland Department of Mines and Energy, Geological Survey Branch, Map 88–01, scale 1:250,000.
  54. King, L. H., Fader, G. B. J., Poole, W. H., & Wanless, R. K. (1985). Geological setting and age of the Flemish Cap granodiorite, east of the Grand Banks of Newfoundland. Canadian Journal of Earth Sciences, 22, 1286–1298. https://doi.org/10.1139/e85‐133
    [Google Scholar]
  55. Krogh, T. E., Strong, D. F., & Papezik, V. (1983). Precise U‐Pb ages of zircons from volcanic and plutonic units in the Avalon Peninsula. Geological Society of America, Abstracts and Programs, 15, 136.
    [Google Scholar]
  56. Landing, E. (1996). Avalon: insular continent by the latest Precambrian. In R. D. Nance and M. D. Thompson (Eds.), Avalonian and Related Peri‐Gondwanan Terranes of the Circum‐North Atlantic. Geological Society of America, Special Paper, 304, 29–63.
    [Google Scholar]
  57. Landing, E. (2004). Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics, 37, 411–435.
    [Google Scholar]
  58. Landing, E. (2005). Early Paleozoic Avalon‐Gondwana unity: An obituary – response to “Palaeontological evidence bearing on global Ordovician‐Silurian continental reconstructions” by R.A. Fortey and L.R.M. Cocks. Earth‐science Reviews, 69, 169–175. https://doi.org/10.1016/j.earscirev.2004.10.002
    [Google Scholar]
  59. Landing, E., & Benus, A. P. (1988a). Cambrian depositional history and stratigraphy: Avalon‐Bonavista region, southeastern Newfoundland. Trip A3. Geological Association of Canada, St. John’s, p. 30.
  60. Landing, E., & Benus, A. P. (1998b). Stratigraphy of the Bonavista Group, southeastern Newfoundland: growth faults and the distribution of the subtrilobitic Lower Cambrian. In E. Landing, G. M. Narbonne & P. Myrow (Eds.), Trace Fossils, Small Shelly Fossils, and the Precambrian‐Cambrian Boundary. New York State Museum Bulletin, 463, 59–71.
    [Google Scholar]
  61. Landing, E., & Kouchinsky, A. (2016). Correlation of the Cambrian Evolutionary Radiation: Geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance. Geological Magazine, 153, 750–765. https://doi.org/10.1017/S0016756815001089
    [Google Scholar]
  62. Landing, E., & Muphy, J. B. (1991). Uppermost Precambrian(?)–Lower Cambrian of Mainland Nova Scotia: Faunas, depositional environments and stratigraphic revision. Journal of Paleontology, 65, 382–396. https://doi.org/10.1017/S0022336000030365
    [Google Scholar]
  63. Landing, E., Myrow, P., Benus, A. P., & Narbonne, G. M. (1989). The Placentian Series: Appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology, 63, 739–769. https://doi.org/10.1017/S0022336000036465
    [Google Scholar]
  64. Landing, E., Myrow, P. M., Narbonne, G. M., Geyer, G., Buatois, L. A., Mángano, M. G., Kaufman, A. J., Westrop, S. R., Kröger, B., Laing, B., & Gougeon, R. (2017). Ediacaran–Cambrian of Avalonian Eastern Newfoundland (Avalon, Burin, and Bonavista Peninsulas). In E. Landing, P. Myrow, G. Geyer, & D. McIlroy (Ed.), International Symposium on the Ediacaran–Cambrian Transition: Field Trip 4. Open File NFLD, 3323, 1–169.
    [Google Scholar]
  65. Landing, E., Narbonne, G. M., Myrow, P., Benus, A. P., & Erson, M. M. (1988). Faunas and depositional environments of the upper Precambrian through Lower Cambrian, southeastern Newfoundland. In E. Landing, G. M. Narbonne & P. Myrow (Eds.), Trace Fossils, Small Shelly Fossils, and the Precambrian‐Cambrian boundary. New York State Museum Bulletin, 463, 18–52.
    [Google Scholar]
  66. Landing, E., & Westrop, S. R. (1998a). Cambrian faunal sequence and depositional history of Avalonian Newfoundland and New Brunswick: Field Workshop. In E. Landing & S. R. Westrop (Eds.), Avalon 1997. The Cambrian Standard. New York State Museum Bulletin, 492, 5–75.
