1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

The Grenada Basin was affected by at least two flank collapse debris avalanches from the Montagne Pelée volcano during the last 130 ka. These mass‐transports combine with their derived overpressures built up may cause the long‐term and long‐distance deformation that can be observed nowadays.

, Abstract

West off Martinique (Lesser Antilles), the Grenada Basin submarine sediments were affected by the emplacement of Debris Avalanche Deposits (DAD). Montagne Pelée Volcano has experienced three major flank collapses during the last ca. 127 kyrs, resulting in a cumulated volume of up to 300 km3 offshore. Using a combination of geophysical and geotechnical data, we investigate the effect of these debris avalanches emplacements on the basin hydrogeology and their relationship with the observed sediment deformation in the seismic and coring data. The geotechnical test carried on IODP‐340 cores samples reveal four sediment types within the basin with distinctive mechanical and hydraulic properties: proximal volcanoclastics, distal volcanoclastics, hemipelagic and ash‐rich sediments. These results, together with margin stratigraphic models obtained from seismic reflection data, were used as inputs for the numerical finite‐element model. This model shows that the coupling of the sediment properties with the mid‐ to low‐sedimentation rates results in the development of low overpressures prior to the first flank collapse at 127 ka. However, the emplacement of the first two DADs, between 127 and 36 ka, developed high overpressures ratios (λ* > 0.9) in the easternmost part of the Grenada Basin. According to the model, the sudden compaction of the pre‐existing sediments due to the DADs load created fluid flow velocities up to 7 times higher than the hydraulic conductivities, which would have thus reduced the sediment bearing capacities and shear strength, favouring their mobilization and deformation. From 127 to 36 ka, the sea‐floor sediments suffered a long‐term deformation driven by the combination of the weight of the emplaced material and the persistence of high overpressure ratios through time. This deformation propagated tens of kilometres away from the DAD’s emplacement and it is possible that still continues today due to the persistence of low overpressure ratios. This long‐term and long‐distance deformation and persisted overpressures are a key factor to take into account in the framework of a geohazards evaluation in areas recurrently affected by earthquakes and volcanic flank collapses.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12553
2021-07-17
2024-04-25
Loading full text...

Full text loading...

References

  1. Aitken, T., Mann, P., Escalona, A., & Christeson, G. L. (2011). Evolution of the Grenada and Tobago basins and implications for arc migration. Marine and Petroleum Geology, 28, 235–258. https://doi.org/10.1016/j.marpetgeo.2009.10.003
    [Google Scholar]
  2. Bitzer, K. (1996). Modeling consolidation sedimentary and fluid basins flow. Computers & Geosciences, 22, 467–478.
    [Google Scholar]
  3. Bitzer, K. (1999). Two‐dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins. Computers & Geosciences, 25, 431–447. https://doi.org/10.1016/S0098‐3004(98)00147‐2
    [Google Scholar]
  4. Boudon, G., Le Friant, A., Komorowski, J. C., Deplus, C., & Semet, M. P. (2007). Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence. Journal of Geophysical Research: Solid Earth, 112, 224–237. https://doi.org/10.1029/2006BJ004674
    [Google Scholar]
  5. Boudon, G., Villemant, B., Friant, A. L., Paterne, M., & Cortijo, E. (2013). Role of large flank‐collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc. J. Volcanol. Geotherm. Res. Magma System Response to Edifice Collapse, 263, 224–237. https://doi.org/10.1016/j.jvolgeores.2013.03.009
    [Google Scholar]
  6. Bouysse, P., Baubron, J. C., Richard, M., Maur, R. C., & Andreieff, P. (1985). Evolution de la terminaison nord de l’arc interne des Petites Antilles au Plio‐Quaternaire. Bulletin De La Société Géologique De France, I, 181–188. https://doi.org/10.2113/gssgfbull.I.2.181
    [Google Scholar]
  7. British Standards Institution
    British Standards Institution . (1990). Part 6. Consolidation and permeability test in hydraulic cells and with pore pressure measurement, in: Soils for Civil Engineering Purposes. Road Enineering Satndards Committee, p. 61.
  8. Brunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Ishizuka, O., Lebas, E., & Guyard, H. (2016). Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank‐collapse to seafloor sediment failure?Geochemistry, Geophysics, Geosystems, 17, 699–724. https://doi.org/10.1002/2015GC006034
    [Google Scholar]
  9. Brunet, M., Moretti, L., Le Friant, A., Mangeney, A., Fernández Nieto, E. D., & Bouchut, F. (2017). Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: From volcano flank collapse to submarine emplacement. Natural Hazards, 87(2), 1189–1222. https://doi.org/10.1007/s11069‐017‐2815‐5
    [Google Scholar]
  10. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  11. Christeson, G., Shipley, T., Gahagan, L., Johnson, K., & Davis, M. (2017). Academic Seismic Portal (ASP) at UTIG [WWW Document]. Univ. Tex. Inst. Geophys. http://www‐udc.ig.utexas.edu/sdc/
  12. Cohen, J. K., & Stockwell, J. W.Jr. (1996). Cwp/su release 28, a free seismic software environment for unix platforms.
  13. Deplus, C., Le Friant, A., Boudon, G., Komorowski, J.‐C., Villemant, B., Harford, C., Ségoufin, J., & Cheminée, J.‐L. (2001). Submarine evidence for large‐scale debris avalanches in the Lesser Antilles Arc. Earth and Planetary Science Letters, 192, 145–157. https://doi.org/10.1016/S0012‐821X(01)00444‐7
    [Google Scholar]
  14. Dimakis, P., Elverhøi, A., Høeg, K., Solheim, A., Harbitz, C., Laberg, J. S., Vorren, O., & Marr, J. (2000). Submarine slope stability on high‐latitude glaciated Svalbard‐Barents Sea margin. Marine Geology, 162(2‐4), 303–316. https://doi.org/10.1016/S0025‐3227(99)00076‐6
    [Google Scholar]
  15. Flemings, P., Long, H., Dugan, B., Germaine, J., John, C., Behrmann, J., & Sawyer, D. (2008). Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth and Planetary Science Letters, 269, 309–325. https://doi.org/10.1016/j.epsl.2007.12.005
    [Google Scholar]
  16. Frey‐Martínez, J., Cartwright, J., & James, D. (2006). Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology, 23, 585–604. https://doi.org/10.1016/j.marpetgeo.2006.04.002
    [Google Scholar]
  17. Germa, A., Quidelleur, X., Labanieh, S., Chauvel, C., & Lahitte, P. (2011). The volcanic evolution of Martinique Island: Insights from K‐Ar dating into the Lesser Antilles arc migration since the Oligocene. Journal of Volcanology and Geothermal Research, 208, 122–135. https://doi.org/10.1016/j.jvolgeores.2011.09.007
    [Google Scholar]
  18. Germa, A., Quidelleur, X., Labanieh, S., Lahitte, P., & Chauvel, C. (2010). The eruptive history of Morne Jacob volcano (Martinique Island, French West Indies): Geochronology, geomorphology and geochemistry of the earliest volcanism in the recent Lesser Antilles arc. Journal of Volcanology and Geothermal Research, 198, 297–310. https://doi.org/10.1016/j.jvolgeores.2010.09.013
    [Google Scholar]
  19. Hornbach, M. J., Manga, M., Genecov, M., Valdez, R., Miller, P., Saffer, D., Adelstein, E., Lafuerza, S., Adachi, T., Breitkreuz, C., Jutzeler, M., Le Friant, A., Ishizuka, O., Morgan, S., