1887
Volume 33 Number 2
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

The Greater Barents Sea Basin (GBSB) in Arctic Russia and Norway is an intracratonic basin that accommodated an enormous amount of sediment during the Triassic. These deposits are up to 4.5 km thick over an area 2,500,000 km2, and consist of marine mudstones and mudstone‐rich fluvio‐deltaic topsets with sandstone‐dominated fluvial channels. The basin is well‐studied and data‐rich, but regional correlation between different parts is lacking. Provenance data from adjacent Arctic basins have been interpreted to imply sediment transport from the Ural orogen across the GBSB, but these are disputed because of great transport distances, poorly constrained sediment‐transport directions and unknown timing of bypass. We integrated data from 3,238 seismic lines, 257 wells and palynostratigraphy, as well as published outcrop data, to create the first unified stratigraphic framework for the Triassic deposits across the entire GBSB. Results show that (1) sediment was transported northwest by one linked sedimentary system stretching across the entire basin; (2) sediment was derived from a source in the east comprising the Urals and West Siberia; (3) the main stratigraphic boundaries are major flooding surfaces which can be traced throughout the basin; and (4) significant amounts of sediment overspilled from the Barents Sea into adjacent sedimentary basins, starting with the Lomonosov Ridge from the Early Triassic, and into basins to the northwest (e.g. Sverdrup, Chukotka) during the late Carnian. These results provide a better understanding of geodynamics and provenance data in the Arctic, to improve the prediction of reservoirs in the area, and indicate a protracted uplift‐history of the northernmost Urals that started in the Carnian ~237 Ma. Furthermore, it shows how large intracratonic basins interact with uplands and subside over tens of millions of years.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12526
2021-03-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12526.html?itemId=/content/journals/10.1111/bre.12526&mimeType=html&fmt=ahah

References

  1. Aarseth, I., Mjelde, R., Breivik, A. J., Minakov, A., Faleide, J. I., Flueh, E., & Huismans, R. S. (2017). Crustal structure and evolution of the Arctic Caledonides: Results from controlled‐source seismology. Tectonophysics, 718, 9–24. https://doi.org/10.1016/j.tecto.2017.04.022
    [Google Scholar]
  2. Abay, T. B., Karlsen, D. A., Pedersen, J. H., Olaussen, S., & Backer‐Owe, K. (2018). Thermal maturity, hydrocarbon potential and kerogen type of some Triassic‐Lower Cretaceous sediments from the SW Barents Sea and Svalbard. Petroleum Geoscience, 24(3), 349–373. https://doi.org/10.1144/petgeo2017-035
    [Google Scholar]
  3. Anfinson, O. A., Embry, A. F., & Stockli, D. F. (2016). Geochronologic constraints on the Permian‐Triassic northern source region of the Sverdrup Basin, Canadian Arctic Islands. Tectonophysics, 691, 206–219. https://doi.org/10.1016/j.tecto.2016.02.041
    [Google Scholar]
  4. Artyushkov, E. V., Belyaev, I. V., Kazanin, G. S., Pavlov, S. P., Chekhovich, P. A., & Shkarubo, S. I. (2014). Formation mechanisms of ultradeep sedimentary basins: The North Barents basin. Petroleum potential implications. Russian Geology and Geophysics, 55(5), 649–667. https://doi.org/10.1016/j.rgg.2014.05.009
    [Google Scholar]
  5. Bergan, M., & Knarud, R. (1993). Apparent changes in clastic mineralogy of the Triassic‐Jurassic succession, Norwegian Barents Sea: Possible implications for palaeodrainage and subsidence. In T. O.Vorren, E.Bergsager, & Ø. A.Dahl‐Stamnes (Eds.), Norwegian Petroleum Society Special Publications (Vol. 2, pp. 481–493). Elsevier.
    [Google Scholar]
  6. Bjærke, T., & Manum, S. B. (1977). Mesozoic palynology of Svalbard.I, The Rhaetian of Hopen, with a preliminary report on the Rhaetian and Jurassic of Kong Karls Land.
  7. Bjergager, M., Alsen, P., Hovikoski, J., Lindström, S., Pilgaard, A., Stemmerik, L., & Therkelsen, J. (2019). Triassic lithostratigraphy of the Wandel Sea Basin, North Greenland. Bulletin of the Geological Society of Denmark, 67(1). https://doi.org/10.37570/bgsd-2019-67-06
    [Google Scholar]
  8. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganisation from detrital zircons. Geology, 42, 607–610.
