1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Products of onshore passive continental margin erosion are best preserved in offshore sedimentary basins. Therefore, these basins potentially hold a recoverable record of the onshore erosion history. Here, we present apatite fission track (AFT) data for 13 samples from a borehole in the southern Walvis basin, offshore Namibia. All samples show AFT central ages older or similar to their respective stratigraphic ages, while many single grain ages are older, implying none of the samples has been totally annealed post‐deposition. Furthermore, large dispersion in single grain ages in some samples suggests multiple age components related to separate source regions. Using Bayesian mixture modelling we classify single grain ages from a given sample to particular age components to create ‘subsamples’ and then jointly invert the entire dataset to obtain a thermal history. For each sample, the post‐depositional thermal history is required to be the same for all age components, but each component (‘subsample’) has an independent pre‐depositional thermal history. With this approach we can resolve pre‐ and post‐depositional thermal events and identify changes in sediment provenance in response to the syn‐ and post‐rift tectonic evolution of Namibia and southern Africa. Apatite U‐Pb and compositional data obtained during the acquisition of LA‐ICP‐MS FT data are also presented to help track changes in provenance with time. We constrain multiple thermal events linked to the exhumation and burial history of the continental and offshore sectors of the margin over a longer timescale than has been possible using only onshore AFT thermochronological data.

,

Pre‐ and post‐depositional rock thermal histories are obtained by inverting apatite fission track data collected from a borehole offshore Namibia. The thermal histories are interpreted as reflecting multiple episodes of syn‐ and post‐rift erosion onshore and burial and exhumation offshore.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12527
2021-03-15
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12527.html?itemId=/content/journals/10.1111/bre.12527&mimeType=html&fmt=ahah

References

  1. Amidon, W. H., Roden‐Tice, M., Anderson, A. J., McKeon, R. E., & Shuster, D. L. (2016). Late Cretaceous unroofing of the White Mountains, New Hampshire, USA: An episode of passive margin rejuvenation?Geology, 44(6), 415–418. https://doi.org/10.1130/G37429.1
    [Google Scholar]
  2. Baby, G., Guillocheau, F., Braun, J., Robin, C., & Dall'Asta, M. (2020). Solid sedimentation rates history of the Southern African continental margins: Implications for the uplift history of the South African Plateau. Terra Nova, 32(1), 53–65. https://doi.org/10.1111/ter.12435
    [Google Scholar]
  3. Baby, G., Guillocheau, F., Morin, J., Ressouche, J., Robin, C., Broucke, O., & Dall'Asta, M. (2018). Post‐rift stratigraphic evolution of the Atlantic margin of Namibia and South Africa: Implications for the vertical movements of the margin and the uplift history of the South African Plateau. Marine and Petroleum Geology, 97, 169–191. https://doi.org/10.1016/j.marpetgeo.2018.06.030
    [Google Scholar]
  4. Barbarand, J., Carter, A., Wood, I., & Hurford, T. (2003). Compositional and structural control of fission‐track annealing in apatite. Chemical Geology, 198(1–2), 107–137. https://doi.org/10.1016/S0009‐2541(02)00424‐2
    [Google Scholar]
  5. Bernet, M. (2009). A field‐based estimate of the zircon fission‐track closure temperature. Chemical Geology, 259(3–4), 181–189. https://doi.org/10.1016/j.chemgeo.2008.10.043
    [Google Scholar]
  6. Bernet, M., & Garver, J. I. (2005). Fission‐track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205–237. https://doi.org/10.2138/rmg.2005.58.8
    [Google Scholar]
  7. Bierman, P. R., & Caffee, M. (2001). Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa. American Journal of Science, 301(4–5), 326–358. https://doi.org/10.2475/ajs.301.4‐5.326
    [Google Scholar]
  8. Braun, J., Guillocheau, F., Robin, C., Baby, G., & Jelsma, H. (2014). Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. Journal of Geophysical Research: Solid Earth, 119(7), 6093–6112. https://doi.org/10.1002/2014JB010998
    [Google Scholar]
  9. Brown, R. W., Summerfield, M. A., & Gleadow, A. J. (2002). Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology. Journal of Geophysical Research: Solid Earth, 107(B12), ETG‐10.
    [Google Scholar]
  10. Brown, R., Summerfield, M., Gleadow, A., Gallagher, K., Carter, A., Beucher, R., & Wildman, M. (2014). Intracontinental deformation in southern Africa during the Late Cretaceous. Journal of African Earth Sciences, 100, 20–41. https://doi.org/10.1016/j.jafrearsci.2014.05.014
    [Google Scholar]
  11. Carter, A., & Gallagher, K. (2004). Characterising the significance of provenance on the inference of thermal history models from apatite fission track data – A synthetic data study. In M. Bernet, & C. Spiegel (Eds.), Detrital thermochronology – Provenance analysis, exhumation, and landscape evolution of mountain belts. GSA Special Paper, 378, 7–23.
    [Google Scholar]
  12. Cherniak, D. J., & Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology, 172(1–2), 5–24.
    [Google Scholar]
  13. Chew, D. M., & Donelick, R. A. (2012). Combined apatite fission track and U‐Pb dating by LA‐ICP‐MS and its application in apatite provenance analysis. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks: Mineralogical Association of Canada, Short Course, 42, 219–247.
    [Google Scholar]
  14. Chew, D. M., Donelick, R. A., Donelick, M. B., Kamber, B. S., & Stock, M. J. (2014). Apatite chlorine concentration measurements by LA‐ICP‐MS. Geostandards and Geoanalytical Research, 38(1), 23–35.
    [Google Scholar]
  15. Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U‐Pb LA‐ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199.
    [Google Scholar]
  16. Clemson, J., Cartwright, J., & Booth, J. (1997). Structural segmentation and the influence of basement structure on the Namibian passive margin. Journal of the Geological Society, 154(3), 477–482.
    [Google Scholar]
  17. Clemson, J., Cartwright, J., & Swart, R. (1999). The Namib Rift: A rift system of possible Karoo age, offshore Namibia. Geological Society, London, Special Publications, 153(1), 381–402.
    [Google Scholar]
  18. Clift, P. D., Carter, A., & Hurford, A. J. (1996). Constraints on the evolution of the East Greenland Margin: Evidence from detrital apatite in offshore sediments. Geology, 24(11), 1013–1016.
    [Google Scholar]
  19. Cockburn, H. A. P., Brown, R. W., Summerfield, M. A., & Seidl, M. A. (2000). Quantifying passive margin denudation and landscape development using a combined fission‐track thermochronology and cosmogenic isotope analysis approach. Earth and Planetary Science Letters, 179(3–4), 429–435.
    [Google Scholar]
  20. Cogné, N., Chew, D. M., Donelick, R. A., & Ansberque, C. (2020). LA‐ICP‐MS apatite fission track dating: A practical zeta‐based approach. Chemical Geology, 531, 119302.
    [Google Scholar]
  21. Cogné, N., Gallagher, K., & Cobbold, P. R. (2011). Post‐rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U–Th)/He and fission‐track data. Earth and Planetary Science Letters, 309(1–2), 118–130.
    [Google Scholar]
  22. Corner, B. (2000). Crustal framework of Namibia derived from magnetic and gravity data. Communications of the Geological Survey of Namibia, 12, 13–19.
    [Google Scholar]
  23. Crowley, K. D. (1993). LENMODEL: A forward model for calculating length distributions and fission‐track ages in apatite. Comp. Geosci., 19, 619–626.
    [Google Scholar]
  24. Dauteuil, O., Bessin, P., & Guillocheau, F. (2015). Cenozoic growth of the southern Africa landscape around the Orange Valley: A planation record of deformation and climate changes. Geomorphology, 233, 5–19.
    [Google Scholar]
  25. De Vera, J., Granado, P., & McClay, K. (2010). Structural evolution of the Orange Basin gravity‐driven system, offshore Namibia. Marine and Petroleum Geology, 27(1), 223–237.
    [Google Scholar]
  26. Dunn, C. A., Enkelmann, E., Ridgway, K. D., & Allen, W. K. (2017). Source to sink evaluation of sediment routing in the Gulf of Alaska and Southeast Alaska: A thermochronometric perspective. Journal of Geophysical Research: Earth Surface, 122(3), 711–734.
    [Google Scholar]
  27. Egholm, D. L., Jansen, J. D., Brædstrup, C. F., Pedersen, V. K., Andersen, J. L., Ugelvig, S. V., Larsen, N. K., & Knudsen, M. F. (2017). Formation of plateau landscapes on glaciated continental margins. Nature Geoscience, 10(8), 592–597.
    [Google Scholar]
  28. Frimmel, H. E. (1995). Metamorphic evolution of the Gariep Belt. South African Journal of Geology, 98(2), 176–190.
    [Google Scholar]
  29. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2).
