1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

At the beginning of the syn‐rift stage, depth‐dependent crustal thinning is dominantly controlled by distributed pure shear thinning within the lower/middle crust due to the presence of two decoupling levels: (1) the middle crust, which allows the lower crust to be extracted laterally without disturbing significantly the upper crust, and (2) within pre‐rift Triassic salt beds, which act as a décollement between the upper crust and the overlying sedimentary cover. Then simple shear becomes localized along a crustal detachment connecting upward with the Late Triassic décollement layer, inducing shearing in the pre‐rift salt. When continental breakup occurs, the basin flanks are affected by brittle deformation while the hyperextended domain undergoes dominantly ductile thinning. The rise of the 300°C to 500°C isotherms in the hyperextended domain, from the syn‐rift to the continental breakup stage, implies that the originally crystalline upper continental crust and the overlying pre‐rift and syn‐rift sedimentary pile are affected by depth‐dependent ductile thinning.

, Abstract

We document the role of sedimentary burial and salt tectonics in controlling the deformation style of continental crust during hyperextension. The Iberian‐European boundary records a complex history of Cretaceous continental extension, which has led to the development of so‐called smooth‐slope type basins. Based on the review of the available geological constraints (crustal‐balanced cross‐sections, sedimentary profile evolution, RSCM thermometer, low‐temperature thermochronology) and geophysical data (Bouguer anomaly, Moho depth, seismic reflection profiles and Vp/Vs velocity models) on the Tartas, Arzacq, Cameros, Parentis, Columbrets, Mauléon, Basque‐Cantabrian and Internal Metamorphic Zone basins, we shed light on the main characteristics of this type of basin. This synthesis indicates that crustal thinning was influenced by two decoupling horizons: the middle crust and Triassic prerift salt, initially located between the basement and prerift sedimentary cover. These two horizons remained active throughout basin formation and were responsible for depth‐dependent thinning of the crust and syn‐rift salt tectonics. We therefore identify several successive deformation phases involving (a) pure shear dominated thinning, (b) simple shear dominated thinning and (c) continental breakup. In the first phase, distributed deformation resulted in the development of a symmetric basin. Field observations indicate that the middle and lower crust were under dominantly ductile conditions at this stage. In the second phase, deformation was localised along a crustal detachment rooted between the crust and the mantle and connecting upwards with Triassic prerift salt. During continental breakup, basin shoulders recorded the occurrence of brittle deformation, whereas the hyperextended domain remained under predominantly ductile thinning. The formation of smooth‐slope‐type extensional basins was intrinsically linked to the combined deposition of thick syn‐rift and breakup sequences, and regional salt tectonics. They induced significant burial and allowed the continental crust and the prerift sequence to deform under high temperature conditions from the rifting to continental breakup stages.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12529
2021-03-15
2024-04-18
Loading full text...

Full text loading...

References

  1. Albarède, F., & Michard‐Vitrac, A. (1978a). Datation du metamorphisme des terrains secondaires des Pyrenees par les methodes 39 Ar‐40 Ar et 87 Rb‐87 Sr; ses relations avec les peridotites associees. Bulletin De La Société Géologique De France, 7, 681–687. https://doi.org/10.2113/gssgfbull.S7‐XX.5.681
    [Google Scholar]
  2. Albarède, F., & Michard‐Vitrac, A. (1978b). Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters, 40(3), 327–332. https://doi.org/10.1016/0012‐821X(78)90157‐7
    [Google Scholar]
  3. Alhamawi, M. (1992). Sédimentologie, Pétrographie Sédimentaire et Diagenèse des Calcaires du Crétacé supérieur de la Marge Ibérique. PhD Thesis, Bordeaux University, 356 p.
  4. Alonso, A., & Mas, J. R. (1993). Control tectónico e influencia del eustatismo en la sedimentación del Cretácico inferior de la cuenca de Los Cameros. Cuadernos de Geología Ibérica, n.º 17, 285–310.
  5. Alvaro, M., del Villar, R. C., & Vegas, R. (1979). Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geológica Hispánica, 14, 172–177.
    [Google Scholar]
  6. Alves, T. M., & Cunha, T. A. (2018). A phase of transient subsidence, sediment bypass and deposition of regressive–transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters, 484, 168–183. https://doi.org/10.1016/j.epsl.2017.11.054
    [Google Scholar]
  7. Alves, T. M., Fetter, M., Busby, C., Gontijo, R., Cunha, T., & Mattos, N. H. (2020). A tectono‐stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems. Marine and Petroleum Geology, 117, 104341. https://doi.org/10.1016/j.marpetgeo.2020.104341
    [Google Scholar]
  8. Alves, T. M., Gawthorpe, R. L., Hunt, D. H., & Monteiro, J. H. (2002). Jurassic tectono‐sedimentary evolution of the Northern Lusitanian Basin (offshore Portugal). Marine and Petroleum Geology, 19, 727–754. https://doi.org/10.1016/S0264‐8172(02)00036‐3
    [Google Scholar]
  9. Alves, T. M., Moita, C., Cunha, T., Ullnaess, M., Myklebust, R., Monteiro, J. H., & Manupella, G. (2009). Diachronous evolution of Late Jurassic‐Cretaceous continental rifting in the northeast Atlantic (west Iberian margin). Tectonics, 28, 1–32. https://doi.org/10.1029/2008TC002337
    [Google Scholar]
  10. Alves, T. M., Moita, C., Sandnes, F., Cunha, T., Monteiro, J. H., & Pinheiro, L. M. (2006). Mesozoic – Cenozoic evolution of North Atlantic continental slope basins: The Peniche basin, western Iberian margin. AAPG Bulletin, 90, 31–60. https://doi.org/10.1306/08110504138
    [Google Scholar]
  11. Angrand, P., Ford, M., & Watts, A. B. (2018). Lateral variations in foreland flexure of a rifted continental margin: The aquitaine basin (SW France): flexure of the aquitaine foreland basin. Tectonics, 37, 430–449. https://doi.org/10.1002/2017TC004670
    [Google Scholar]
  12. Angrand, P., Mouthereau, F., Masini, E., & Asti, R. (2020). A reconstruction of Iberia accounting for W‐Tethys/N‐Atlantic kinematics since the late Permian‐Triassic. Solid Earth, 11, 1313–1332. https://doi.org/10.5194/se‐2020‐24
    [Google Scholar]
  13. Arche, A., & López‐Gómez, J. (1996). Origin of the Permian‐Triassic Iberian Basin, central‐eastern Spain. Tectonophysics, 266, 443–464. https://doi.org/10.1016/S0040‐1951(96)00202‐8
    [Google Scholar]
  14. Arnaud‐Vanneau, A., Arnaud, H., Charollais, J., Conrad, M.‐A., Cotillon, P., Ferry, S., & Peybernès, B. (1979). Paléogéographie des calcaires urgoniens du sud de la France. Géobios, 3, 363–383. https://doi.org/10.1016/S0016‐6995(79)80075‐3
    [Google Scholar]
  15. Asti, R., Lagabrielle, Y., Fourcade, S., Corre, B., & Monié, P. (2019). How do continents deform during mantle exhumation? Insights from the northern iberia inverted paleopassive margin, Western Pyrenees (France). Tectonics, 38(5), 1666–1693. https://doi.org/10.1029/2018TC005428
    [Google Scholar]
  16. Aurell, M., & Meléndez, A. (1993). Sedimentary evolution and sequence stratigraphy of the Upper Jurassic in the central Iberian Chain, northeast Spain. Spec. Publ. Int. Ass. Sediment, 18, 343–368.
    [Google Scholar]
  17. Aurell, M., Robles, S., Bádenas, B., Rosales, I., Quesada, S., Meléndez, G., & Garcı́a‐Ramos, J. C. (2003). Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sedimentary Geology, 162(3‐4), 239–271. https://doi.org/10.1016/S0037‐0738(03)00154‐4
    [Google Scholar]
  18. Ayala, C., Pous, J., & Torné, M. (1996). The lithosphere‐asthenosphere boundary of the Valencia Trough (western Mediterranean) deduced from 2D Geoid and Gravity Modelling. Geophysical Research Letters, 23, 3131–3134. https://doi.org/10.1029/96GL03005
    [Google Scholar]
  19. Ayala, C., Torne, M., & Pous, J. (2003). The lithosphere–asthenosphere boundary in the western Mediterranean from 3D joint gravity and geoid modeling: Tectonic implications. Earth and Planetary Science Letters, 209, 275–290. https://doi.org/10.1016/S0012‐821X(03)00093‐1
    [Google Scholar]
  20. Ayala, C., Torne, M., & Roca, R. (2015). A review of the current knowledge of the crustal and lithospheric structure of the Valencia Trough Basin. Boletín Geológico Y Minero, 126, 533–552.
    [Google Scholar]
  21. Azambre, B., & Rossy, M. (1976). Le magmatisme alcalin d’age cretace, dans les Pyrenees occidentales et l’Arc basque; ses relations avec le metamorphisme et la tectonique. Bulletin De La Société Géologique De France, 7, 1725–1728. https://doi.org/10.2113/gssgfbull.S7‐XVIII.6.1725
    [Google Scholar]
  22. Banda, E., & Santanach, P. (1992). The Valencia trough (western Mediterranean): An overview. Tectonophysics, 208, 183–202. https://doi.org/10.1016/0040‐1951(92)90344‐6
    [Google Scholar]
  23. Barbier, F., Duvergé, J., & Le Pichon, X. (1986). Structure profonde de la marge Nord Gascogne. Implications sur le mécanisme de rifting et de formation de la marge continentale. Bulletin ‐ Centres De Recherches Exploration‐Production Elf‐ Aquitaine, 10, 105–121.
    [Google Scholar]
  24. Bernus‐Maury, C. (1984). Etude des paragéneses caractéristiques du métamorphisme mésozoïque dans la partie orientale des Pyrénées. Pierre et Marie Curie.
    [Google Scholar]
  25. Biteau, J., & Canérot, J. (2007). La Chaine des Pyrenees et ses avant‐pays d’Aquitaine et de l’Ebre: Caracteristiques structurales, evolution geodynamique et tectono‐sedimentaire. Geology PARIS, 155, 16.
    [Google Scholar]
  26. Biteau, J.‐J., Le Marrec, A., Le Vot, M., & Masset, J.‐M. (2006). The aquitaine basin. Petroleum Geoscience, 12(3), 247–273. https://doi.org/10.1144/1354‐079305‐674
    [Google Scholar]
  27. Bixel, F. (1984). Le volcanisme stéphano‐permien des Pyrénées. Université Paul Sabatier de Toulouse (Sciences).
  28. Bixel, F., & Lucas, C. L. (1983). Magmatisme, tectonique et sédimentation dans les fossés stéphano‐permiens des Pyrénées occidentales. Revue De Geologie Dynamique Et De Geographie Physique, 24, 329–342.