    [Google Scholar]
  9. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward. Sedimentology, 47(s1), 2–48. https://doi.org/10.1046/j.1365-3091.2000.00008.x
    [Google Scholar]
  10. Buchan, K. L., & Ernst, R. E. (2018). A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gondwana Research, 58, 39–57. https://doi.org/10.1016/j.gr.2018.02.006
    [Google Scholar]
  11. Bue, P. E., & Andresen, A. (2014). Constraining depositional models in the Barents Sea region using detrital zircon U‐Pb data from Mesozoic sediments in Svalbard. Geological Society, London, Special Publications, 386(1), 261–279. https://doi.org/10.1144/SP386.14
    [Google Scholar]
  12. Burgess, S. D., & Bowring, S. A. (2015). High‐precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Science Advances, 1(7), e1500470. https://doi.org/10.1126/sciadv.1500470
    [Google Scholar]
  13. Clark, S. A., Glorstad‐Clark, E., Faleide, J. I., Schmid, D., Hartz, E. H., & Fjeldskaar, W. (2014). Southwest Barents Sea rift basin evolution: Comparing results from backstripping and time‐forward modelling. Basin Research, 26(4), 550–566. https://doi.org/10.1111/bre.12039
    [Google Scholar]
  14. Cocks, L., & Torsvik, T. (2006). European geography in a global context from the Vendian to the end of the Palaeozoic. Geological Society, London, Memoirs, 32, 83. https://doi.org/10.1144/GSL.MEM.2006.032.01.05
    [Google Scholar]
  15. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
    [Google Scholar]
  16. Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 11, 2541–2562. https://doi.org/10.5194/gmd-11-2541-2018
    [Google Scholar]
  17. Dalland, A., Worsley, D., & Ofstad, K. (1988). A lithostratigraphic scheme for the mesozoic and cenozoic and succession offshore mid‐and northern norway. Oljedirektoratet.
  18. Doré, A. G., Lundin, E. R., Gibbons, A., Sømme, T. O., & Tørudbakken, B. O. (2016). Transform margins of the Arctic: A synthesis and re‐evaluation. Geological Society, London, Special Publications, 431(1), 63–94. https://doi.org/10.1144/SP431.8
    [Google Scholar]
  19. Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, Ø., Eliassen, P. E., & Fichler, C. (1999, January). Principal tectonic events in the evolution of the northwest European Atlantic margin. In A. J.Fleet & S. A. R.Boldy (Eds.), Geological Society, London, Petroleum Geology Conference Series (Vol. 5(1), pp. 41–61). London: Geological Society.
    [Google Scholar]
  20. Drachev, S. S. (2016). Fold belts and sedimentary basins of the Eurasian Arctic. Arktos, 2, 21.
    [Google Scholar]
  21. Duran, E. R., di Primio, R., Anka, Z., Stoddart, D., & Horsfield, B. (2013). Petroleum system analysis of the Hammerfest Basin (southwestern Barents Sea): Comparison of basin modelling and geochemical data. Organic geochemistry, 63, 105–121.
    [Google Scholar]
  22. Dymov, V. A., Kachurina, N. V., Makaryev, A. A., Makaryeva, E. M., Orlov, V. V., & Stark, A. G. (2011). Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1: 1 000 000 (tret'ye pokoleniye). Seriya Severo‐Karsko‐Barentsevomorskaya. List U‐41–44 —Zemlya Frantsa‐Iosifa (vostochnyye ostrova). Ob"yasnitel'naya zapiska.: 220.
  23. Dypvik, H., Sokolov, A., Pcelina, T., Fjellsa, B., Bjærke, T., Korchinskaya, M., & Nagy, J. (1998). The Triassic successions of Franz Josef Land, stratigraphy and sedimentology of three wells from Alexandra, Hayes and Graham‐Bell islands. Geological aspects of Franz Josef Land and the northernmost Barents Sea—the Northern Barents Sea Geotraverse. Norsk Polarinstitutt Meddelelser, 151, 50–82.
  24. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2018). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. Bulletin, 130(1–2), 263–283.
    [Google Scholar]
  25. Eide, C. H., Schofield, N., Jerram, D. A., & Howell, J. A. (2017). Basin‐scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland. Journal of the Geological Society, 174(1), 23–40.
    [Google Scholar]
  26. Ershova, V. B., Prokopiev, A. V., Khudoley, A. K., Sobolev, N. N., & Petrov, E. O. (2015). U/Pb dating of detrital zircons from late Palaeozoic deposits of Bel’kovsky Island (New Siberian Islands): Critical testing of Arctic tectonic models. International Geology Review, 57(2), 199–210.
    [Google Scholar]
  27. Faleide, J. I., Gudlaugsson, S. T., & Jacquart, G. (1984). Evolution of the western Barents Sea. Marine and Petroleum Geology, 1(2), 123–150.
    [Google Scholar]
  28. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91.
    [Google Scholar]
  29. Fefilova, L. A. (2001). Miospory iz triasovykh otlozheniy tsentral’noy chasti o. Zapadnyy Shpitsbergen (Sassen‐f’ord, yuzhnoye poberezh’ye) (Triassic miospores from the central part of West Svalbard (Sassenfjord, south coast)). Biostratigrafiya mezozoya i kaynozoya nekotorykh regionov Arktiki i Mirovogo okeana (Biostratigraphy of theMesozoic and Cenozoic of some regions of the Arctic and the World Ocean) (ed. VA Basov): 5–19.
  30. Fefilova, L. A. (2005). Palinokompleksy verkhnego Triasa Zemli Frantsa‐Iosifa (Upper Triassic palynoassemblages of Franz‐Iosef Land). In S. A.Afonin, & P. I.Tokarev (Eds.), XI vserossiyskaya palinologicheskaya konferentsiya “Palinologiya: teoriya I praktika”, materia ly konferentsii 27 sentya brya – 1 oktyabrya 2005 (Proceedings of XI All‐Russian palynological conference “Palynology: Theory & applications” 27 September – 1 October 2005) (pp. 266). PIN RAS. (In Russian with English summary).