    [Google Scholar]
  67. Landing, E., & Westrop, S. R. (1998b). Revisions in stratigraphic nomenclature of the Cambrian of Avalonian North America and comparisons with Avalonian Britain. In E. Landing and S. R. Westrop (Eds.), Avalon 1997. The Cambrian Standard. New York State Museum Bulletin, 492, 76–87.
    [Google Scholar]
  68. Li, G. X., Zhao, X., Gubanov, A., Zhu, M. Y., & Na, L. (2011). Early Cambrian mollusc Watsonella crosbyi: A potential GSSP index fossil for the base of the Cambrian Stage 2. Acta Geologica Sinica, 85(2), 309–319.
    [Google Scholar]
  69. McCabe, C. A., Channell, J., & Woodcock, N. (1992). Further paleomagnetic results from the Builth Wells Ordovician Inlier, Wales. Journal of Geophysical Research, 97, 9357–9370.
    [Google Scholar]
  70. McCartney, W. D. (1967). Whitbourne map‐area, Newfoundland. Geological Survey of Canada, Memoir, 341, 1–135.
    [Google Scholar]
  71. McCartney, W. D. (1969). Geology of the Avalon Peninsula, southeast Newfoundland. American Association of Petroleum Geology, Memoir, 12, 115–129.
    [Google Scholar]
  72. McClay, K. R., Nichols, G. J., Khalil, D. M., Darwish, M., & Bosworth, W. (1998). Extensional tectonics and sedimentation, eastern Gulf of Suez, Egypt. In B. H.Purser, & D. W. J.Bosence (Eds.), Sedimentation and Tectonics of Rift Basins: Red Sea, Gulf of Aden (pp. 223–238). Chapman and Hall.
    [Google Scholar]
  73. McKerrow, W. S., Scotese, C. R., & Brasier, M. D. (1992). Early Cambrian continental reconstructions. Journal of the Geological Society, London, 149, 599–606. https://doi.org/10.1144/gsjgs.149.4.0599
    [Google Scholar]
  74. McNamara, A., MacNiocaill, C. A., van der Pluijm, B., & van der Voo, R. (2001). West African proximity of the Avalon terrane in the latest Precambrian. Geological Society of America Bulletin, 113, 1161–1170. https://doi.org/10.1130/0016‐7606(2001)113<1161:WAPOTA>2.0.CO;2
    [Google Scholar]
  75. Muluneh, A. A., Cuffaro, M., & Doglioni, C. (2014). Left‐lateral transtension along the Ethiopian Rift and constraints on the mantle‐reference plate motions. Tectonophysics, 632, 21–31.
    [Google Scholar]
  76. Murphy, J. B., Fernández‐Suárez, J., Jeffries, T., & Strachan, R. A. (2004). U‐Pb (LA–ICP–MS) dating of detrital zircons from Cambrian elastic rocks in Avalonia: Erosion of a Neoproterozoic arc along the northern Gondwanan margin. Journal of the Geological Society, 161, 243–254.
    [Google Scholar]
  77. Murphy, J. B., Gutiérrez‐Alonso, G., Nance, R. D., Fernández‐Suárez, J., Keppie, J. D., Quesada, C., Strachan, R. A., & Dostal, J. (2006). Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture?Geology, 34, 325–328.
    [Google Scholar]
  78. Murphy, J. B., Keppie, J. D., Dostal, J., & Nance, J. D. (1999). Neoproterozoic–early Paleozoic evolution of Avalonia. In V. A. Ramos & J. D. Keppie (Eds.), Laurentia‐Gondwana Connections Before Pangea. Geological Society of America, Special Papers, 336, 253–266.
    [Google Scholar]
  79. Murphy, J. B., Nance, R. D., Keppie, J. D., & Dostal, J. (2018). Role of Avalonia in the development of tectonic paradigms. In R. W. Wilson, G. A. Houseman, K. J. W. McCaffrey, A. G. Doré & S. J. H. Buiter (Eds.), Fifty Years of the Wilson Cycle Concept in Plate Tectonics. Geological Society, London, Special Publications, 470, 265–287.