    [Google Scholar]
  29. Bixel, F., & Lucas, C. (1987). Approche Géodynamique du Permien et du Trias des Pyrénées dans le cadre du sud‐ouest européen. Cuadernos De Geología Ibérica, 11, 57–81.
    [Google Scholar]
  30. Boillot, G., Beslier, M. O., Krawczyk, C. M., Rappin, D., & Reston, T. J. (1995). The formation of passive margins: Constraints from the crustal structure and segmentation of the deep Galicia margin, Spain. Geological Society, London, Special Publications, 90, 71–91. https://doi.org/10.1144/GSL.SP.1995.090.01.04
    [Google Scholar]
  31. Boillot, G., Capdevilla, R., Hennequin‐Marchand, I., Lamboy, M., & Lepretre, J. P. (1973). La zone nord‐pyrénéenne, ses prolongements sur la marge continentale nord‐espagnole et sa signification structurale. Comptes Rendus De L'académie Des Sciences, 227, 2629–2632.
    [Google Scholar]
  32. Boillot, G., Féraud, G., Recq, M., & Girardeau, J. (1989). Undercrusting by serpentinite beneath rifted margins: The example of the west Galicia margin (Spain). Nature, 341, 523–525. https://doi.org/10.1038/341523a0
    [Google Scholar]
  33. Boillot, G., Grimaud, S., Mauffret, A., Mougenot, D., Kornprobst, J., Mergoil‐Daniel, J., & Torrent, G. (1980). Ocean‐continent boundary of the Iberian margin: A serpentinite diapir west of the Galicia Bank. Earth and Planetary Science Letters, 48, 23–34.
    [Google Scholar]
  34. Boillot, G., Recq, M., Winterer, E. L., Meyer, A. W., Applegate, J., Baltuck, M., & Williamson, M. (1987). Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP leg 103, western Galicia margin, Spain). Tectonophysics, 132, 335–342.others https://doi.org/10.1016/0040‐1951(87)90352‐0
    [Google Scholar]
  35. Boirie, J.‐M. (1981). Etude Sédimentologique des Poudingues de Mendibelza (Pyrénées Atlantiques). Université Paul Sabatier de Toulouse (Sciences).
    [Google Scholar]
  36. Boirie, J.‐M., & Souquet, P. (1982). Les poudingues de Mendibelza: dépôts de cônes sous‐marins du rift albien des Pyrénées. Bulletin ‐ Centres De Recherches Exploration‐Production Elf‐ Aquitaine, 6, 405–435.
    [Google Scholar]
  37. Bois, C., & ECORS Scientific team . (1990). Major geodynamic processes studied from the ECORS deep seismic profiles in France and adjacent areas. Tectonophysics, 173, 397–410. https://doi.org/10.1016/0040‐1951(90)90233‐X
    [Google Scholar]
  38. Bois, C. (1992). The evolution of the layered lower crust and the Moho through geological time in Western Europe: Contribution of deep seismic reflection profiles. Terra Nova, 4, 99–108. https://doi.org/10.1111/j.1365‐3121.1992.tb00454.x
    [Google Scholar]
  39. Bois, C., & Courtillot, V. (1988). Deep seismic profiling of the crust and evolution of the Lithosphere. EOS, 69, 987–988.
    [Google Scholar]
  40. Bois, C., Gabriel, O., Lefort, J.‐P., Rolet, J., Brunet, M.‐F., Masse, P., & Olivet, J.‐L. (1997). Geologic contribution of the Bay of Biscay deep seismic survey: A summary of the main scientific results, a discussion of the open questions and suggestions for further investigation. Mémoires De La Société Géologique De France, 171(8), 193–309.
    [Google Scholar]
  41. Bois, C., & Gariel, O. (1994). Deep Seismic Investigation in the Parentis Basin (Southwestern France). In A.Mascle (Ed.), Hydrocarbon and Petroleum Geology of France (pp. 173–186). Springer. https://doi.org/10.1007/978‐3‐642‐78849‐9_13
    [Google Scholar]
  42. Boulvais, P. (2016). Fluid generation in the Boucheville Basin as a consequence of the North Pyrenean metamorphism. Comptes Rendus Geoscience, 348, 301–311. https://doi.org/10.1016/j.crte.2015.06.013
    [Google Scholar]
  43. Bouroullec, J., Delfaud, J., & Deloffre, R. (1979). Organisations sédimentaire et paléocologique de l’Aptien supérieur a faciès urgonien dans les Pyrénées occidentales et l’Aquitaine méridionale. Geobios, 12, 25–43. https://doi.org/10.1016/S0016‐6995(79)80048‐0
    [Google Scholar]
  44. Bouroullec, J., & Deloffre, R. (1970). Interprétation sédimentologique et paléogéographique par microfaciès du Crétacé inférieur basal d’Aquitaine Sud‐Ouest. Bulletin Du Centre De Recherches, 4, 381–429.
    [Google Scholar]
  45. Bourrouilh, R., Richert, J.‐P., & Zolnaï, G. (1995). The north Pyrenean Aquitaine basin, France: Evolution and hydrocarbons. AAPG Bulletin, 79, 831–853. https://doi.org/10.1306/8D2B1BC4‐171E‐11D7‐8645000102C1865D
    [Google Scholar]
  46. BRGM, Elf, Esso, & SNPA
    BRGM, Elf, Esso, & SNPA . (1974). Géologie du Bassin d’aquitaine. BRGM Editions.
    [Google Scholar]
  47. Brune, S., Heine, C., Pérez‐Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper‐extension. Nature Communications, 5, 5014. https://doi.org/10.1038/ncomms5014
    [Google Scholar]
  48. Brune, S., Williams, S. E., Butterworth, N. P., & Müller, R. D. (2016). Abrupt plate accelerations shape rifted continental margins. Nature, 536, 201–204. https://doi.org/10.1038/nature18319
    [Google Scholar]
  49. Brunet, M.‐F. (1991). Subsidence et géodynamique du Bassin d’Aquitaine: Relations Avec L’ouverture De l’Atlantique. Thèse d’Etat, Université de Paris 6, Paris, France.
    [Google Scholar]
  50. Brunet, M. F. (1994). Subsidence in the Parentis Basin (Aquitaine, France): Implications of the Thermal Evolution In A. Mascle (Ed.), Hydrocarbon and Petroleum Geology of France. Special Publication of the European Association of Petroleum Geoscientists, 4, 187–198.
    [Google Scholar]
  51. Burg, J.‐P., Van Den Driessche, J., & Brun, J.‐P. (1994). Syn‐ to post‐thickening extension: Mode and consequences. Comptes Rendus De L'académie Des Sciences, 319, 1019–1032.
    [Google Scholar]
  52. Cámara, P. (2020). Inverted turtle salt anticlines in the Eastern Basque‐Cantabrian basin, Spain. Marine and Petroleum Geology, 117, 104358–https://doi.org/10.1016/j.marpetgeo.2020.104358
    [Google Scholar]
  53. Canérot, J. (1988). Manifestations de l’halocinèse dans les chaînons béarnais (zone Nord‐Pyrénéenne) au Crétacé inférieur. Comptes Rendus De L'académie Des Sciences, 117, 104358. https://doi.org/10.1016/j.marpetgeo.2020.104358
    [Google Scholar]
  54. Canérot, J. (1989). Rifting éocrétacé et halocinèse sur la marge ibérique des Pyrénées Occidentales (France). Conséquences structurales. Bulletin Des Centres De Recherches Exploration ‐ Production Elf‐Aquitaine, 13, 87–99.
    [Google Scholar]
  55. Canérot, J. (2008). Les Pyrénées: Histoire Géologique et Itinéraires de Découvertes. Atlantica‐BRGM. 643 p.
  56. Canérot, J., Hudec, M. R., & Rockenbauch, K. (2005). Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bulletin, 89, 211–229. https://doi.org/10.1306/09170404007
    [Google Scholar]
  57. Canérot, J., & Lenoble, J.‐L. (1993). Diapirisme crétacé sur la marge ibérique des Pyrénées occidentales; exemple du pic de Lauriolle; comparaisons avec l’Aquitaine, les Pyrénées centrales et orientales. The Bulletin De La Société Géologique De France, 164, 719–726.
    [Google Scholar]
  58. Canérot, J., Majesté‐Menjoulas, C., & Ternet, Y. (1999). Le cadre stratigraphique et géodynamique des altérites et des bauxites sur la marge ibérique des Pyrénées occidentales (France). Comptes Rendus De L'académie Des Sciences ‐ Series IIA ‐ Earth and Planetary Science, 328, 451–456. https://doi.org/10.1016/S1251‐8050(99)80145‐1
    [Google Scholar]
  59. Carballo, A., Fernandez, M., Torne, M., Jiménez‐Munt, I., & Villaseñor, A. (2015). Thermal and petrophysical characterization of the lithospheric mantle along the northeastern Iberia geo‐transect. Gondwana Research, 27, 1430–1445. https://doi.org/10.1016/j.gr.2013.12.012
    [Google Scholar]
  60. Casas, A. M., Cortés, A. L., & Maestro, A. (2000). Intra‐plate deformation and basin formation during the Tertiary at the Northern Iberian Plate: Origin and evolution of the Almazán Basin. Tectonics, 19, 258–289.
    [Google Scholar]
  61. Casas, A., Kearey, P., Rivero, L., & Adam, C. R. (1997). Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth and Planetary Science Letters, 150, 65–78. https://doi.org/10.1016/S0012‐821X(97)00087‐3
    [Google Scholar]
  62. Casas, A. M., Villalaín, J. J., Soto, R., Gil‐Imaz, A., del Río, P., & Fernández, G. (2009). Multidisciplinary approach to an extensional syncline model for the Mesozoic Cameros Basin (N Spain). Tectonophysics, 470, 3–20. https://doi.org/10.1016/j.tecto.2008.04.020
    [Google Scholar]
  63. Casas Sainz, A. M. (1993). Oblique tectonic inversion and basement thrusting in the Cameros Massif (Northern Spain). Geodinamica Acta, 6, 202–216. https://doi.org/10.1080/09853111.1993.11105248
    [Google Scholar]
  64. Casas‐Sainz, A. M., & Gil‐Imaz, A. (1998). Extensional subsidence, contractional folding and thrust inversion of the eastern Cameros basin, northern Spain. Geologische Rundschau, 86, 802–818. https://doi.org/10.1007/s005310050178
    [Google Scholar]
  65. Casas‐Sainz, A. M., & Simón‐Gómez, J. (1992). Stress field and thrust kinematics: A model for the tectonic inversion of the cameros massif (Spain). Journal of Structural Geology, 14, 521–530. https://doi.org/10.1016/0191‐8141(92)90154‐O
    [Google Scholar]
  66. Casquet, C., Galindo, C., González‐Casado, J. M., Alonso, A., Mas, R., Rodas, M.,García, E., & Barrenechea, J. F. (1992). El metamorfismo en la cuenca de los Cameros; geocronologia e implicaciones tectonicas. Geogaceta, 11, 22–25.