    [Google Scholar]
  31. Fefilova, L. A. (2011). Palynological characteristic Rhaetian part of Triassic cuccession on Franz‐Josef Land archipelago Problems of modern palynology: 13th Russian Palynological conference: 6.
  32. Fefilova, L. A. (2013a). Biostratigrafiya, miospory i makroflora triasovykh otlozheniy yugo‐vostochnoy chasti shel'fa Barentseva moray na primere Krestovoy ploshchadi i sopredel'nykh rayonov (Biostratigraphy, miospores and macroflora of Triassic sediments of the southeastern part of the Barents Sea shelf on the example of Krestovaya Field and adjacent areas). Scientific Materials on the biotostratigraphy, fauna and flora of the Phanerozoic of Russia, the Atlantic and the Antarctic, pp. 42–83.(In Russian).
  33. Fefilova, L. A. (2013b). Palinologicheskoye obosnovaniye nizhney granitsy triasovykh otlozheniy v razreze skv.Admiralteyskaya‐1(shel'f Barentseva morya) (Palynological evidence on the Lower Triassic boundary in the Admiralteiskaya‐1 well (the Barents Sea shelf)). Scientific materials on the Phanerozoic biostratigraphy, fauna and flora from Russia, Atlantic and Antarctic, pp. 84–97.(In Russian).
  34. Fefilova, L. A. (2015). New microfloristic data from the Permian and Triassic boundary sediments of the Russian Western Arctic (Novaya Zemlya archipelago and adjacent regions) // Paleobotanical temporary. Supplement to the magazine Lethaea rossica. ‐ No. 2 .– S. 229‐240.
  35. Fleming, E. J., Flowerdew, M. J., Smyth, H. R., Scott, R. A., Morton, A. C., Omma, J. E., Frei, D., & Whitehouse, M. J. (2016). Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Marine and Petroleum Geology, 78, 516–535.
    [Google Scholar]
  36. Flowerdew, M. J., Fleming, E. J., Morton, A. C., Frei, D., Chew, D. M., & Daly, J. S. (2020). Assessing mineral fertility and bias in sedimentary provenance studies: Examples from the Barents Shelf. Geological Society, London, Special Publications, 484(1), 255–274.
    [Google Scholar]
  37. Francis, J. E. (1994). Palaeoclimates of Pangea–geological evidence.
  38. Friedrich, A. M., Bunge, H.‐P., Rieger, S. M., Colli, L., Ghelichkhan, S., & Nerlich, R. (2018). Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps. Gondwana Research, 53, 159–188.
    [Google Scholar]
  39. Gabrielsen, R. H., Faerseth, R. B., & Jensen, L. N. (1990). Structural elements of the Norwegian continental shelf. Pt. 1.The Barents Sea region.Norwegian Petroleum Directorate.
  40. Gac, S., Huismans, R. S., Podladchikov, Y. Y., & Faleide, J. I. (2012). On the origin of the ultradeep East Barents Sea basin. Journal of Geophysical Research: Solid Earth, 117(B4).
    [Google Scholar]
  41. Gac, S., Huismans, R. S., Simon, N. S., Faleide, J. I., & Podladchikov, Y. Y. (2014). Effects of lithosphere buckling on subsidence and hydrocarbon maturation: A case‐study from the ultra‐deep East Barents Sea basin. Earth and Planetary Science Letters, 407, 123–133.
    [Google Scholar]
  42. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7(4), 938–973.
    [Google Scholar]
  43. Gardiner, D., Schofield, N., Finlay, A., Mark, N., Holt, L., Grove, C., Forster, C., & Moore, J. (2019). Modeling petroleum expulsion in sedimentary basins: The importance of igneous intrusion timing and basement composition. Geology, 47(10), 904–908. https://doi.org/10.1130/G46578.1
    [Google Scholar]
  44. Gavrilov, V. P., Tibshman, N. B., Karnaukhov, S. M., Holodilov, V. L., Tsemkalo, M. L., & ShamalovY. V. (2010). Biostratigrafiya i litofatsiya neftegazonosnykh otlozheniy Barentsevo‐Karskogo regiona. (Biostratigraphy and lithofacies of oil and gas deposits in the Barents‐Kara region). ‐ M.: Nedra Publishing House LLC. 255 p.: ill.(In Russian).
    [Google Scholar]
  45. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27(7), 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  46. Gradstein, F. M., Ogg, J. G., Schmitz, M., & Ogg, G. M. (2012). The geologic time scale 2012. Elsevier.
    [Google Scholar]
  47. Grantz, A., Pease, V. L., Willard, D. A., Phillips, R. L., & Clark, D. L. (2001). Bedrock cores from 89° North: Implications for the geologic framework and Neogene paleoceanography of Lomonosov Ridge and a tie to the Barents shelf. Geological Society of America Bulletin, 113(10), 1272–1281. https://doi.org/10.1130/0016-7606(2001)113%3C1272:BCFNIF%3E2.0.CO;2
    [Google Scholar]
  48. Gudlaugsson, S. T., Faleide, J. I., Johansen, S. E., & Breivik, A. J. (1998). Late Palaeozoic structural development of the South‐western Barents Sea. Marine and Petroleum Geology, 15(1), 73–102. https://doi.org/10.1016/S0264-8172(97)00048-2
    [Google Scholar]
  49. Haile, B. G., Klausen, T. G., Jahren, J., Braathen, A., & Hellevang, H. (2018). Thermal history of a Triassic sedimentary sequence verified by a multi‐method approach: Edgeøya, Svalbard. Norway. Basin Research, 30(6), 1075–1097. https://doi.org/10.1111/bre.12292
    [Google Scholar]
  50. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering Earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86(9), 1008–1033. https://doi.org/10.2110/jsr.2016.56
    [Google Scholar]
  51. Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Kløvjan, O. S., Larssen, G. B., Ryseth, A. E., Rønning, K., Sollid, K., & Stoupakova, A. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281.