    [Google Scholar]
  30. Gallagher, K., & Brown, R. (1997). The onshore record of passive margin evolution. Journal of the Geological Society, 154(3), 451–457.
    [Google Scholar]
  31. Gallagher, K., & Brown, R. (1999). Denudation and uplift at passive margins: The record on the Atlantic Margin of southern Africa. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1753), 835–859.
    [Google Scholar]
  32. Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26(1), 519–572. https://doi.org/10.1146/annurev.earth.26.1.519
    [Google Scholar]
  33. Gallagher, K., Stephenson, J., Brown, R., Holmes, C., & Fitzgerald, P. (2005). Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth and Planetary Science Letters, 237(1–2), 193–208. https://doi.org/10.1016/j.epsl.2005.06.025
    [Google Scholar]
  34. Gibson, S. A., Thompson, R. N., & Day, J. A. (2006). Timescales and mechanisms of plume–lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná‐Etendeka large igneous province. Earth and Planetary Science Letters, 251(1–2), 1–17. https://doi.org/10.1016/j.epsl.2006.08.004
    [Google Scholar]
  35. Gilchrist, A. R., & Summerfield, M. A. (1990). Differential denudation and flexural isostasy in formation of rifted‐margin upwarps. Nature, 346(6286), 739–742.
    [Google Scholar]
  36. Gilchrist, A. R., & Summerfield, M. A. (1991). Denudation, isostasy and landscape evolution. Earth Surface Processes and Landforms, 16(6), 555–562. https://doi.org/10.1002/esp.3290160607
    [Google Scholar]
  37. Green, P. F., Duddy, I. R., Japsen, P., Bonow, J. M., & Malan, J. A. (2017). Post‐breakup burial and exhumation of the southern margin of Africa. Basin Research, 29(1), 96–127. https://doi.org/10.1111/bre.12167
    [Google Scholar]
  38. Green, P. F., Lidmar‐Bergström, K., Japsen, P., Bonow, J. M., & Chalmers, J. A. (2020). Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins. Geological Survey of Denmark and Greenland (GEUS) Bulletin, 30, 1–150. https://doi.org/10.34194/geusb.v30.4673
    [Google Scholar]
  39. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., De Veslud, C. L. C., & Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24(1), 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x
    [Google Scholar]
  40. Guillocheau, F., Simon, B., Baby, G., Bessin, P., Robin, C., & Dauteuil, O. (2018). Planation surfaces as a record of mantle dynamics: The case example of Africa. Gondwana Research, 53, 82–98. https://doi.org/10.1016/j.gr.2017.05.015
    [Google Scholar]
  41. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering Earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86(9), 1008–1033. https://doi.org/10.2110/jsr.2016.56
    [Google Scholar]
  42. Hoernle, K., Rohde, J., Hauff, F., Garbe‐Schönberg, D., Homrighausen, S., Werner, R., & Morgan, J. P. (2015). How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nature Communications, 6(1), 1–10.
    [Google Scholar]
  43. Holtar, E., & A. W.Forsberg, (2000). Postrift development of the Walvis Basin, Namibia: Results from the exploration campaign in Quadrant 1911. In M. R., Mello & B. J., Katz (Eds.), Petroleum systems of South Atlantic margins: AAPGMemoir (Vol. 73, pp. 429–446).
    [Google Scholar]
  44. Holzförster, F., Stollhofen, H., & Stanistreet, I. G. (1999). Lithostratigraphy and depositional environments in the Waterberg‐Erongo area, central Namibia, and correlation with the main Karoo Basin, South Africa. Journal of African Earth Sciences, 29(1), 105–123.
    [Google Scholar]
  45. Homke, S., Vergés, J., Van Der Beek, P., Fernàndez, M., Saura, E., Barbero, L., & Labrin, E. (2010). Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission‐track analysis: Evidence for a long‐lived orogeny. Basin Research, 22(5), 659–680.
    [Google Scholar]
  46. Hurford, A. J. (1986). Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol, 92, 413–427.
    [Google Scholar]
  47. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission‐track dating. Chemical Geology, 41, 285–317.
    [Google Scholar]
  48. Jasra, A., Stephens, D. A., Gallagher, K., & Holmes, C. C. (2006). Bayesian mixture modelling in geochronology via Markov chain Monte Carlo. Mathematical Geology, 38(3), 269–300.