    [Google Scholar]
  67. Castañares, L. M., & Robles, S. (2004). El vulcanismo del Albiense‐Santoniense en la Cuenca Vasco‐Cantábrica. Geología de España, 306–308.
    [Google Scholar]
  68. Castañares, L. M., Robles, S., & Vicente Bravo, J. C. (1997). Distribución estratigráfica de los episodios volcánicos submarinos del Albiense‐Santoniense en la Cuenca Vasca (sector Gernika‐Plentzia, Bizkaia). Geogaceta, 22, 43–46.
    [Google Scholar]
  69. Casteras, M. (1933). Recherches sur la structure du versant nord des Pyrénées centrales et orientales. Bull. Serv. Carte Geol. Fr. T. XXXVII, 189, 525 p.
  70. Casteras, M. (1971). Carte géologique de la France à 1/50 000: Feuille de Tardets‐Sorholus. Orléans.
    [Google Scholar]
  71. Chelalou, R., Nalpas, T., Bousquet, R., Prevost, M., Lahfid, A., Poujol, M., Lahfid, A., Poujol, M., Ringenbach, J.‐C., & Ballard, J.‐F. (2016). New sedimentological, structural and paleo‐thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). Comptes Rendus Géoscience, 348, 312–321. https://doi.org/10.1016/j.crte.2015.11.008
    [Google Scholar]
  72. Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal, G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., & Ruiz, M. (2018). The non‐cylindrical crustal architecture of the Pyrenees. Scientific Reports, 8, 9591. https://doi.org/10.1038/s41598‐018‐27889‐x
    [Google Scholar]
  73. Choukroune, P. (1974). Structure et évolution tectonique de la zone nord‐pyrénéenne: analyse de la déformation dans une portion de chaîne à schistosité sub‐verticale. Mem. Soco Ceo/. Fr, LV (127), 116 p.
  74. Choukroune, P. & ECORS Team . (1989). The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics, 8, 23–39. https://doi.org/10.1029/TC008i001p00023
    [Google Scholar]
  75. Choukroune, P., & Mattauer, M. (1978). Tectonique des plaques et Pyrenees; sur le fonctionnement de la faille transformante nord‐pyreneenne; comparaisons avec des modeles actuels. Bulletin De La Société Géologique De France, 7, 689–700. https://doi.org/10.2113/gssgfbull.S7‐XX.5.689
    [Google Scholar]
  76. Clerc, C. (2012). Evolution du domaine nord‐pyrénéen au Crétacé: Amincissement crustal extrême et thermicite élevée: Un analogue pour les marges passives. PhD Thesis, Université Paris 6.
  77. Clerc, C., Boulvais, P., Lagabrielle, Y., & de Saint Blanquat, M. (2014). Ophicalcites from the northern Pyrenean belt: A field, petrographic and stable isotope study. International Journal of Earth Sciences, 103, 141–163. https://doi.org/10.1007/s00531‐013‐0927‐z
    [Google Scholar]
  78. Clerc, C., & Lagabrielle, Y. (2014). Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics, 33, 1340–1359. https://doi.org/10.1002/2013TC003471
    [Google Scholar]
  79. Clerc, C., Lagabrielle, Y., Labaume, P., Ringenbach, J.‐C., Vauchez, A., Nalpas, T., Bousquet, R., Ballard, J.‐F., Lahfid, A., & Fourcade, S. (2016). Basement – Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics, 686, 82–97. https://doi.org/10.1016/j.tecto.2016.07.022
    [Google Scholar]
  80. Clerc, C., Lahfid, A., Monié, P., Lagabrielle, Y., Chopin, C., Poujol, M., & de St Blanquat, M. (2015). High‐temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth, 6, 643–668. https://doi.org/10.5194/se‐6‐643‐2015
    [Google Scholar]
  81. Cobbold, P. R., & Szatmari, P. (1991). Radial gravitational gliding on passive margins. Tectonophysics, 188, 249–289. https://doi.org/10.1016/0040‐1951(91)90459‐6
    [Google Scholar]
  82. Cochelin, B. (2016). Champ de déformation du socle paléozoïque des Pyrénées. PhD Thesis. Géosciences Environnement Toulouse (GET). 244 p.
  83. Cochelin, B., Chardon, D., Denèle, Y., Gumiaux, C., & Le Bayon, B. (2017). Vertical strain partitioning in hot Variscan crust: Syn‐convergence escape of the Pyrenees in the Iberian‐Armorican syntax. Bulletin De La Société Géologique De France, 188, 39:2017206. https://doi.org/10.1051/bsgf/2017206
    [Google Scholar]
  84. Cochelin, B., Gumiaux, C., Chardon, D., Denèle, Y., & Le Bayon, B. (2018). Multi‐scale strainfield analysis using geostatistics: Investigating the rheological behavior of the hot Variscan crust of the Pyrenees (Axial Zone). Journal of Structural Geology, 116, 114–130. https://doi.org/10.1016/j.jsg.2018.07.024
    [Google Scholar]
  85. Cochelin, B., Lemirre, B., Denèle, Y., de Saint Blanquat, M., Lahfid, A., & Duchêne, S. (2018). Structural inheritance in the central Pyrenees: The variscan to Alpine tectonometamorphic evolution of the axial zone. Journal of the Geological Society, 175, 336–351. https://doi.org/10.1144/jgs2017‐066
    [Google Scholar]
  86. Combes, P.‐J., Peybernès, B., & Leyreloup, A. F. (1998). Altérites et bauxites, témoins des marges européenne et ibérique des Pyrénées occidentales au Jurassique supérieur—Crétacé inférieur, à l’ouest de la vallée d’Ossau (Pyrénées‐Atlantiques, France). Comptes Rendus De L'académie Des Sciences ‐ Series IIA ‐ Earth and Planetary Science, 327, 271–278. https://doi.org/10.1016/S1251‐8050(98)80085‐2
    [Google Scholar]
  87. Corre, B. (2017). La bordure nord de la plaque ibérique à l’Albo‐Cénomanien: Architecture d’une marge passive de type ductile (Chaînons Béarnais. Pyrénées Occidentales) (PhD Thesis). Rennes 1.
  88. Corre, B., Lagabrielle, Y., Labaume, P., Fourcade, S., Clerc, C., & Ballèvre, M. (2016). Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North‐Pyrenean Zone). Comptes Rendus Geoscience, 348, 279–289. https://doi.org/10.1016/j.crte.2015.11.007
    [Google Scholar]
  89. Cuevas, J., & Tubia, J. M. (1999). The discovery of scapolite marbles in the Biscay Synclinorium (Basque‐Cantabrian basin, Western Pyrenees): Geodynamic implications. Terra Nova, 11, 259–265. https://doi.org/10.1046/j.1365‐3121.1999.00255.x
    [Google Scholar]
  90. Curnelle, R. (1983). Evolution structuro‐sédimentaire du Trias et de l’Infra‐Lias d’Aquitaine. Bulletin Des Centres De Recherches Exploration‐Production Elf‐Aquitaine, 7, 69–99.
    [Google Scholar]
  91. Curnelle, R., & Dubois, P. (1986). Evolution mesozoique des grands bassins sedimentaires francais; bassins de Paris, d’Aquitaine et du Sud‐Est. Bulletin De La Societe Geologique De France, II, 529–546. https://doi.org/10.2113/gssgfbull.II.4.529
    [Google Scholar]
  92. Curnelle, R., Dubois, P., Seguin, J. C., Whitaker, D., Matthews, D. H., Roberts, D. G., & Kholief, M. M. (1982). The mesozoic‐tertiary evolution of the aquitaine basin [and discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 305, 63–84. https://doi.org/10.1098/rsta.1982.0026
    [Google Scholar]
  93. Daignières, M., Séguret, M., & Specht, M. & Team, E. (1994). The Arzacq‐western Pyrenees ECORS deep seismic profile. Hydrocarbon and Petroleum Geology of France. Springer, pp. 199–208.
  94. Dañobeitia, J. J., Arguedas, M., Gallart, J., Banda, E., & Makris, J. (1992). Deep crustal configuration of the Valencia trough and its Iberian and Balearic borders from extensive refraction and wide‐angle reflection seismic profiling. Tectonophysics, 203, 37–55. https://doi.org/10.1016/0040‐1951(92)90214‐Q
    [Google Scholar]
  95. Dardel, R. A., & Rosset, R. (1971). Histoire géologique et structurale du bassin de Parentis et de son prolongement en mer, in Histoire Structurale du Golfe de Gascogne, In J.Debyser, X.Le Pichon, & L.Montardet, (Eds.), Publi. Inst. Fr. Pet., (Vol. 22, chap. IV‐2, pp. 1–28). Paris: Technip.
    [Google Scholar]
  96. Dauteuil, O., & Ricou, L.‐E. (1989). Une circulation de fluides de haute‐température à l’origine du métamorphisme crétacé nord‐pyrénéen. Geodinamica Acta, 3, 237–249. https://doi.org/10.1080/09853111.1989.11105190
    [Google Scholar]
  97. de Saint Blanquat, M. (1993). La faille normale ductile du massif du Saint Barthélémy. Evolution hercynienne des massifs nord‐pyrénéens catazonaux considérée du point de vue de leur histoire thermique. Geodinamica Acta, 6, 59–77. https://doi.org/10.1080/09853111.1993.11105239
    [Google Scholar]
  98. de Saint Blanquat, M., Bajolet, F., Grand’Homme, A., Proietti, A., Zanti, M., Boutin, A., Clerc, C., Lagabrielle, Y., & Labaume, P. (2016). Cretaceous mantle exhumation in the central Pyrenees: New constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Comptes Rendus Geoscience, 348, 268–278. https://doi.org/10.1016/j.crte.2015.12.003
    [Google Scholar]
  99. Debroas, E. J. (1978). Evolution de la fosse du flysch ardoisier de l’Albien superieur au Senonien inferieur (zone interne metamorphique des Pyrenees navarro‐languedociennes). Bulletin De La Société Géologique De France, 7, 639–648. https://doi.org/10.2113/gssgfbull.S7‐XX.5.639
    [Google Scholar]
  100. Debroas, E.‐J. (1987). Modèle de bassin triangulaire à l’intersection de décrochements divergents pour le fossé albo‐cénomanien de la Ballongue (zone nord‐pyrénéenne, France). Bulletin De La Société Géologique De France, 3, 887–898. https://doi.org/10.2113/gssgfbull.III.5.887
    [Google Scholar]
  101. Debroas, E. J. (1990). Le flysch noir albo‐cenomanien temoin de la structuration albienne a senonienne de la Zone nord‐pyreneenne en Bigorre (Hautes‐Pyrenees, France). Bulletin De La Société Géologique De France. VI(2), 273–285. https://doi.org/10.2113/gssgfbull.VI.2.273
    [Google Scholar]
  102. Debroas, E. J., Canérot, J., & Bilotte, M. (2010). Les brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille vraconnien‐cénomanien inférieur (Zone nord‐pyrénéenne, Pyrénées‐Atlantiques, France). Géologique De France, 2, 53–63.