    [Google Scholar]
  52. Henriksen, E., Ryseth, A., Larssen, G. B., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. V. (2011). Chapter 10: Tectonostratigraphy of the greater Barents Sea: Implications for petroleum systems. Geological Society, London, Memoirs, 35(1), 163–195.
    [Google Scholar]
  53. Henriksen, T., & Ulfstein, G. (2011). Maritime Delimitation in the Arctic: The Barents Sea Treaty. Ocean Development & International Law, 42(1–2), 1–21. https://doi.org/10.1080/00908320.2011.542389
    [Google Scholar]
  54. Hermann, E., Hochuli, P. A., Bucher, H., Vigran, J. O., Weissert, H., & Bernasconi, S. M. (2010). A close‐up view of the Permian‐Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform). Global and Planetary Change, 74(3–4), 156–167. https://doi.org/10.1016/j.gloplacha.2010.10.007
    [Google Scholar]
  55. Hochuli, P., Colin, J., & Vigran, J. O. (1989). Triassic biostratigraphy of the Barents Sea area. Correlation in hydrocarbon exploration (pp. 131–153). Springer.
    [Google Scholar]
  56. Ivanova, N. M., Sakulina, T. S., Belyaev, I. V., Matveev, Y. I., & Roslov, Y. V. (2011). Chapter 12 Depth model of the Barents and Kara seas according to geophysical surveys results. Geological Society, London, Memoirs, 35(1), 209–221.
    [Google Scholar]
  57. Jarsve, E. M., Maast, T. E., Gabrielsen, R. H., Faleide, J. I., Nystuen, J. P., & Sassier, C. (2014). Seismic stratigraphic subdivision of the Triassic succession in the Central North Sea; integrating seismic reflection and well data. Journal of the Geological Society, 171(3), 353–374. https://doi.org/10.1144/jgs2013-056
    [Google Scholar]
  58. Kirichkova, A. I., & Esenina, A. V. (2016). Pteridospermovye (pinophyta) Middle Triassic Timan‐Pechora Basin // Stratigraphy. Geological correlation. T. 24. ‐ No. 2. ‐ S. 17–17.
  59. Klausen, T. G., & Mørk, A. (2014). The Upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: Outcrop analog to the subsurface Snadd Formation in the Barents SeaThe De Geerdalen Formation on Hopen. AAPG Bulletin, 98(10), 1911–1941. https://doi.org/10.1306/02191413064
    [Google Scholar]
  60. Klausen, T. G., Nyberg, B., & Helland‐Hansen, W. (2019). The largest delta plain in Earth’s history. Geology, 47(5), 470–474. https://doi.org/10.1130/G45507.1
    [Google Scholar]
  61. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2014). Spatial and temporal changes in geometries of fluvial channel bodies from the Triassic Snadd Formation of offshore Norway. Journal of Sedimentary Research, 84(7), 567–585. https://doi.org/10.2110/jsr.2014.47
    [Google Scholar]
  62. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  63. Klausen, T. G., Ryseth, A., Helland‐Hansen, W., & Gjelberg, H. K. (2016). Progradational and backstepping shoreface deposits in the Ladinian to Early Norian Snadd Formation of the Barents Sea. Sedimentology, 63(4), 893–916. https://doi.org/10.1111/sed.12242
    [Google Scholar]
  64. Klausen, T. G., Torland, J. A., Eide, C. H., Alaei, B., Olaussen, S., & Chiarella, D. (2018). Clinoform development and topset evolution in a mud‐rich delta – The Middle Triassic Kobbe Formation, Norwegian Barents Sea. Sedimentology, 65(4), 1132–1169. https://doi.org/10.1111/sed.12417
    [Google Scholar]
  65. Klubov, B. (1965). Triassic and Jurassic deposits of Wilhelm Island. Data on the geology of the Spitsbergen. Leningrad, Nauchno‐issledovatelskiy institut geologii Arctiki: 174‐184.
  66. Korchinskaya, M. V., & Semevskij, D. V. (1980). Rannenorijskaja fauna archipelaga Sval’bard.(Early Norian fauna of the archipelago of Svalbard.) //Geologija osadoč nogo č echla archipelaga Sval’bard.(Geology of the sedimentary platform cover of the archipelago of Svalbard.): Leningrad, NIIGA. C. 30‐43.
  67. Krajewski, K., & Weitschat, W. (2015). Depositional history of the youngest strata of the Sassendalen Group (Bravaisberget Formation, Middle Triassic–Carnian) in southern Spitsbergen, Svalbard. Annales Societatis Geologorum Poloniae, 85, 151–175. https://doi.org/10.14241/asgp.2014.005
    [Google Scholar]
  68. Leith, T., Weiss, H., Mørk, A., Elvebakk, G., Embry, A. F., Brooks, P. W., Stewart, K. R., Pchelina, T. M., Bro, E. G., Verba, M. L., & Danyushevskaya, A. (1993). Mesozoic hydrocarbon source‐rocks of the Arctic region. In T. O.Vorren, E.Bergsager, Ø. A.Dahl‐Stamnes, E.Holter, B.Johansen, E.Lie, & T. B.Lund (Eds.), Norwegian Petroleum Society Special Publications (Vol. 2, pp. 1–25). Elsevier.
    [Google Scholar]
  69. Lord, G. S., Mørk, M. B. E., Mørk, A., & Olaussen, S. (2019). Sedimentology and petrography of the Svenskøya Formation on Hopen, Svalbard: An analogue to sandstone reservoirs in the Realgrunnen Subgroup. Polar Research, 38. https://doi.org/10.33265/polar.v38.3523
    [Google Scholar]
  70. Lord, G. S., Solvi, K. H., Klausen, T. G., Mørk, A. (2014). Triassic channel bodies on Hopen, Svalbard: Their facies, stratigraphical significance and spatial distribution. Norwegian Petroleum Directorate Bulletin, 11, 41–59.
    [Google Scholar]
  71. Lundschien, B. A., Høy, T., & Mørk, A. (2014). Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin, 11(11), 3–20.
    [Google Scholar]
  72. Mark, N., Schofield, N., Gardiner, D., Holt, L., Grove, C., Watson, D., Alexander, A., & Poore, H. (2019). Overthickening of sedimentary sequences by igneous intrusions. Journal of the Geological Society, 176(1), 46–60. https://doi.org/10.1144/jgs2018-112
    [Google Scholar]
  73. Martin, J., Fernandes, A. M., Pickering, J., Howes, N., Mann, S., & McNeil, K. (2018). The stratigraphically preserved signature of persistent backwater dynamics in a large paleodelta system: The Mungaroo Formation, North West Shelf. Australia. Journal of Sedimentary Research, 88(7), 850–872.
    [Google Scholar]
  74. Miller, E. L., Meisling, K. E., Akinin, V. V., Brumley, K., Coakley, B. J., Gottlieb, E. S., Hoiland, C. W., O'Brien, T. M., Soboleva, A., & Toro, J. (2018). Circum‐Arctic Lithosphere Evolution (CALE) Transect C: Displacement of the Arctic Alaska‐Chukotka microplate towards the Pacific during opening of the Amerasia Basin of the Arctic. Geological Society, London, Special Publications, 460(1), 57.
    [Google Scholar]
  75. Miller, E. L., Soloviev, A. V., Prokopiev, A. V., Toro, J., Harris, D., Kuzmichev, A. B., & Gehrels, G. E. (2013). Triassic river systems and the paleo‐Pacific margin of northwestern Pangea. Gondwana Research, 23(4), 1631–1645.
    [Google Scholar]
  76. Minakov, A., Yarushina, V., Faleide, J. I., Krupnova, N., Sakoulina, T., Dergunov, N., & Glebovsky, V. (2018). Dyke emplacement and crustal structure within a continental large igneous province, northern Barents Sea. Geological Society, London, Special Publications, 460(1), 371–395.
    [Google Scholar]
  77. Morakhovskaja, E. D. (2000). Triassic deposits of Timan‐Ural region (key sections, stratigraphy, correlation). Biochronology and Correlation of Phanerozoic of Oil and Gas Basins of the Russia, 1, 80.
  78. Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nøttvedt, A., Olaussen, S., Pchelina, T. M., & Worsley, D. (1999). Mesozoic lithostratigraphy. In W. K.Dallmann (Ed.), Lithostratigraphic lexicon of Svalbard. Upper Palaeozoic to Quaternary bedrock. Review and recommendations for nomenclature use (pp. 127–214). Tromsø: Norsk Polarinstitutt.
    [Google Scholar]
  79. Mørk, A., Elvebakk, G., Forsberg, A. W., Hounslow, M. W., Nakrem, H. A., Vigran, J. O., & Weitschat, W. (1999). The type section of the Vikinghogda Formation: A new Lower Triassic unit in central and eastern Svalbard. Polar Research, 18(1), 51–82.
    [Google Scholar]
  80. Mørk, A., Embry, A. F., & Weitschat, W. (1989). Triassic transgressive‐regressive cycles in the Sverdrup Basin, Svalbard and the Barents Shelf. Correlation in hydrocarbon exploration (pp. 113–130). Springer.
    [Google Scholar]
  81. Mørk, A., Vigran, J., Korchinskaya, M., Pchelina, T. M., Fefilova, L. A., Vavilov, M. N., & Weitschat, W. (1993). Triassic rocks in Svalbard, the Arctic Soviet islands and the Barents Shelf: Bearing on their correlations. In Norwegian Petroleum Society Special Publications (Vol. 2, pp. 457–479). Elsevier.