    [Google Scholar]
  49. Jung, S., Brandt, S., Bast, R., Scherer, E. E., & Berndt, J. (2019). Metamorphic petrology of a high‐T/low‐P granulite terrane (Damara belt, Namibia)–Constraints from pseudosection modelling and high‐precision Lu–Hf garnet‐whole rock dating. Journal of Metamorphic Geology, 37(1), 41–69.
    [Google Scholar]
  50. Jung, S., Hauff, F., & Berndt, J. (2020). Generation of a potassic to ultrapotassic alkaline complex in a syn‐collisional setting through flat subduction: Constraints on magma sources and processes (Otjimbingwe alkaline complex, Damara orogen, Namibia). Gondwana Research, 82, 267–287.
    [Google Scholar]
  51. Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., & Hurford, A. J. (2007). Improved modeling of fission‐track annealing in apatite. American Mineralogist, 92(5–6), 799–810.
    [Google Scholar]
  52. Kounov, A., Viola, G., De Wit, M., & Andreoli, M. A. G. (2009). Denudation along the Atlantic passive margin: New insights from apatite fission‐track analysis on the western coast of South Africa. Geological Society, London, Special Publications, 324(1), 287–306. https://doi.org/10.1144/SP324.19
    [Google Scholar]
  53. Kounov, A., Viola, G., Dunkl, I., & Frimmel, H. E. (2013). Southern African perspectives on the long‐term morpho‐tectonic evolution of cratonic interiors. Tectonophysics, 601, 177–191. https://doi.org/10.1016/j.tecto.2013.05.009
    [Google Scholar]
  54. Krob, F. C., Eldracher, D. P., Glasmacher, U. A., Husch, S., Salomon, E., Hackspacher, P. C., & Titus, N. P. (2020). Late Neoproterozoic‐to‐recent long‐term t–T‐evolution of the Kaoko and Damara belts in NW Namibia. International Journal of Earth Sciences, 109(2), 537–567. https://doi.org/10.1007/s00531‐020‐01819‐7
    [Google Scholar]
  55. Kroner, S., Konopásek, J., Kroner, A., Passchier, C. W., Poller, U., Wingate, M. T. D., & Hofmann, K. H. (2004). U‐Pb and Pb‐Pb zircon ages for metamorphic rocks in the Kaoko Belt of Northwestern Namibia: A Palaeo‐to Mesoproterozoic basement reworked during the Pan‐African orogeny. South African Journal of Geology, 107(3), 455–476. https://doi.org/10.2113/107.3.455
    [Google Scholar]
  56. Ksienzyk, A. K., Dunkl, I., Jacobs, J., Fossen, H., & Kohlmann, F. (2014). From orogen to passive margin: Constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geological Society, London, Special Publications, 390(1), 679–702. https://doi.org/10.1144/SP390.27
    [Google Scholar]
  57. Lee, J. K., Williams, I. S., & Ellis, D. J. (1997). Pb, U and Th diffusion in natural zircon. Nature, 390(6656), 159–162.
    [Google Scholar]
  58. Leturmy, P., Lucazeau, F., & Brigaud, F. (2003). Dynamic interactions between the Gulf of Guinea passive margin and the Congo River drainage basin: 1. Morphology and mass balance. Journal of Geophysical Research: Solid Earth, 108(B8), 2383
    [Google Scholar]
  59. Light, M. P. R., Maslanyj, M. P., Greenwood, R. J., & Banks, N. L. (1993). Seismic sequence stratigraphy and tectonics offshore Namibia. Geological Society, London, Special Publications, 71(1), 163–191. https://doi.org/10.1144/GSL.SP.1993.071.01.08
    [Google Scholar]
  60. Malusà, M. G.
    , & P. G.Fitzgerald (Eds.) (2019). Fission‐track thermochronology and its application to geology, Switzerland: Springer International Publishing.
    [Google Scholar]
  61. Margirier, A., Braun, J., Gautheron, C., Carcaillet, J., Schwartz, S., Jamme, R. P., & Stanley, J. (2019). Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints. Earth and Planetary Science Letters, 527, 115779. https://doi.org/10.1016/j.epsl.2019.115779
    [Google Scholar]
  62. Marsh, J. S. (2010). The geochemistry and evolution of Palaeogene phonolites, central Namibia. Lithos, 117(1–4), 149–160.