    [Google Scholar]
  80. Murphy, J. B., Pisarevsky, S. A., Nance, R. D., & Keppie, J. D. (2004). Neoproterozoic‐Early Paleozoic evolution of peri‐Gondwanan terranes: Implications for Laurentia‐Gondwana connections. International Journal of Earth Sciences, 93, 659–682. https://doi.org/10.1007/s00531‐004‐0412‐9
    [Google Scholar]
  81. Murphy, J. B., Strachan, R. A., Nance, J. D., Parker, K. D., & Fowler, M. B. (2000). Proto‐Avalonia: A 1.2‐1.0 Ga tectonothermal event and constraints for the evolution of Rodinia. Geology, 28, 1071–1074. https://doi.org/10.1130/0091‐7613(2000)28<1071:PAGTEA>2.0.CO;2
    [Google Scholar]
  82. Myrow, P. M., & Hiscott, R. N. (1993). Depositional history and sequence stratigraphy of the Precambrian‐Cambrian global stratotype section, Chapel Island Formation, southeast Newfoundland. Palaeogeography, Palaeoclimatology, Palaeoecology, 104, 13–35.
    [Google Scholar]
  83. Myrow, P. M., & Landing, E. (1992). Mixed siliciclastic‐carbonate deposition in a Lower Cambrian oxygen‐stratified basin, Chapel Island Formation, southeastern Newfoundland. Journal of Sedimentary Petrology, 62, 455–473.
    [Google Scholar]
  84. Myrow, P., Narbonne, G. M., & Hiscott, R. N. (1988). Field Trip B6. Storm‐shelf and tidal deposits of the Chapel Island and Random formations, Burin Peninsula: facies and trace fossils. St. John’s 88 Field Trip Guidebooks. GAC Newfoundland Section, St. John’s, 108 pp.
  85. Nance, R. D., Murphy, J. B., & Keppie, J. D. (2002). A Cordilleran model for the evolution of Avalonia. Tectonophysics, 352, 11–31. https://doi.org/10.1016/S0040‐1951(02)00187‐7
    [Google Scholar]
  86. Nance, R. D., Murphy, J. B., Strachan, B. A., Keppie, J. D., Gutiérrez‐Alonso, G., Fernández‐Suárez, J., Quesada, C., Linnemann, U., D’Lemos, R., & Pisarevsky, S. A. (2008). Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeogeography of the peri‐Gondwanan terranes: Amazonian v. West African connections. In N. Ennih and J. P. Liégeois (Eds.), The Boundaries of the West African Craton. Geological Society, London, Special Publications, 297, 345–383.
    [Google Scholar]
  87. Narbonne, G. M., Myrow, P. M., Landing, E., & Anderson, M. M. (1987). A candidate stratotype for the Precambrian‐Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24, 1277–1293. https://doi.org/10.1139/e87‐124
    [Google Scholar]
  88. Nemčok, M. (2016). The role of structural and stratigraphic architecture in thermal regimes of rifts and passive margins. In M.Nemčok (Ed.), Rifts and passive margins: structural architecture, thermal regimes, and petroleum systems (pp. 256–272). Cambridge University Press.
    [Google Scholar]
  89. North, F. K. (1971). The Cambrian of Canada and Alaska. In C. H.Holland (Ed.), Lower Palaeozoic Rocks of the World. Vol. 1. Cambrian of the New World (pp. 219–324). : Wiley.
    [Google Scholar]
  90. O’Brien, S. J., Dunning, G., Dubé, B., O’Driscoll, C. F., Sparkes, B., Israel, S., & Ketchum, J. (2001). New insights into the Neoproterozoic geology of the central Avalon Peninsula (NTS map areas 1N/6, 1N/7 and 1N/3), eastern Newfoundland. Current Research, Newfoundland Department of Mines and Energy, Geological Survey, Report, 01–1, 169–189.
  91. O’Brien, S. J., O’Brien, B. H., Dunning, G. R., & Tucker, R. D. (1996). Late Neoproterozoic Avalonian and related peri‐Gondwanan rocks of the Newfoundland Appalachians. In R. D. Nance, & M. D. Thompson (Eds.), Avalonian and Related Peri‐Gondwanan Terranes of the Circum‐North Atlantic. Geological Society of America, Special Papers, 304, 9–28.
    [Google Scholar]
  92. O’Brien, S. J., Sparkes, G. W., Dunning, G., Dubé, B., & Sparkes, B. (2012). Neoproterozoic epithermal gold mineralization of the northeastern Avalon Peninsula, Newfoundland. GAC–MAC Joint Annual Meeting. Geoscience at the Edge. Field Trip Guidebook A5, 1–35. Newfoundland and Labrador Department of Natural Resources, Geological Survey, Open File 001N/0890.
  93. O’Brien, S. J., & Taylor, S. W. (1983). Geology of the Bain Harbour (1M/7) and Point Enrageé (1M/6) Map Areas. Government of Newfoundland and Labrador, Minerals Development Division, Department of Mines and Energy, Report, 83–5.