    [Google Scholar]
  103. DeFelipe, I., Pedreira, D., Pulgar, J. A., Iriarte, E., & Mendia, M. (2017). Mantle exhumation and metamorphism in the Basque‐Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North‐Pyrenean Zone (Urdach and Lherz). Geochemistry, Geophysics, Geosystems, 18, 631–652. https://doi.org/10.1002/2016GC006690
    [Google Scholar]
  104. Del Río, P., Barbero, L., Mata, P., & Fanning, C. M. (2009). Timing of diagenesis and very low‐grade metamorphism in the eastern sector of the Sierra de Cameros (Iberian Range, Spain): A U‐Pb SHRIMP study on monazite: U‐Pb dating of diagenetic and low‐grade monazite from the Iberian Range (Spain). Terra Nova, 21, 438–445. https://doi.org/10.1111/j.1365‐3121.2009.00900.x
    [Google Scholar]
  105. Delfaud, J. (1969). Essai sur la géologie dynamique du domaine aquitano‐pyrénéen durant le Jurassique et le Crétacé inférieur. PhD Thesis, Université de Bordeaux.
  106. Delfaud, J., & Gautier, J. (1967). Evolution des milieux de dépôts au passage Jurassique‐Crétacé du forage de Lacq 104 (Aquitaine, France, Sud‐Ouest). Bulletin Des Centres De Recherches, 1, 77–89.
    [Google Scholar]
  107. Delfaud, J., & Henry, J. (1967). Evolution des bassins jurassiques dans la zone nord‐pyrénéenne occidentale. 64ème Congrès AFAS Bordx, 75–80.
    [Google Scholar]
  108. Delfaud, J., & Villanova, M. (1967). Evolution des bassins pendant le Crétacé inférieur dans les Pyrénees occidentales et la bordure de l’Aquitaine. 64ème Congrès AFAS Bordx. 87–92.
  109. Demercian, S., Szatmari, P., & Cobbold, P. R. (1993). Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228, 393–433. https://doi.org/10.1016/0040‐1951(93)90351‐J
    [Google Scholar]
  110. Dercourt, J., Zonenshain, L. P., Ricou, L.‐E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., & Biju‐Duval, B. (1986). Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS. Tectonophysics, 123, 241–315. https://doi.org/10.1016/0040‐1951(86)90199‐X
    [Google Scholar]
  111. Désaglaux, P., & Brunet, M.‐F. (1990). Tectonic subsidence of the Aquitaine basin since Cretaceous times. Bull. Société Géologiqu, 8, 295–306. https://doi.org/10.2113/gssgfbull.VI.2.295
    [Google Scholar]
  112. Dielforder, A., Frasca, G., Brune, S., & Ford, M. (2019). Formation of the Iberian‐European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe. Geochemistry Geophysics Geosystems, 20(5), 2395–2417. https://doi.org/10.1029/2018GC007840.
    [Google Scholar]
  113. Driscoll, N. W., Hogg, J. R., Christie‐Blick, N., & Karner, G. D. (1995). Extensional tectonics in the Jeanne d’Arc Basin, offshore Newfoundland: Implications for the timing of break‐up between Grand Banks and Iberia. Geological Society, London, Special Publications, 90, 1–28. https://doi.org/10.1144/GSL.SP.1995.090.01.01
    [Google Scholar]
  114. Ducoux, M. (2017). Structure, thermicité et évolution géodynamique de la Zone Interne Métamorphique des Pyrénées. Institut des Sciences de la Terre d’Orléans (ISTO).
  115. Ducoux, M., Jolivet, L., Callot, J.‐P., Aubourg, C., Masini, E., Lahfid, A., Baudin, T. (2019). The Nappe des Marbres Unit of the Basque‐Cantabrian Basin: The Tectono‐thermal Evolution of a Fossil Hyperextended Rift Basin. Tectonics, 38(11), 3881–3915. https://doi.org/10.1029/2018TC005348
    [Google Scholar]
  116. Duée, G., Lagabrielle, Y., Coutelle, A., & Fortané, A. (1984). Les lherzolites associées aux Chaînons Béarnais (Pyrénées Occidentales): Mise à l’affleurement anté‐dogger et resédimentation albo‐cénomanienne. Comptes Rendus De L'académie Des Sciences, 299, 1205–1210.
    [Google Scholar]
  117. Duretz, T., Asti, R., Lagabrielle, Y., Brun, J., Jourdon, A., Clerc, C., & Corre, B. (2019). Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn‐rift salt tectonics. Basin Research, 32(4), 652–667. https://doi.org/10.1111/bre.12389
    [Google Scholar]
  118. Espurt, N., Angrand, P., Teixell, A., Labaume, P., Ford, M., de Saint Blanquat, M., & Chevrot, S. (2019). Crustal‐scale balanced cross‐section and restorations of the Central Pyrenean belt (Nestes‐Cinca transect): Highlighting the structural control of Variscan belt and Permian‐Mesozoic rift systems on mountain building. Tectonophysics, 764, 25–45. https://doi.org/10.1016/j.tecto.2019.04.026
    [Google Scholar]
  119. Etheve, N. (2016). Le bassin de Valence à la frontière des domaines ibérique et méditerranéen: Evolution tectonique et sédimentaire du Mésozoïque au Cénozoïque. PhD Thesis, Université de Cergy Pontoise. 291 p.
  120. Etheve, N., Mohn, G., Frizon de Lamotte, D., Roca, E., Tugend, J., & Gómez‐Romeu, J. (2018). Extreme Mesozoic Crustal Thinning in the Eastern Iberia Margin: The Example of the Columbrets Basin (Valencia Trough). Tectonics, 37, 636–662. https://doi.org/10.1002/2017TC004613
    [Google Scholar]
  121. Fabriès, J., Lorand, J.‐P., & Bodinier, J.‐L. (1998). Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics, 292, 145–167. https://doi.org/10.1016/S0040‐1951(98)00055‐9
    [Google Scholar]
  122. Fabriès, J., Lorand, J.‐P., Bodinier, J.‐L., & Dupuy, C. (1991). Evolution of the upper mantle beneath the pyrenees: evidence from orogenic spinel lherzolite massifs. Journal of Petrology, Special_Volume(2), 55–76. https://doi.org/10.1093/petrology/Special_Volume.2.55
    [Google Scholar]
  123. Fernandez, M., Foucher, J. P., & Jurado, M. J. (1995). Evidence for the multi‐stage formation of the south‐western Valencia Trough. Marine and Petroleum Geology, 12, 101–109. https://doi.org/10.1016/0264‐8172(95)90390‐6
    [Google Scholar]
  124. Ferrer, O., Jackson, M. P. A., Roca, E., & Rubinat, M. (2012). Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay). Geological Society, London, Special Publications, 363, 361–380. https://doi.org/10.1144/SP363.16
    [Google Scholar]
  125. Ferrer, O., Roca, E., Benjumea, B., Muñoz, J. A., Ellouz, N., & MARCONI Team . (2008). The deep seismic reflection MARCONI‐3 profile: Role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Marine and Petroleum Geology, 25(8), 714–730. https://doi.org/10.1016/j.marpetgeo.2008.06.002
    [Google Scholar]
  126. Ferrer, O., Roca, E., Jackson, M. P. A., & Muñoz, J. A. (2009). Effects of Pyrenean contraction on salt structures of the offshore Parentis Basin (Bay of Biscay). Trabajos De Geología, 29:299‐303.
    [Google Scholar]
  127. Fixari, G. (1984). Stratigraphie, faciès et dynamique tecto‐sédimentaire du flysch albien (flysch noir et poudingues de mendibelza) dans la région de Mauléon‐Tardets (Pyrénées Atlantiques). Université Paul Sabatier de Toulouse (Sciences).
  128. Fort, X., Brun, J.‐P., & Chauvel, F. (2004a). Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bulletin, 88, 1523–1544. https://doi.org/10.1306/06010403012
    [Google Scholar]
  129. Fort, X., Brun, J. P., & Chauvel, F. (2004b). Contraction induced by block rotation above salt (Angolan margin). Marine and Petroleum Geology, 21, 1281–1294. https://doi.org/10.1016/j.marpetgeo.2004.09.006
    [Google Scholar]
  130. Fortané, A., Duée, G., Lagabrielle, Y., & Coutelle, A. (1986). Lherzolites and the western “Chaînons Béarnais” (French Pyrenees): Structural and paleogeographical pattern. Tectonophysics, 129, 81–98. https://doi.org/10.1016/0040‐1951(86)90247‐7
    [Google Scholar]
  131. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel‐Daveau, J.‐C., Blanpied, C., & Ringenbach, J.‐C. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30(3), 1–22. https://doi.org/10.1029/2010TC002691.