    [Google Scholar]
  63. Miller, R. M. (1979). The Okahandja lineament, a fundamental tectonic boundary in the Damara Orogen of South West Africa/Namibia. South African Journal of Geology, 82(3), 349–362.
    [Google Scholar]
  64. Miller, R. M. (1983). The Pan‐African Damara Orogen of South West Africa/Namibia. Evolution of the Damara Orogen of South West, Africa/Namibia.
    [Google Scholar]
  65. Moore, M. E., Gleadow, A. J., & Lovering, J. F. (1986). Thermal evolution of rifted continental margins: New evidence from fission tracks in basement apatites from southeastern Australia. Earth and Planetary Science Letters, 78(2–3), 255–270.
    [Google Scholar]
  66. O’Connor, J. M., Jokat, W., Le Roex, A. P., Class, C., Wijbrans, J. R., Keßling, S., Kuiper, K. F., & Nebel, O. (2012). Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes. Nature Geoscience, 5(10), 735–738.
    [Google Scholar]
  67. O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., & Mulligan, D. (2020). The trace element composition of apatite and its application to detrital provenance studies. Earth‐Science Reviews, 201, 103044.
    [Google Scholar]
  68. Passchier, C. W., Trouw, R. A. J., Ribeiro, A., & Paciullo, F. V. P. (2002). Tectonic evolution of the southern Kaoko belt. Namibia. Journal of African Earth Sciences, 35(1), 61–75.
    [Google Scholar]
  69. Pedersen, V. K., Huismans, R. S., & Moucha, R. (2016). Isostatic and dynamic support of high topography on a North Atlantic passive margin. Earth and Planetary Science Letters, 446, 1–9.
    [Google Scholar]
  70. Phillips, J. D. (2002). Erosion, isostatic response, and the missing peneplains. Geomorphology, 45, 225–241.
    [Google Scholar]
  71. Picart, C., Dauteuil, O., Pickford, M., & Owono, F. M. (2020). Cenozoic deformation of the South African plateau, Namibia: Insights from planation surfaces. Geomorphology, 350, 106922.
    [Google Scholar]
  72. Pickford, M., & Senut, B. (1999). Geology and palaeobiology of the Namib desert Southwest Africa. Geological Survey of Namibia, Memoir, 18, 155.
    [Google Scholar]
  73. Pickford, M., Senut, B., Mocke, H., Mourer‐Chauviré, C., Rage, J. C., & Mein, P. (2014). Eocene aridity in southwestern Africa: Timing of onset and biological consequences. Transactions of the Royal Society of South Africa, 69(3), 139–144. https://doi.org/10.1080/0035919X.2014.933452
    [Google Scholar]
  74. Raab, M. J., Brown, R. W., Gallagher, K., Carter, A., & Weber, K. (2002). Late Cretaceous reactivation of major crustal shear zones in northern Namibia: Constraints from apatite fission track analysis. Tectonophysics, 349(1–4), 75–92. https://doi.org/10.1016/S0040‐1951(02)00047‐1
    [Google Scholar]
  75. Raab, M. J., Brown, R. W., Gallagher, K., Weber, K., & Gleadow, A. J. W. (2005). Denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's Atlantic passive margin. Tectonics, 24(3). https://doi.org/10.1029/2004TC001688
    [Google Scholar]
  76. Roberts, G. G., & White, N. (2010). Estimating uplift rate histories from river profiles using African examples. Journal of Geophysical Research: Solid Earth, 115(B2).
    [Google Scholar]
  77. Rouby, D., Bonnet, S., Guillocheau, F., Gallagher, K., Robin, C., Biancotto, F., Dauteuil, O., & Braun, J. (2009). Sediment supply to the Orange sedimentary system over the last 150 My: An evaluation from sedimentation/denudation balance. Marine and Petroleum Geology, 26(6), 782–794. https://doi.org/10.1016/j.marpetgeo.2008.08.004
    [Google Scholar]
  78. Salazar‐Mora, C. A., Huismans, R. S., Fossen, H., & Egydio‐Silva, M. (2018). The Wilson cycle and effects of tectonic structural inheritance on rifted passive margin formation. Tectonics, 37(9), 3085–3101. https://doi.org/10.1029/2018TC004962
    [Google Scholar]
  79. Seiler, C., Kohn, B., & Gleadow, A. (2014) Apatite fission track analysis by LA‐ICP‐MS: an evaluation of the absolute dating approach. In: 14th International conference on thermochronology, Chamonix, September 2014, pp. 11–12.