    [Google Scholar]
  82. Mørk, A., & Worsley, D. (2006). Triassic of Svalbard and the Barents shelf. NGF Abstracts and Proceedings, 3, 23–29.
  83. Mørk, M. B. E. (1999). Compositional variations and provenance of Triassic sandstones from the Barents Shelf. Journal of Sedimentary Research, 69(3), 690–710. https://doi.org/10.2110/jsr.69.690
    [Google Scholar]
  84. Mueller, S., Hounslow, M. W., & Kürschner, W. M. (2016). Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). Journal of the Geological Society, 173(1), 186–202.
    [Google Scholar]
  85. Müller, R., Klausen, T. G., Faleide, J. I., Olaussen, S., Eide, C. H., & Suslova, A. (2019). Linking regional unconformities in the Barents Sea to compression‐induced forebulge uplift at the Triassic‐Jurassic transition. Tectonophysics, 765, 35–51.
    [Google Scholar]
  86. Nikishin, A. M., Petrov, E. I., Cloetingh, S., Freiman, S. I., Malyshev, N. A., Morozov, A. F., Posamentier, H. W., Verzhbitsky, V. E., Zhukov, N. N., & Startseva, K. (2019). Geological structure and history of the Arctic Ocean based on new geophysical data: Implications for paleoenvironment and paleoclimate. Part 2. Mesozoic to Cenozoic geological evolution. Earth‐Science Reviews, 103034. https://doi.org/10.1016/j.earscirev.2019.103034
    [Google Scholar]
  87. Nikishin, A. M., Petrov, E. I., Malyshev, N. A., & Ershova, V. P. (2017). Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: Link between geological history and geodynamics. Geodynamics & Tectonophysics, 8, 11–43. https://doi.org/10.5800/GT-2017-8-1-0231
    [Google Scholar]
  88. Nikishin, A. M., Sobornov, K. O., Prokopiev, A. V., & Frolov, S. V. (2010). Tectonic evolution of the Siberian Platform during the Vendian and Phanerozoic. Moscow University Geology Bulletin, 65(1), 1–16.
    [Google Scholar]
  89. Nikishin, A. M., Ziegler, P. A., Abbott, D., Brunet, M. F., & Cloetingh, S. A. P. L. (2002). Permo‐Triassic intraplate magmatism and rifting in Eurasia: Implications for mantle plumes and mantle dynamics. Tectonophysics, 351(1–2), 3–39.
    [Google Scholar]
  90. Norina, D. A., Stupakova, A. V., & Kiryukhina, T. A. (2014). Depositional environments and the hydrocarbon generative potential of Triassic rocks of the Barents Sea Basin. Moscow University Geology Bulletin, 69, 1–10. https://doi.org/10.3103/S0145875214010062
    [Google Scholar]
  91. Nyberg, B., & Howell, J. A. (2015). Is the present the key to the past? A global characterisation of modern sedimentary basins. Geology, 43(7), 643–646.
    [Google Scholar]
  92. Ogg, J. G., Huang, C., & Hinnov, L. (2014). Triassic timescale status: A brief overview. Albertiana, 41, 3–30.
    [Google Scholar]
  93. Olaussen, S., Larssen, G. B., Helland‐Hansen, W., Johannessen, E. P., Nøttvedt, A., Riis, F., Rismyhr, B., Smelror, M., & Worsley, D. (2018). Mesozoic strata of Kong Karls Land, Svalbard, Norway; a link to the northern Barents Sea basins and platforms. Norwegian Journal of Geology/Norsk Geologisk Forening, 98(4). https://doi.org/10.17850/njg98-4-06
    [Google Scholar]
  94. Paterson, N. W., & Mangerud, G. (2015). Late Triassic (Carnian – Rhaetian) palynology of Hopen, Svalbard. Review of Palaeobotany and Palynology, 220, 98–119.
    [Google Scholar]
  95. Paterson, N. W., & Mangerud, G. (2017). Palynology and depositional environments of the Middle – Late Triassic (Anisian – Rhaetian) Kobbe, Snadd and Fruholmen formations, southern Barents Sea, Arctic Norway. Marine and Petroleum Geology, 86, 304–324. https://doi.org/10.1016/j.marpetgeo.2017.05.033
    [Google Scholar]
  96. Paterson, N. W., & Mangerud, G. (2020). A revised palynozonation for the Middle‐Upper Triassic (Anisian–Rhaetian) Series of the Norwegian Arctic. Geological Magazine, 157(10), 1568–1592. https://doi.org/10.1017/S0016756819000906
    [Google Scholar]
  97. Paterson, N. W., Mangerud, G., Holen, L. H., Landa, J., Lundschien, B. A., & Eide, F. (2019). Late Triassic (early Carnian–Norian) palynology of the Sentralbanken High, Norwegian Barents Sea. Palynology, 43(1), 53–75. https://doi.org/10.1080/01916122.2017.1413018
    [Google Scholar]
  98. Paterson, N. W., Mangerud, G., & Mørk, A. (2017). Late Triassic (early Carnian) palynology of shallow stratigraphical core 7830/5‐U‐1, offshore Kong Karls Land, Norwegian Arctic. Palynology, 41(2), 230–254.