  94. Pagli, C., Yun, S. H., Ebinger, C., Keir, D., & Wang, H. (2019). Strike‐slip tectonics during rift linkage. Geology, 47, 31–34. https://doi.org/10.1130/G45345.1
    [Google Scholar]
  95. Pollock, J. C., Hibbard, J. P., & Sylvester, P. J. (2009). Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U‐Pb detrital zircon constraints from Newfoundland. Journal of the Geological Society, London, 166, 501–515. https://doi.org/10.1144/0016‐76492008‐088
    [Google Scholar]
  96. Poole, W. H. (1973). Detrital garnet and muscovite in Late Precambrian sandstone near St. John's, Newfoundland, and their significance: Discussion. Canadian Journal of Earth Sciences, 10, 1697–1698. https://doi.org/10.1139/e73‐162
    [Google Scholar]
  97. Popov, L. E., Álvaro, J. J., Holmer, L. E., Bauert, H., Ghobadi Pour, M., Dronov, A. V., Lehnert, O., Hints, O., Männik, P., Zhang, Z. F., & Zhang, Z. L. (2019). Glendonite occurrences in the Tremadocian of Baltica: First Early Palaeozoic evidence of massive ikaite precipitation at temperate latitudes. Scientific Reports, 9, 7205. https://doi.org/10.1038/s41598‐019‐43707‐4
    [Google Scholar]
  98. Pothier, H. S., Waldron, J. W. F., Schofield, D. I., & DuFrane, S. A. (2015). Peri‐Gondwanan terrane interactions recorded in the Cambrian‐Ordovician detrital zircon geochronology of North Wales. Gondwana Research, 28, 987–1001. https://doi.org/10.1016/j.gr.2014.08.009
    [Google Scholar]
  99. Pouclet, A., Aarab, A., Fekkak, A., & Benharref, M. (2007). Geodynamic evolution of the northwestern Paleo‐Gondwanan margin in the Moroccan Atlas at the Precambrian‐Cambrian boundary. In U. Linnemann, R. D. Nance, P. Kraft & G. Zulauf (Eds.), The Evolution of the Rheic Ocean: from Avalonian‐Cadomian Active Margin to Alleghanian‐Variscan collision. Geological Society of America, Special Paper, 423, 27–60.
    [Google Scholar]
  100. Prigmore, J. K., Butler, A. J., & Woodcock, N. H. (1997). Rifting during separation of eastern Avalonia from Gondwana; evidence from subsidence analysis. Geology, 25, 203–206. https://doi.org/10.1130/0091‐7613(1997)025<0203:RDSOEA>2.3.CO;2
    [Google Scholar]
  101. Purgstaller, B., Dietzel, M., Baldermann, A., & Mavromatis, V. (2017). Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans‐) formation of ikatite. Geochimica Et Cosmochimica Acta, 217, 128–143.
    [Google Scholar]
  102. Ratschbacher, L., Krumrei, I., Blumenwitz, M., Staiger, M., Gloaguen, R., Miller, B. V., Samson, S. D., Edwards, M. A., & Appel, E. (2011). Rifting and strike‐slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet. In R. Gloaguen, & L. Ratschbacher (Eds.), Growth and Collapse of the Tibetan Plateau. Geological Society, London, Special Publications, 353, 127–163.
    [Google Scholar]
  103. Roussel, J., & Bernardin, C. (1991). Structure profonde de la Meseta marocaine d'après les données gravimétriques et sismiques. Géologie Méditerranéenne, 17, 99–108.
    [Google Scholar]
  104. Rust, D., & Whiworth, M. (2019). A unique 12 ka subaerial record of rift‐transform triple‐junction tectonics. NE Iceland. Scientific Reports, 9, 9669. https://doi.org/10.1038/s41598‐019‐45903‐8
    [Google Scholar]
  105. Salvador, A. (Ed.) (1994). International Stratigraphic Guide: A Guide to Stratigraphic Classification, Terminology and Procedure, 2nd Edition. Trondheim (Norway) and Boulder (USA). International Union of Geological Sciences and Geological Society of America, 214 p.
  106. Sánchez‐García, T., Chichorro, M., Solá, R., Álvaro, J. J., Díez Montes, A., Bellido, F. et al (2019). The Cambrian‐Early Ordovician rift stage in the Gondwanan units of the Iberian Massif. In C. Quesada & J. T. Oliveira (Eds.), The geology of Iberia: A geodynamic approach. Regional Geological Reviews, 1, 27–74.