  80. Stanley, J. R., Flowers, R. M., & Bell, D. R. (2013). Kimberlite (U‐Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African Plateau. Geology, 41(12), 1243–1246. https://doi.org/10.1130/G34797.1
    [Google Scholar]
  81. Tankard, A. J., Jackson, M., Eriksson, K. A., Hobday, D. K., Hunter, D. R., & Minter, W. E. L. (1982). Crustal Evolution of Southern Africa 3.8 Billion Years of Earth History (p. 523). Springer‐Verlag.
    [Google Scholar]
  82. Tinker, J., de Wit, M., & Brown, R. (2008a). Linking source and sink: Evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break‐up, South Africa. Tectonophysics, 455(1–4), 94–103.
    [Google Scholar]
  83. Tinker, J., de Wit, M., & Brown, R. (2008b). Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455(1–4), 77–93.
    [Google Scholar]
  84. van der Beek, P., Robert, X., Mugnier, J. L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18(4), 413–434.
    [Google Scholar]
  85. van der Beek, P., Summerfield, M. A., Braun, J., Brown, R. W., & Fleming, A. (2002). Modeling postbreakup landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin. Journal of Geophysical Research: Solid Earth, 107(B12), ETG‐11.
    [Google Scholar]
  86. van Zinderen Bakker, E. M. (1975). The origin and palaeoenvironment of the Namib Desert biome. Journal of Biogeography, 65–73.
    [Google Scholar]
  87. Vasconcelos, P. M., & Carmo, I. D. O. (2018). Calibrating denudation chronology through 40Ar/39Ar weathering geochronology. Earth‐Science Reviews, 179, 411–435.
    [Google Scholar]
  88. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493.
    [Google Scholar]
  89. Wanke, H., & Wanke, A. (2007). Lithostratigraphy of the Kalahari Group in northeastern Namibia. Journal of African Earth Sciences, 48(5), 314–328.
    [Google Scholar]
  90. Ward, J. D. (1988). Eolian, fluvial and pan (playa) facies of the Tertiary Tsondab Sandstone Formation in the central Namib Desert. Namibia. Sedimentary Geology, 55(1–2), 143–162.
    [Google Scholar]
  91. Ward, J. D., & Martin, H. (1987). A terrestrial conglomerate of Cretaceous age‐A new record from the Skeleton Coast, Namib Desert. Communications of the Geological Survey of South West Africa/Namibia, 3, 57–58.
    [Google Scholar]
  92. Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South‐Central Pyrenees. American Journal of Science, 311(5), 442–482. https://doi.org/10.2475/05.2011.03
    [Google Scholar]
  93. Wildman, M., Brown, R., Beucher, R., Persano, C., Stuart, F., Gallagher, K., Schwanethal, J., & Carter, A. (2016). The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U‐Th‐Sm)/He thermochronology. Tectonics, 35(3), 511–545. https://doi.org/10.1002/2015TC004042
    [Google Scholar]
  94. Wildman, M., Brown, R., Persano, C., Beucher, R., Stuart, F. M., Mackintosh, V., Gallagher, K., Schwanethal, J., & Carter, A. (2017). Contrasting Mesozoic evolution across the boundary between on and off craton regions of the South African plateau inferred from apatite fission track and (U‐Th‐Sm)/He thermochronology. Journal of Geophysical Research: Solid Earth, 122(2), 1517–1547. https://doi.org/10.1002/2016JB013478
    [Google Scholar]
  95. Wildman, M., Brown, R., Watkins, R., Carter, A., Gleadow, A., & Summerfield, M. (2015). Post break‐up tectonic inversion across the southwestern cape of South Africa: New insights from apatite and zircon fission track thermochronometry. Tectonophysics, 654, 30–55. https://doi.org/10.1016/j.tecto.2015.04.012
    [Google Scholar]
  96. Wildman, M., Cogné, N., & Beucher, R. (2019). Fission‐track thermochronology applied to the evolution of passive continental margins. In M.Malusa, & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 351–371). Cham: Springer.
    [Google Scholar]
  97. Will, T. M., & Frimmel, H. E. (2018). Where does a continent prefer to break up? Some lessons from the South Atlantic margins. Gondwana Research, 53, 9–19. https://doi.org/10.1016/j.gr.2017.04.014
    [Google Scholar]
  98. Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451(7176), 279–283. https://doi.org/10.1038/nature06588
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12527
Loading
/content/journals/10.1111/bre.12527
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error