    [Google Scholar]
  99. Pease, V., Drachev, S., Stephenson, R., & Zhang, X. (2014). Arctic lithosphere—A review. Tectonophysics, 628, 1–25. https://doi.org/10.1016/j.tecto.2014.05.033
    [Google Scholar]
  100. Plint, A. G., Tyagi, A., Hay, M. J., Varban, B. L., Zhang, H., & Roca, X. (2009). Clinoforms, paleobathymetry, and mud dispersal across the Western Canada Cretaceous foreland basin: Evidence from the Cenomanian Dunvegan Formation and contiguous strata. Journal of Sedimentary Research, 79(3), 144–161. https://doi.org/10.2110/jsr.2009.020
    [Google Scholar]
  101. Polteau, S., Hendriks, B. W. H., Planke, S., Ganerød, M., Corfu, F., Faleide, J. I., Midtkandal, I., Svensen, H. S., & Myklebust, R. (2016). The Early Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 83–95. https://doi.org/10.1016/j.palaeo.2015.07.007
    [Google Scholar]
  102. Puchkov, V. N. (2009). The evolution of the Uralian orogen. Geological Society, London, Special Publications, 327(1), 161–195. https://doi.org/10.1144/SP327.9
    [Google Scholar]
  103. Puchkov, V. N. (2010). Geology of the Urals and Cis‐Urals (actual problems of stratigraphy, tectonics, geodynamics and metallogeny). 280.
  104. Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A., & Saunders, A. D. (2009). The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end‐Permian environmental crisis. Earth and Planetary Science Letters, 277(1), 9–20. https://doi.org/10.1016/j.epsl.2008.09.030
    [Google Scholar]
  105. Repin, Y. S., Fedorova, A. A., Bystrova, V. V., Kulikova, N. A., & Polubotko, I. V. (2007). Mesozoic of the Barents Sea sedimentation basin // Stratigraphy and its role in the development of the oil and gas complex of Russia. SPb., VNIGRI.– S. 112–161.
  106. Resource report
    Resource report . (2016). https://www.npd.no/globalassets/1-npd/publikasjoner/ressursrapporter-arkiv/resource-report-2016.pdf
  107. Resource report
    Resource report . (2017). https://www.npd.no/globalassets/1-npd/publikasjoner/rapporter-en/geologivurderingbhn-engelsk-lavoppl.pdf
  108. Riis, F., Lundschien, B. A., Høy, T., Mørk, A., & Mørk, M. B. E. (2008). Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research, 27(3), 318–338. https://doi.org/10.1111/j.1751-8369.2008.00086.x
    [Google Scholar]
  109. Rojo, L. A., Cardozo, N., Escalona, A., & Koyi, H. (2019). Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bulletin, 103, 2177–2217.
    [Google Scholar]
  110. Rossi, V. M., Paterson, N. W., Helland‐Hansen, W., Klausen, T. G., & Eide, C. H. (2019). Mud‐rich delta‐scale compound clinoforms in the Triassic shelf of northern Pangea (Havert Formation, south‐western Barents Sea). Sedimentology, 66(6), 2234–2267.
    [Google Scholar]
  111. Ruffell, A., Simms, M., & Wignall, P. (2016). The Carnian Humid Episode of the late Triassic: A review. Geological Magazine, 153(2), 271–284.
    [Google Scholar]
  112. Schofield, N., Heaton, L., Holford, S. P., Archer, S. G., Jackson, C. A., & Jolley, D. W. (2012). Seismic imaging of ‘broken bridges’: Linking seismic to outcrop‐scale investigations of intrusive magma lobes. Journal of the Geological Society, 169(4), 421–426.
    [Google Scholar]
  113. Scotese, C. R., & Wright, N. (2018). PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018
  114. Scott, R. A., Howard, J. P., Guo, L., Schekoldin, R., & Pease, V. (2010, January). Offset and curvature of the Novaya Zemlya fold‐and‐thrust belt, Arctic Russia. In B. A.Vining & S. C.Pickering (Eds.), Geological Society, London, Petroleum Geology Conference Series (Vol. 7(1), pp. 645–657). London: Geological Society.
    [Google Scholar]
  115. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth‐Science Reviews, 113(3), 212–270.
    [Google Scholar]
  116. Shephard, G., Müller, D., & Seton, M. (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth‐Science Reviews, 124, 148–183.
    [Google Scholar]
  117. Simms, M. J., & Ruffell, A. H. (1989). Synchroneity of climatic change and extinctions in the Late Triassic. Geology, 17(3), 265–268.
    [Google Scholar]
  118. Smelror, M., Larssen, G. B., Olaussen, S., Rømuld, A., & Williams, R. (2019). Late Triassic to Early Cretaceous palynostratigraphy of Kong Karls Land, Svalbard, Arctic Norway, with correlations to Franz Josef Land, Arctic Russia. Norwegian Journal of Geology, 98(4), 1–31. https://doi.org/10.17850/njg004
    [Google Scholar]
  119. Smith, D. G. (1982). Stratigraphic significance of a palynoflora from ammonoidbearing Early Norian strata in Svalbard. Newsletters on Stratigraphy, 11(3), 154–161.