    [Google Scholar]
  132. Froitzheim, N., & Manatschal, G. (1996). Kinematics of Jurassic rifting, mantle exhumation, and passive‐margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geological Society of America Bulletin, 108, 1120–1133. https://doi.org/10.1130/0016‐7606(1996)108<1120:KOJRME>2.3.CO;2
    [Google Scholar]
  133. Gallart, J., Rojas, H., Diaz, J., & Dañobeitia, J. J. (1990). Features of deep crustal structure and the onshore‐offshore transition at the Iberian flank of the Valencia Trough (Western Mediterranean). Journal of Geodynamics, 12, 233–252. https://doi.org/10.1016/0264‐3707(90)90009‐J
    [Google Scholar]
  134. Gallart, J., Vidal, N., & Danobeitia, J. (1994). Lateral variations in the deep crustal structure at the Iberian margin of the Valencia trough imaged from seismic reflection methods. Tectonophysics, 232, 59–75. https://doi.org/10.1016/0040‐1951(94)90076‐0
    [Google Scholar]
  135. García‐Lasanta, C., Casas‐Sainz, A., Villalaín, J. J., Oliva‐Urcia, B., Mochales, T., & Speranza, F. (2017). Remagnetizations used to unravel large‐scale fold kinematics: A case study in the Cameros Basin (Northern Spain): Unfolding in Basin Inversion. Tectonics, 36, 714–729. https://doi.org/10.1002/2016TC004459
    [Google Scholar]
  136. García‐Mondéjar, J., Agirrezabala, L. M., Aranburu, A., Fernández‐Mendiola, P. A., Gómez‐Pérez, I., López‐Horgue, M., & Rosales, I. (1996). Aptian—Albian tectonic pattern of the Basque—Cantabrian Basin (Northern Spain). Geological Journal, 31, 13–45. https://doi.org/10.1002/(SICI)1099‐1034(199603)31:1<13:AID‐GJ689>3.0.CO;2‐Y
    [Google Scholar]
  137. Garcia‐Senz, J., Pedrera, A., Ayala, C., Ruiz‐Constán, A., Robador Moreno, A., & Rodríguez‐Fernández, R. (2019). Inversion of the North‐Iberian hyperextended margin: The role of exhumed mantle indentation during continental collision. Geological Society, London, Special Publications, 490, https://doi.org/10.1144/SP490‐2019‐112
    [Google Scholar]
  138. Gaullier, V., Brun, J. P., Gueīrin, G., & Lecanu, H. (1993). Raft tectonics: The effects of residual topography below a salt deīcollement. Tectonophysics, 228, 363–381.
    [Google Scholar]
  139. Golberg, J. M., Guiraud, M., Maluski, H., & Séguret, M. (1988). Caractères pétrologiques et âge du métamorphisme en contexte distensif du bassin sur décrochement de Soria (Crétacé inférieur, Nord Espagne). Comptes Rendus De L'académie Des Sciences, 307, 521–527.
    [Google Scholar]
  140. Golberg, J. M., & Leyreloup, A. F. (1990). High temperature‐low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology, 104, 194–207. https://doi.org/10.1007/BF00306443
    [Google Scholar]
  141. Golberg, J.‐M., & Maluski, H. (1988). Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen. Comptes Rendus De L'académie Des Sciencess, 306, 429–435.
    [Google Scholar]
  142. Golberg, J. M., Maluski, H., & Leyreloup, A. F. (1986). Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics, 129, 275–290. https://doi.org/10.1016/0040‐1951(86)90256‐8
    [Google Scholar]
  143. Gomez‐Ortiz, D., Agarwal, B. N. P., Tejero, R., & Ruiz, J. (2011). Crustal structure from gravity signatures in the Iberian Peninsula. Geological Society of America Bulletin, 123, 1247–1257. https://doi.org/10.1130/B30224.1
    [Google Scholar]
  144. Gómez‐Romeu, J., Masini, E., Tugend, J., Ducoux, M., & Kusznir, N. (2019). Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case‐study. Tectonophysics, 766, 131–150. https://doi.org/10.1016/j.tecto.2019.05.022
    [Google Scholar]
  145. Gong, Z., Langereis, C. G., & Mullender, T. A. T. (2008). The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth and Planetary Science Letters, 273(1–2), 80–93. https://doi.org/10.1016/j.epsl.2008.06.016
    [Google Scholar]
  146. Gottis, M. (1972). Construction d’un modèle géodynamique pyrénéen. Comptes Rendus De L'académie Des Sciences, 275, 2099.
    [Google Scholar]
  147. Grandjean, G. (1994). Etude des structures crustales dans une portion de chaîne et de leur relation avec les bassins sédimentaires. Application aux Pyrénées occidentales. Bull Cent Rech Explor Prod Elf Aquitaine, 18, 391–420.
    [Google Scholar]
  148. Guimerà, J., Alonso, Á., & Mas, J. R. (1995). Inversion of an extensional‐ramp basin by a newly formed thrust: The Cameros basin (N. Spain). Geological Society, London, Special Publications, 88, 433–453. https://doi.org/10.1144/GSL.SP.1995.088.01.23
    [Google Scholar]
  149. Guiraud, M., & Séguret, M. (1985). A releasing solitary overstep model for the Late Jurassic‐Early Cretaceous (Wealdian) Soria strike‐slip basin (northern Spain) In: edited by N. Christie‐Blick and K. T. Biddle. Strike‐Slip Deformation, Basin Formation, and Sedimentation. Soco of Econ. Paleontd. and Minera, Tulsa, Okla., Spec. Pub. AAPG Bulletin. 37(1), 159–175.
    [Google Scholar]
  150. Hart, N. R., Stockli, D. F., Lavier, L. L., & Hayman, N. W. (2017). Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees: Thermal evolution of hyperextended rift. Tectonics, 36(6), 1103–1128. https://doi.org/10.1002/2016TC004365
    [Google Scholar]
  151. Henry, J., Zolnaï, G., Le Pochat, G., & Mondeilh, C. (1987). Carte géologique de la France au 1/50 000: Feuille d’Orthez. Orléans.
    [Google Scholar]
  152. Huismans, R. S., & Beaumont, C. (2003). Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening. Rnal of Geophysical Research: Solid Earth, 108(B10), 1–22. https://doi.org/10.1029/2002JB002026
    [Google Scholar]
  153. Huismans, R. S., & Beaumont, C. (2008). Complex rifted continental margins explained by dynamical models of depth‐dependent lithospheric extension. Geology, 36, 163. https://doi.org/10.1130/G24231A.1
    [Google Scholar]
  154. Huismans, R. S., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–78. https://doi.org/10.1038/nature09988
    [Google Scholar]
  155. Huismans, R. S., & Beaumont, C. (2014). Rifted continental margins: The case for depth‐dependent extension. Earth and Planetary Science Letters, 407, 148–162. https://doi.org/10.1016/j.epsl.2014.09.032
    [Google Scholar]
  156. Incerpi, N., Manatschal, G., Martire, L., Bernasconi, S. M., Gerdes, A., & Bertok, C. (2020). Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: New constraints from the Chaînons Béarnais (W Pyrenees). International Journal of Earth Sciences, 109(3), 1071–1093. https://doi.org/10.1007/s00531‐020‐01852‐6
    [Google Scholar]
  157. Issautier, B., Saspiturry, N., & Serrano, O. (2020). Structural inheritance and salt tectonics controlling pseudosymmetric rift formation during Early Cretaceous hyperextension of the Arzacq and Tartas Basins (southwest France). Marine and Petroleum Geology, 118, 1–19. https://doi.org/10.1016/j.marpetgeo.2020.104395.
    [Google Scholar]
  158. Jackson, M. P., & Hudec, M. R. (2005). Stratigraphic record of translation down ramps in a passive‐margin salt detachment. Journal of Structural Geology, 27(5), 889–911. https://doi.org/10.1016/j.jsg.2005.01.010
    [Google Scholar]
  159. James, V. (1998). La plate‐forme carbonatée ouest‐pyrénéenne au jurassique moyen et supérieur stratigraphie séquentielle, stades d’évolution, relations avec la subsurface en aquitaine méridionale. PhD Thesis, Université Paul Sabatier de Toulouse, 417 p.
  160. James, V., & Canérot, J. (1999). Diapirisme et structuration post‐triasique des Pyrénées occidentales et de l’Aquitaine méridionale (France). Eclogae Geologicae Helvetiae, 92, 63–72.
    [Google Scholar]
  161. Jammes, S. (2009). Processus d'amincissement crustal en contexte transtensif : l'exempe du Golfe de Gascogne et des Pyrénées basques. PhD Thesis, Strasbourg University, 245 p.
  162. Jammes, S., Lavier, L., & Manatschal, G. (2010). Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling. Geochemistry, Geophysics, Geosystems, 11, https://doi.org/10.1029/2010GC003218
    [Google Scholar]
  163. Jammes, S., Manatschal, G., & Lavier, L. (2010). Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bulletin, 94, 957–975. https://doi.org/10.1306/12090909116
    [Google Scholar]
  164. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectono‐sedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28(4), 1–24. https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  165. Jammes, S., Tiberi, C., & Manatschal, G. (2010). 3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay‐Western Pyrenees. Tectonophysics, 489, 210–226. https://doi.org/10.1016/j.tecto.2010.04.023
    [Google Scholar]
  166. Jiménez‐Munt, I., Fernàndez, M., Vergés, J., Afonso, J. C., Garcia‐Castellanos, D., & Fullea, J. (2010). Lithospheric structure of the Gorringe Bank: Insights into its origin and tectonic evolution: GORRINGE BANK STRUCTURE AND EVOLUTION. Tectonics, 29(5), 1–16. https://doi.org/10.1029/2009TC002458.
    [Google Scholar]
  167. Labaume, P., & Teixell, A. (2020). Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper‐extension to tectonic inversion. Tectonophysics, 785, 228451–https://doi.org/10.1016/j.tecto.2020.228451
    [Google Scholar]
  168. Lagabrielle, Y., Asti, R., Duretz, T., Clerc, C., Fourcade, S., Teixell, A., & Saspiturry, N. (2020). A review of cretaceous smooth‐slopes extensional basins along the Iberia‐Eurasia plate boundary: How pre‐rift salt controls the modes of continental rifting and mantle exhumation. Earth‐Science Reviews, 201, 2019007.
    [Google Scholar]
  169. Lagabrielle, Y., Asti, R., Fourcade, S., Corre, B., Poujol, M., Uzel, J., Labaume, P., Clerc, C., Lafay, R., & Picazo, S., Maury, R. (2019a). Mantle exhumation at magma‐poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north‐western Pyrenees, France). Bulletin De La Société Géologique De France, 190, 8. https://doi.org/10.1016/j.earscirev.2019.103071
    [Google Scholar]
  170. Lagabrielle, Y., & Bodinier, J.‐L. (2008). Submarine reworking of exhumed sub‐continental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees: Cretaceous exhumation of pyrenean mantle. Terra Nova, 20, 11–21. https://doi.org/10.1111/j.1365‐3121.2007.00781.x
    [Google Scholar]
  171. Lagabrielle, Y., Clerc, C., Vauchez, A., Lahfid, A., Labaume, P., Azambre, B., Fourcade, S., & Dautria, J.‐M. (2016). Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus Geoscience, 348, 290–300. https://doi.org/10.1016/j.crte.2015.11.004
    [Google Scholar]
  172. Lagabrielle, Y., Labaume, P., & de Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29(4), 1–26. https://doi.org/10.1029/2009TC002588.