    [Google Scholar]
  107. Satkoski, A. M., Barr, S. M., & Samson, S. D. (2010). Provenance of Late Neoproterozoic and Cambrian sediments in Avalonia: Constraints from detrital zircon ages and Sm–Nd isotopic compositions in southern New Brunswick, Canada. Journal of Geology, 118, 187–200. https://doi.org/10.1086/649818
    [Google Scholar]
  108. Scotese, C. R., & Barret, S. F. (1990). Gondwana’s movement over the South Pole during the Palaeozoic: evidence from lithological indicators of climate. In W. S. McKerrow & C. R. Scotese (Eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12, 75–85.
    [Google Scholar]
  109. Spielhagen, R. F., & Tripati, A. (2009). Evidence from Svalbard for near‐freezing temperatures and climate oscillations in the Arctic during the Paleocene and Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 278, 48–56. https://doi.org/10.1016/j.palaeo.2009.04.012
    [Google Scholar]
  110. Stockmann, G. J., Ranta, E., Trampe, E., Sturkell, E., & Seaman, P. (2018). Carbon mineral storage in seawater: Ikaite (CaCO3·6H2O) columns in Greenland. Energy Procedia, 146, 59–67. https://doi.org/10.1016/j.egypro.2018.07.009
    [Google Scholar]
  111. Strong, D. F., O’Brien, S. J., Taylor, S. W., Strong, P. G., & Wilton, D. H. (1978). Geology of Marystown (1M/3) and St. Lawrence (1L/14) map areas. Government of Newfoundland and Labrador, Minerals Development Division, Department of Mines and Energy, Report 77–8.
  112. Swainson, I., & Hammond, R. P. (2001). Ikatite, CaCO3·6H20: Cold comfort for glendonites as paleothermometers. American Mineralogist, 86(11), 1530–1533.
    [Google Scholar]
  113. Tibaldi, A., Bonali, F. L., & Mariotto, F. A. (2016). Interaction between transform faults and rift systems: A combined field and experimental approach. Frontiers in Earth Sciences, 4, 33. https://doi.org/10.3389/feart.2016.00033
    [Google Scholar]
  114. Trench, A., Torsvik, T. H., & McKerrow, W. S. (1992). The paleogeographic evolution of Southern Britain during early Palaeozoic times: A reconciliation of palaeomagnetic and biogeographic evidence. Tectonophysics, 201, 75–82.
    [Google Scholar]
  115. Van Ingen, G. (1914). Table of geological formations of the Cambrian and Ordovician systems about Conception and Trinity bays (p. 4). Princeton University Contributions to Geology of Newfoundland.
    [Google Scholar]
  116. Van Staal, C. R., Barr, S. M., McCausland, P. J. A., Thompson, M. D., & White, C. E. (2020). Tonian‐Ediacaran tectonomagmatic evolution of West Avalonia and its Ediacaran–early Cambrian interactions with Ganderia: an example of complex terrane transfer due to arc‐arc collision. In (Murphy, J. B., Strachan, R. A. & Quesada, C., (Eds.), Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum‐Atlantic Region. Geological Society, London, Special Publications, 503, 23. 10.1144/SP503‐2020‐23.
    [Google Scholar]
  117. Van Staal, C. R., Dewey, J. F., MacNiocaill, C., & McKerrow, W. S. (1998). The Cambrian‐Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex west and southwest Pacific‐type segment of Iapetus. In D. J. Blundell & A. C. Scott (Eds.), Lyell: The Past is the Key to the Present. Geological Society, London, Special Publication, 143, 199–242.
    [Google Scholar]
  118. Von Raumer, J.F., Stampfli, G.M., & Bussy, F. (2003). Gondwana‐derived microcontinents — the constituents of the Variscan and Alpine collisional orogens. Tectonophysics, 365, 7–22.
    [Google Scholar]
  119. Walcott, C. D. (1900). Random, a Precambrian Algonkian Terrane. Bulletin of the Geological Society of America, 11, 3–5.
    [Google Scholar]
  120. Westrop, S. R., & Landing, E. (2012). Lower Cambrian (Branchian) eodiscoid trilobites from the lower Brigus Formation, Avalon Peninsula, Newfoundland, Canada. Memoirs of the Association of Australasian Palaeontologists, 42, 209–262.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12525
Loading
/content/journals/10.1111/bre.12525
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Avalonia; carbonate production; hydrothermal activity; rift shoulder; West Gondwana

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error