    [Google Scholar]
  120. Smith, D. G., Harland, W., & Hughes, N. (1975). Geology of Hopen, Svalbard. Geological Magazine, 112(1), 1–23. https://doi.org/10.1017/S0016756800045544
    [Google Scholar]
  121. Sobolev, A. V., Sobolev, S. V., Kuzmin, D. V., Malitch, K. N., & Petrunin, A. G. (2009). Siberian meimechites: Origin and relation to flood basalts and kimberliteS. Geology and Geophysics, 50(12), 1293–1334. https://doi.org/10.1016/j.rgg.2009.11.002
    [Google Scholar]
  122. Sømme, T. O., Doré, A. G., Lundin, E. R., & Tørudbakken, B. O. (2018). Triassic‐Paleogene paleogeography of the Arctic: Implications for sediment routing and basin fill. AAPG Bulletin, 102, 2481–2517. https://doi.org/10.1306/05111817254
    [Google Scholar]
  123. Stoupakova, A. V. (2001). Development of sedimentary basins of an ancient continental margin and their oil‐gas potential (in example of Barents Sea shelf). Petroleum Geology, 35, 49.
    [Google Scholar]
  124. Stoupakova, A. V. (2011). Structure and petroleum potentioal of the Barents‐Kara Shelf and adjacent territories. Oil and Gas Geology, 6, 99–115.
    [Google Scholar]
  125. Stoupakova, A. V., Henriksen, E., Burlin, Y. K., Larsen, G. B., Milne, J. K., Kiryukhina, T. A., Golynchik, P. O., Bordunov, S. I., Ogarkova, M. P., & Suslova, A. A. (2011). The geological evolution and hydrocarbon potential of the Barents and Kara shelves. Geological Society, London, Memoirs, 35, 325–344. https://doi.org/10.1144/M35.21
    [Google Scholar]
  126. Suslova, A. A. (2014). Seismostratigraphic analysis and prospects of Jurassic Deposits, Barents Sea Shelf. Petroleum Geology ‐ Theoretical and Applied Studies, 9(2), 1–19.
    [Google Scholar]
  127. Toporkov, V. G., & Denisenko, A. S. (2008). Prakticheskoye Primeneniye Dannykh Yamr Dlya Otsenki Svoystv I Struktury Porod Produktivnykh Neftegazonosnykh Zalezhey. Кapoтaжник, 12, 162–188.
    [Google Scholar]
  128. Traverse, A. (2007). Paleopalynology. Springer Science & Business Media.
    [Google Scholar]
  129. Ustritsky, V. I. (1981). Triassic and Upper Permian deposits of the Admiralty Peninsula (Novaya Zemlya) // Lithology and paleogeography of the Barents and Kara Seas. L.: NIIGA. ‐ S. 55–65.
  130. Ustritsky, V. I., & Tugarova, M. A. (2013). Unique section of the Permian and Triassic, discovered by the Admiralteyskaya‐1 well (Barents Sea) // Oil and gas geology. Theory and practice. ‐ T. 8. ‐ No. 2. ‐ S. 1–1.
  131. Vigran, J. O., Mangerud, G., Mørk, A., Worsley, D., & Hochuli, P. A. (2014). Palynology and geology of the Triassic succession of Svalbard and the Barents Sea (Vol. 14). Norges geologiske undersokelse.
    [Google Scholar]
  132. Vigran, J. O., Mangerud, G., Mørk, A., Bugge, T., & Weitschat, W. (1998). Biostratigraphy and sequence stratigraphy of the Lower and Middle Triassic deposits from the Svalis Dome, Central Barents Sea, Norway. Palynology, 22, 89–141. https://doi.org/10.1080/01916122.1998.9989505
    [Google Scholar]
  133. Vigran, J. O., Mørk, A., Forsberg, A. W., Weiss, H. M., & Weitschat, W. (2008). Tasmanites algae—Contributors to the Middle Triassic hydrocarbon source rocks of Svalbard and the Barents Shelf. Polar Research, 27(3), 360–371.
    [Google Scholar]
  134. Viskunova, K. G., Zinchenko, A. G., Kiiko, O. A., Kozlov, O. A., Kostin, D. A., Musatov, E. E., Pavlenkin, A. D., Povysheva, L. G., Preobrazhenskaya, E. N., Ustinov, N. V., Shipilov, E. V., Shkarubo, S. I., & Yakovleva, T. (2000). Ob"yasnitel'naya zapiska. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii.Masshtab 1:1000 000. (novaya seriya). (Explanatory letter. State geological map of the Russian Federation. Scale 1: 1,000,000. (New series)). List S‐ (36), 37 ‐ Barents Sea ‐ VSEGEI SPb, 2000.– 165 p. (In Russian).
  135. Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth‐science Reviews, 53(1–2), 1–33. https://doi.org/10.1016/S0012-8252(00)00037-4
    [Google Scholar]
  136. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27(3), 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
  137. Xu, G., Hannah, J. L., Stein, H. J., Mørk, A., Vigran, J. O., Bingen, B., Schutt, D. L., & Lundschien, B. A. (2014). Cause of Upper Triassic climate crisis revealed by Re–Os geochemistry of Boreal black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 222–232. https://doi.org/10.1016/j.palaeo.2013.12.027
    [Google Scholar]
  138. Zhang, X., Pease, V., Carter, A., & Scott, R. (2018). Reconstructing Palaeozoic and Mesozoic tectonic evolution of Novaya Zemlya: combing geochronology and thermochronology. Geological Society, London, Special Publications, 460(1), 335–353.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12526
Loading
/content/journals/10.1111/bre.12526
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Arctic; channels; clinoform; delta; large‐scale basin infill; Svalbard; Triassic palynology

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error