    [Google Scholar]
  173. Lamare, P. (1936). Recherches géologiques dans les Pyrénées basques d’Espagne. Société géologique de France.
  174. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440, 324–328. https://doi.org/10.1038/nature04608
    [Google Scholar]
  175. Le Pochat, G., Bolthenhagen, C., Lenguin, M., Lorsignol, S., & Thibault, C. (1976). Carte géologique de France au 1/50 000: Mauléon‐licharre. Orléans.
    [Google Scholar]
  176. Lefort, J.‐P., & Agarwal, B. N. (1999). Of what is the centre of the Ibero‐Armorican arc composed?Tectonophysics, 302, 71–81. https://doi.org/10.1016/S0040‐1951(98)00275‐3
    [Google Scholar]
  177. Lemoine, M., Tricart, P., & Boillot, G. (1987). Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel. Geology, 15, 622–625. https://doi.org/10.1130/0091‐7613(1987)15<622:UAGOFO>2.0.CO;2
    [Google Scholar]
  178. Lenoble, J.‐L. (1992). Les plates‐formes carbonatées ouest‐pyrénéennes du dogger à l’Albien, stratigraphie séquentielle et évolution géodynamique. Université Paul Sabatier de Toulouse (Sciences).
  179. Lescoutre, R. (2019). Formation and reactivation of the Pyrenean‐Cantabrian rift system: inheritance, segmentation and thermal evolution. Strasbourg
  180. Lescoutre, R., Tugend, J., Brune, S., Masini, E., & Manatschal, G. (2019). Thermal evolution of asymmetric hyperextended magma‐poor rift systems: results from numerical modeling and pyrenean field observations. Geochemistry, Geophysics, Geosystems, 20(10), 4567–4587. https://doi.org/10.1029/2019GC008600
    [Google Scholar]
  181. Liro, L. M., & Coen, R. (1995). Salt deformation history and postsalt structural trends, offshore southern Gabon, West Africa. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: a global perspective, AAPG Memoirs, (Vol. 65, pp. 323–331).
    [Google Scholar]
  182. Lucas, C. (1985). Le grès rouge du versant nord des Pyrénées: essai sur la géodynamique de dépôts continentaux du permien et du trias. PhD Thesis, University of Paul‐Sabatier, Toulouse.
  183. Lundin, E. R. (1992). Thin‐skinned extensional tectonics on a salt detachment, northern Kwanza Basin. Marine and Petroleum Geology, 9, 405–411. https://doi.org/10.1016/0264‐8172(92)90051‐F
    [Google Scholar]
  184. Manatschal, G. (2004). New models for evolution of magma‐poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93, 432–466. https://doi.org/10.1007/s00531‐004‐0394‐7
    [Google Scholar]
  185. Manatschal, G., Engström, A., Desmurs, L., Schaltegger, U., Cosca, M., Müntener, O., & Bernoulli, D. (2006). What is the tectono‐metamorphic evolution of continental break‐up: The example of the Tasna Ocean‐Continent Transition. Journal of Structural Geology, 28, 1849–1869. https://doi.org/10.1016/j.jsg.2006.07.014
    [Google Scholar]
  186. Manatschal, G., & Nievergelt, P. (1997). A continent‐ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geol. Helvetiae, 90, 3–28.
    [Google Scholar]
  187. Marillier, F., Tomassino, A., Patriat, P., & Pinet, B. (1988). Deep structure of the Aquitaine shelf: Constraints from expanding spread profiles on the ECORS Bay of Biscay transect. Marine and Petroleum Geology, 5, 65–74. https://doi.org/10.1016/0264‐8172(88)90040‐2
    [Google Scholar]
  188. Martínez‐Torres, L. M. (1989). El manto de los mármoles (Pirineo occidental): geología estructural y evolución geodinámica (PhD Thesis). Universidad del País Vasco‐Euskal Herriko Unibertsitatea.
  189. Mas, J. R., Alonso, A., & Guimerà, J. (1993). Evolución tectonosedimentaria de una cuenca extensional intraplaca: La cuenca finijurásica–eocretácica de Los Cameros (La Rioja–Soria). Revista De La Sociedad Geológica De España, 6, 129–144.
    [Google Scholar]
  190. Mas, R., Benito, M. I., Arribas, J., Alonso, A., Arribas, M. E., Lohmann, K. C., González Acebrón, L., Hernán, J., Quijada, I. E., Suárez González, P., & Omodeo, S. S. (2011). Evolution of an intra‐plate rift basin: The latest Jurassic‐early Cretaceous Cameros basin (Northwest Iberian ranges, North Spain). Geo‐Guías, 8, 117–154.
    [Google Scholar]
  191. Masini, E., Manatschal, G., Mohn, G., Ghienne, J.‐F., & Lafont, F. (2011). The tectono‐sedimentary evolution of a supra‐detachment rift basin at a deep‐water magma‐poor rifted margin: The example of the Samedan Basin preserved in the Err nappe in SE Switzerland: Tectono‐sedimentary evolution of a supra‐detachment rift basin. Basin Research, 23, 652–677. https://doi.org/10.1111/j.1365‐2117.2011.00509.x
    [Google Scholar]
  192. Masini, E., Manatschal, G., Tugend, J., Mohn, G., & Flament, J.‐M. (2014). The tectono‐sedimentary evolution of a hyper‐extended rift basin: The example of the Arzacq‐Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 103, 1569–1596. https://doi.org/10.1007/s00531‐014‐1023‐8
    [Google Scholar]
  193. Mata, M. P., Casas, A. M., Canals, A., Gil, A., & Pocovi, A. (2001). Thermal history during Mesozoic extension and Tertiary uplift in the Cameros Basin, northern Spain. Basin Research, 13, 91–111. https://doi.org/10.1046/j.1365‐2117.2001.00138.x
    [Google Scholar]
  194. Mathieu, C. (1986). Histoire géologique du sous‐bassin de Parentis. Bulletin ‐ Centres De Recherches Exploration‐Production Elf‐ Aquitaine, 10, 22–47.
    [Google Scholar]
  195. Mattauer, M. (1968). Les traits structuraux essentiels de la chaîne Pyrénéenne. Revue De Géologie Dynamique Et De Géographie Physique, 10, 3–11.
    [Google Scholar]
  196. Mauriaud, P. (1987). La tectonique salifère d’Aquitaine. Le Bassin D’aquitaine. Pétrole Et Techniques, 335, 38–41.
    [Google Scholar]
  197. Mediavilla, F. (1987). La tectonique salifère d’Aquitaine. Le Bassin de Parentis. Pétrole Et Techniques, 335, 35–37.
    [Google Scholar]
  198. Mendia, M. S., & Ibarguchi, J. I. G. (1991). High‐grade metamorphic rocks and peridotites along the Leiza Fault (Western Pyrenees, Spain). Geologische Rundschau, 80, 93–107. https://doi.org/10.1007/BF01828769
    [Google Scholar]
  199. Mohn, G., Karner, G. D., Manatschal, G., & Johnson, C. A. (2015). Structural and stratigraphic evolution of the Iberia‐Newfoundland hyper‐extended rifted margin: A quantitative modelling approach. Geological Society, London, Special Publications, 413, 53–89. https://doi.org/10.1144/SP413.9
    [Google Scholar]
  200. Mohn, G., Manatschal, G., Beltrando, M., & Haupert, I. (2014). The role of rift‐inherited hyper‐extension in Alpine‐type orogens. Terra Nova, 26, 347–353.
    [Google Scholar]
  201. Monchoux, P. (1970). Les lherzolites pyrénéennes: contribution à l’étude de leur minéralogie, de leur genèse et de leurs transformations. Université Paul Sabatier de Toulouse (Sciences).
  202. Montadert, L., de Charpal, O., Roberts, D., Guennoc, P., & Sibuet, J.‐C. (1979). Northeast Atlantic passive continental margins: Rifting and subsidence processes. In M.Talwani, W.Hay, & W. B. F.Ryan (Eds.), Maurice Ewing Series (pp. 154–186). American Geophysical Union. https://doi.org/10.1029/ME003p0154
    [Google Scholar]
  203. Montadert, L., & Winnock, E. (1971). L’histoire structurale du Golf de Gascogne. Technip.
  204. Montigny, R., Azambre, B., Rossy, M., & Thuizat, R. (1986). K‐Ar Study of cretaceous magmatism and metamorphism in the Pyrenees: Age and length of rotation of the Iberian Peninsula. Tectonophysics, the Geological Evolution of the Pyrenees, 129, 257–273. https://doi.org/10.1016/0040‐1951(86)90255‐6
    [Google Scholar]
  205. Nebot, M., & Guimerà, J. J. (2016). Structure of an inverted basin from subsurface and field data: The Late Jurassic‐Early Cretaceous Maestrat Basin (Iberian Chain). Geologica Actas, 14, 155–177.
    [Google Scholar]
  206. Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., & Sauter, D. (2017). Kinematic evolution of the southern North Atlantic: Implications for the formation of hyper‐extended rift systems: Kinematic of hyper‐extended rift systems. Tectonics, 37, 89. https://doi.org/10.1002/2017TC004495
    [Google Scholar]
  207. Olivier, P., Gleizes, G., & Paquette, J. L. (2004). Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Variscan Agly Massif (Eastern Pyrenees, France). Special Paper of the Geological Society of America, 229–242.
    [Google Scholar]
  208. Omodeo‐Salé, S., Guimerà, J., Mas, R., & Arribas, J. (2014). Tectono‐stratigraphic evolution of an inverted extensional basin: The Cameros Basin (north of Spain). International Journal of Earth Sciences, 103, 1597–1620. https://doi.org/10.1007/s00531‐014‐1026‐5
    [Google Scholar]
  209. Omodeo‐Salé, S., Salas, R., Guimerà, J., Ondrak, R., Mas, R., Arribas, J., Suárez‐Ruiz, I., & Martinez, L. (2017). Subsidence and thermal history of an inverted Late Jurassic‐Early Cretaceous extensional basin (Cameros, North‐central Spain) affected by very low‐ to low‐grade metamorphism. Basin Research, 29, 156–174. https://doi.org/10.1111/bre.12142
    [Google Scholar]
  210. Ortí, F. (1974). El Keuper del levante español. Estud. Geológicos, 30, 7–46.
    [Google Scholar]
  211. Ortí, F., Pérez‐López, A., & Salvany, J. M. (2017). Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic‐Earliest Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 157–180. https://doi.org/10.1016/j.palaeo.2017.01.025
    [Google Scholar]
  212. Osmundsen, P. T., & Ebbing, J. (2008). Styles of extension offshore mid‐Norway and implications for mechanisms of crustal thinning at passive margins: STYLES OF EXTENSION OFFSHORE NORWAY. Tectonics, 27(6), 1–25. https://doi.org/10.1029/2007TC002242
    [Google Scholar]
  213. Osmundsen, P. T., & Péron‐Pinvidic, G. (2018). Crustal‐scale fault interaction at rifted margins and the formation of domain‐bounding breakaway complexes: Insights from offshore Norway. Tectonics, 37, 935–964. https://doi.org/10.1002/2017TC004792
    [Google Scholar]
  214. Osmundsen, P. T., Sommaruga, A., Skilbrei, J. R., & Olesen, O. (2002). Deep structure of the Mid Norway rifted margin. Norwegian Journal of Geology/Norsk Geologisk Forening, 82(4), 205–224.
    [Google Scholar]
  215. Pedreira, D., Pulgar, J. A., Gallart, J., & Torné, M. (2007). Three‐dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees‐Cantabrian Mountains. Journal of Geophysical Research, 112(B12), 1–19. https://doi.org/10.1029/2007JB005021
    [Google Scholar]
  216. Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., & González Menéndez, L. (2017). Reconstruction of the exhumed mantle across the North Iberian Margin by crustal‐scale 3‐D gravity inversion and geological cross section. Tectonics, 36, 3155–3177. https://doi.org/10.1002/2017TC004716
    [Google Scholar]
  217. Pedrera, A., García‐Senz, J., Peropadre, C., Robador, A., Lopez Mir, B., Diaz Alvarado, J., & Rodríguez‐Fernández, L. R. (2020). The Getxo crustal‐scale cross‐section: Testing tectonic models in the Bay of Biscay‐Pyrenean rift system. Earth‐Sciences Review, 212, 103429. https://doi.org/10.1016/j.earscirev.2020.103429
    [Google Scholar]
  218. Pereira, R., & Alves, T. M. (2012). Tectono‐stratigraphic signature of multiphased rifting on divergent margins (deep‐offshore Southwest Iberia, North Atlantic). Tectonics, 31(4), 1–21. https://doi.org/10.1029/2011TC003001
    [Google Scholar]
  219. Pérez‐Gussinyé, M. (2013). A tectonic model for hyperextension at magma‐poor rifted margins: An example from the West Iberia‐Newfoundland conjugate margins. Geological Society, London, Special Publications, 369, 403–427. https://doi.org/10.1144/SP369.19
    [Google Scholar]
  220. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: a new point of view. Int. J. Earth Sci, 98, 1581–1597. https://doi.org/10.1007/s00531‐008‐0337‐9
    [Google Scholar]
  221. Péron‐Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J. M., Haupert, I., & Unternehr, P. (2015). Unravelling the along‐strike variability of the Angola‐Gabon rifted margin: A mapping approach. Geological Society, London, Special Publications, 438, 49–76. https://doi.org/10.1144/SP438.1
    [Google Scholar]
  222. Péron‐Pinvidic, G., Manatschal, G., Minshull, T. A., & Sawyer, D. S. (2007). Tectonosedimentary evolution of the deep Iberia‐Newfoundland margins: Evidence for a complex breakup history. Tectonics, 26, 1–19. https://doi.org/10.1029/2006TC001970
    [Google Scholar]
  223. Peybernès, B. (1976). Le Jurassique et le Crétace inferieur des Pyrénées franco‐espagnoles entre la Garonne et la Méditérranée. Toulouse.
  224. Peybernès, B. (1979). L’Urgonien des Pyrénées, Essai de synthèse. Geobios, 12, 79–87. https://doi.org/10.1016/S0016‐6995(79)80052‐2
    [Google Scholar]
  225. Peybernès, B. (1982). Création puis évolution de la marge nord‐ibérique des Pyrénées au Crétacé inférieur. Cuadernos De Geología Ibérica, 8, 987–1004.
    [Google Scholar]
  226. Peybernès, B., & Combes, P.‐J. (1994). Stratigraphie séquentielle du Crétacé basal (intervalle Berriasien‐Hauterivien) des Pyrénées centrales et orientales franco‐espagnoles. Cretaceous Research, 15, 535–546. https://doi.org/10.1006/cres.1994.1032
    [Google Scholar]
  227. Pichel, L. M., Finch, E., & Gawthorpe, R. L. (2019). The impact of pre‐salt rift topography on salt tectonics: A discrete‐element modeling approach. Tectonics, 38(4), 1466–1488. https://doi.org/10.1029/2018TC005174
    [Google Scholar]
  228. Pichel, L. M., Peel, F., Jackson, C.‐A.‐L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  229. Pinet, B., Montadert, L., Curnelle, R., Cazes, M., Marillier, F., Rolet, J., Tomassino, A., Galdeano, A., Patriat, P. H., Brunet, M. F., Olivet, J. L., Schaming, M., Lefort, J. P., Arrieta, A., & Riaza, C. (1987). Crustal thinning on the Aquitaine shelf, Bay of Biscay, from deep seismic data. Nature, 325, 513. https://doi.org/10.1038/325513a0
    [Google Scholar]
  230. Pinet, B., Montadert, L., & Scientific Party, E. C. O. R. S. (1987). Deep seismic reflection and refraction profiling along the Aquitaine shelf (Bay of Biscay). Geophysical Journal International, 89, 305–312. https://doi.org/10.1111/j.1365‐246X.1987.tb04423.x
    [Google Scholar]
  231. Platt, N. H. (1986). Sedimentology and Tectonics of the Western Cameros Basin, Province of Burgos, Northern Spain (PhD Thesis). University of Oxford.
  232. Platt, N. H. (1989). Continental sedimentation in an evolving rift basin: The Lower Cretaceous of the western Cameros Basin (northern Spain). Sedimentary Geology, 64, 91–109. https://doi.org/10.1016/0037‐0738(89)90086‐9
    [Google Scholar]
  233. Platt, N. H. (1990). Basin evolution and fault reactivation in the western Cameros Basin, Northern Spain. Journal of the Geological Society, 147, 165–175. https://doi.org/10.1144/gsjgs.147.1.0165
    [Google Scholar]
  234. Quijada, I. E., Suárez González, P., Isabel, B. M., Mas, J. R., & Alonso, Á. (2010). Un ejemplo de llanura fluvio‐deltaica influenciada por las mareas: el yacimiento de icnitas de Serrantes (Grupo Oncala, Berriasiense, Cuenca de Cameros, N. de España). Geogaceta, 49, 15–18.
    [Google Scholar]
  235. Rat, J., Mouthereau, F., Brichau, S., Crémades, A., Bernet, M., Balvay, M., Ganne, J., Lahfid, A., & Gautheron, C. (2019). Tectonothermal evolution of the cameros basin: implications for tectonics of north Iberia. Tectonics, 38, 440–469. https://doi.org/10.1029/2018TC005294
    [Google Scholar]
  236. Rat, P. (1988). The Basque‐Cantabrian Basin between the Iberian and European plates, some facts but still many problems. Revista De La Sociedad Geológica De España, 8, 327–348.
    [Google Scholar]
  237. Rat, P., Amiot, M., Feuillée, P., Floquet, M., Mathey, B., Pascal, A., & Lamolda, M. (1983). Vue sur le Cretacé basco‐cantabrique et nord‐ibérique. Une Marge Et Son arrière‐pays, Ses Environments Sédimentaires. Mémoires Géologiques De L'université De Dijon, 9, 191.
    [Google Scholar]
  238. Ravier, J. (1957). Le métamorphisme des terrains secondaires des Pyrénées. Université, Faculté des Sciences.
  239. Razin, P. (1989). Evolution tecto‐sédimentaire alpine des Pyrénées basques à l’ouest de la transformante de Pamplona, Province du Labourd. PhD Thesis, University of Bordeaux 3, France, 464 p.
  240. Reston, T. J. (2009). The structure, evolution and symmetry of the magma‐poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics, 468, 6–27. https://doi.org/10.1016/j.tecto.2008.09.002
    [Google Scholar]
  241. Reston, T. J., Krawczyk, C. M., & Hoffmann, H.‐J. (1995). Detachment tectonics during Atlantic rifting: Analysis and interpretation of the S reflection, the west Galicia margin. Geological Society, London, Special Publications, 90, 93–109. https://doi.org/10.1144/GSL.SP.1995.090.01.05
    [Google Scholar]
  242. Ribes, C., Ghienne, J.‐F., Manatschal, G., Decarlis, A., Karner, G. D., Figueredo, P. H., & Johnson, C. A. (2019). Long‐lived mega fault‐scarps and related breccias at distal rifted margins: Insights from present‐day and fossil analogues. Journal of the Geological Society, 176, 801–816. https://doi.org/10.1144/jgs2018‐181
    [Google Scholar]
  243. Roca, E. (1996). La cubeta mesozoica de las Columbrets: Aportaciones al conocimiento de la estructura del surco de Valencia. Geogaceta, 20, 1711–1714.
    [Google Scholar]
  244. Roma, M., Ferrer, O., Roca, E., Pla, O., Escosa, F. O., & Butillé, M. (2018). Formation and inversion of salt‐detached ramp‐syncline basins. Results from analog modeling and application to the Columbrets Basin (Western Mediterranean). Tectonophysics, 745, 214–228. https://doi.org/10.1016/j.tecto.2018.08.012
    [Google Scholar]
  245. Rossi, P., Cocherie, A., Fanning, C. M., & Ternet, Y. (2003). Datation U‐Pb sur zircons des dolérites tholéiitiques pyrénéennes (ophites) à la limite Trias‐Jurassique et relations avec les tufs volcaniques dits « infra‐liasiques » nord‐pyrénéens. Comptes Rendus Geoscience, 335, 1071–1080. https://doi.org/10.1016/j.crte.2003.09.011
    [Google Scholar]
  246. Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R., & Nalpas, T. (2002). Kinematics of a growth fault/raft system on the West African margin using 3‐D restoration. Journal of Structural Geology, 24, 783–796. https://doi.org/10.1016/S0191‐8141(01)00108‐0
    [Google Scholar]
  247. Roux, J.‐C. (1983). Recherches stratigraphiques et sédimentologiques sur les flyschs crétacés pyrénéens au sud d’Oloron (Pyrénées Atlantiques). Université Paul Sabatier de Toulouse (Sciences).
  248. Ruiz, M. (2007). Caracterització estructural i sismotectònica de la litosfera en el domini Pirenaico‐Cantàbric a partir de mètodes de sísmica activa i passiva. Universitat de Barcelona.
  249. Sàbat, F., Roca, E., Muñoz, J. A., Vergès, J., Santanach, P., & Masana, E. (1997). Role of extension and compression in the evolution of the eastern margin of Iberia: The ESCI‐València trough seismic profile. Revista De La Sociedad Geológica De España, 8, 431–448.
    [Google Scholar]
  250. Salas, R., Guimerà, J., Mas, R., Martín‐Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). Peri‐Tethys Memoir, 6, 145–185.
    [Google Scholar]
  251. Saspiturry, N. (2019). Evolution sédimentaire, structurale et thermique d'un rift hyper‐aminci: de l'héritage post‐hercynien à l’inversion alpine, Exemple du bassin de Mauléon (Pyrénées). PhD Thesis, Bordeaux University, 444 p.
  252. Saspiturry, N., Allanic, C., Razin, P., Issautier, B., Baudin, T., Lasseur, E., Serrano, O., & Leleu, S. (2020). Closure of a hyperextended system in an orogenic lithospheric pop‐up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nova, 32(4), 253–260. https://doi.org/10.1111/ter.12457
    [Google Scholar]
  253. Saspiturry, N., Cochelin, B., Razin, P., Leleu, S., Lemirre, B., Bouscary, C., Issautier, B., Serrano, O., Lasseur, E., Baudin, T., & Allanic, C. (2019). Tectono‐sedimentary evolution of a rift system controlled by Permian post‐orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics, 768, 228180. https://doi.org/10.1016/j.tecto.2019.228180
    [Google Scholar]
  254. Saspiturry, N., Lahfid, A., Baudin, T., Guillou‐Frottier, G., Razin, P., Issautier, B., Le Bayon, B., Serrano, O., Lagabrielle, Y., & Corre, B. (2020). Paleogeothermal gradients across an inverted hyperextended rift system: Example of the mauléon fossil rift (Western Pyrenees). Tectonics, 39(10), 1–36. https://doi.org/10.1029/2020TC006206.
    [Google Scholar]
  255. Saspiturry, N., Razin, P., Baudin, T., Serrano, O., Issautier, B., Lasseur, E., Allanic, C., Thinon, I., & Leleu, S. (2019). Symmetry vs. asymmetry of a hyper‐thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology, 104, 86–105. https://doi.org/10.1016/j.marpetgeo.2019.03.031
    [Google Scholar]
  256. Schettino, A., & Turco, E. (2011). Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin, 123, 89–105. https://doi.org/10.1130/B30064.1
    [Google Scholar]
  257. Serrano, O., Delmas, J., Hanot, F., Vially, R., Herbin, J.‐P., Houel, P., & Tourlière, B. (2006). Le bassin d’Aquitaine: valorisation des données sismiques, cartographie structurale et potentiel pétrolier. Bureau de Recherche Géologique et minière. 245 p.
  258. Soares, D. M. (2014). Sedimentological and stratigraphical aspects of the syn‐ to post‐rift transition on fully separated conjugate margins. PhD Thesis, Cardiff University. 305 p.
  259. Soares, D. M., Alves, T. M., & Terrinha, P. (2012). The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic). Earth and Planetary Science Letters, 355–356, 311–326. https://doi.org/10.1016/j.epsl.2012.08.036
    [Google Scholar]
  260. Soto, J. I., Flinch, F., Tari, G. et al (2017). Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins: Tectonics and Hydrocarbon Potential, in. In Soto, (Ed.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Tectonics and Hydrocarbon Potential. Elsevier.
    [Google Scholar]
  261. Souquet, P. (1967). Le Crétacé supérieur Sud‐Pyrénéen, en Catalogne, Aragon et Navarre. E. Privat. PhD Thesis, Université Paul Sabatier, Toulouse, 529 p.
  262. Souquet, P., Debroas, E.‐J., Boirie, J.‐M., Pons, P., Fixari, G., Roux, J.‐C., & Manivit, H. (1985). Le groupe du Flysch noir (albo‐cénomanien) dans les Pyrénées. Bulletin Des Centres De Recherches Exploration‐Production Elf‐Aquitaine, 9, 183–252.
    [Google Scholar]
  263. Suárez González, P., Quijada, I. E., Mas, J. R., & Benito, M. I. (2010). Nuevas aportaciones sobre la influencia marina y la edad de los carbonatos de la Fm Leza en el sector de Préjano (SE de La Rioja). Cretácico Inferior, Cuenca de Cameros. Geogaceta, 49, 7–10.
    [Google Scholar]
  264. Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, Y. (2018). Crustal structure and evolution of the Pyrenean‐Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics, 724, 146–170. https://doi.org/10.1016/j.tecto.2018.01.009
    [Google Scholar]
  265. Teixell, A., Labaume, P., & Lagabrielle, Y. (2016). The crustal evolution of the west‐central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience, 348, 257–267. https://doi.org/10.1016/j.crte.2015.10.010
    [Google Scholar]
  266. Ternet, Y., Majesté‐Menjoulas, C., Canérot, J., Baudin, T., Cocherie, A., Guerrot, C., & Rossi, P. (2004). Carte géologique de la France au 1/50 000: Laruns‐Somport, Orléans, France.
  267. Thiébaut, J., Durand‐Wackenheim, C., Debeaux, M., & Souquet, P. (1992). Métamorphisme des évaporites triasiques du versant nord des Pyrénées centrales et Occidentales. Bulletin De La Société D'histoire Naturelle De Toulouse, 128, 77–84.
    [Google Scholar]
  268. Thinon, I. (1999). Structure profonde de la marge Nord Gascogne et du Bassin armoricain. Université de Bretagne occidentale‐Brest.
  269. Thinon, I., Fidalgo‐González, L., Réhault, J. P., & Olivet, J. L. (2001). Pyrenean deformations in the Bay of Biscay: Comptes Rendus de l'Académie des Sciences. Série IIa, 332, 561–568.
    [Google Scholar]
  270. Thinon, I., Matias, L., Réhault, J. P., Hirn, A., Fidalgo‐GonzÁlez, L., & Avedik, F. (2003). Deep structure of the Armorican Basin (Bay of Biscay): A review of Norgasis seismic reflection and refraction data. Journal of the Geological Society, 160, 99–116. https://doi.org/10.1144/0016‐764901‐103
    [Google Scholar]
  271. Tomassimo, A., & Marillier, F. (1997). Processing and interpretation in the tau‐p domain of the ECORS Bay of Biscay expanding spread profiles. Mémoires De La Société Géologique De France, 171, 31–43.
    [Google Scholar]
  272. Torné, M., Banda, E., & Fernandez, M. (1996). The Valencia Trough: Geological and geophysical constraints on the basin formation model, In P. A.Ziegler, & F.Horvath (Eds.), Structure and Prospects of Alpine Basins and Forelands. Mem. Nat Hist. Mus. 103–128.
  273. Torné, M., Pascal, G., Buhl, P., Watts, A. B., & Mauffret, A. (1992). Crustal and velocity structure of the Valencia trough (western Mediterranean), Part I. A combined refraction/ wide‐angle reflection and near‐vertical reflection study. Tectonophysics, 203, 1–20. https://doi.org/10.1016/0040‐1951(92)90212‐O
    [Google Scholar]
  274. Tugend, J., Manatschal, G., Kusznir, N. J., & Masini, E. (2015). Characterizing and identifying structural domains at rifted continental margins: Application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society, London, Special Publications, 413, 171–203. https://doi.org/10.1144/SP413.3
    [Google Scholar]
  275. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33, 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  276. Vacher, P., & Souriau, A. (2001). A three‐dimensional model of the Pyrenean deep structure based on gravity modelling, seismic images and petrological constraints. Geophysical Journal International, 145, 460–470. https://doi.org/10.1046/j.0956‐540x.2001.01393.x
    [Google Scholar]
  277. Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini, E., Le Pourhiet, L., Tibari, B., & Lahfid, A. (2014). Thermal imprint of rift‐related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters, 408, 296–306. https://doi.org/10.1016/j.epsl.2014.10.014
    [Google Scholar]
  278. Valladares, I. (1980). Evolución de facies en el Jurasico calcareo del sector sur‐occidental de la provincia de Burgos. Studia Geologica Salamanticensia, 16, 37–57.
    [Google Scholar]
  279. Vargas, H., Gaspar‐Escribano, J. M., López‐Gómez, J., Van Wees, J.‐D., Cloetingh, S., de La Horra, R., & Arche, A. (2009). A comparison of the Iberian and Ebro Basins during the Permian and Triassic, eastern Spain: A quantitative subsidence modelling approach. Tectonophysics, 474, 160–183. https://doi.org/10.1016/j.tecto.2008.06.005
    [Google Scholar]
  280. Vauchez, A., Clerc, C., Bestani, L., Lagabrielle, Y., Chauvet, A., Lahfid, A., & Mainprice, D. (2013). Preorogenic exhumation of the North Pyrenean Agly massif (Eastern Pyrenees‐France). Tectonics, 32, 95–106. https://doi.org/10.1002/tect.20015
    [Google Scholar]
  281. Vergés, J., & García‐Senz, J. (2001). Mesozoic evolution and Cenozoic inversion of the Pyrenean rift. Mémoires Du Muséum National D'histoire Naturelle, 186, 187–212.
    [Google Scholar]
  282. Vidal, N., Gallart, J., & Dañobeitia, J. J. (1997). Contribution of the ESCI‐Valencia Trough wide‐angle data to a crustal transect in the NE Iberian margin. Revista De La Sociedad Geológica De España, 417–429.
    [Google Scholar]
  283. Vielzeuf, D., & Kornprobst, J. (1984). Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth and Planetary Science Letters, 67, 87–96. https://doi.org/10.1016/0012‐821X(84)90041‐4
    [Google Scholar]
  284. Wang, Y. I., Chevrot, S., Monteiller, V., Komatitsch, D., Mouthereau, F., Manatschal, G., Sylvander, M., Diaz, J., Ruiz, M., Grimaud, F., Benahmed, S., Pauchet, H., & Martin, R. (2016). The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology, 44, 475–478. https://doi.org/10.1130/G37812.1
    [Google Scholar]
  285. Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma‐poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154. https://doi.org/10.1038/35093085
    [Google Scholar]
  286. Wilson, R. C. L., Manatschal, G., & Wise, S. (2001). Rifting along non‐volcanic passive margins: Stratigraphic and seismic evidence from the Mesozoic successions of the Alps and western Iberia in Nonvolcanic Continental Margins: A Comparison of Evidence From Land and Sea edited by R. C. L. Wilson et alGeological Society London Special Publications, 187, 29–452.
    [Google Scholar]
  287. Zeyen, H., & Fernàndez, M. (1994). Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis: Application to the NE Spanish Geotransect. Journal of Geophysical Research: Solid Earth, 99, 18089–18102. https://doi.org/10.1029/94JB00898
    [Google Scholar]
  288. Ziegler, P. A. (1982). Triassic rifts and facies patterns in Western and Central Europe. Geologische Rundschau, 71, 747–772. https://doi.org/10.1007/BF01821101
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12529
Loading
/content/journals/10.1111/bre.12529
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error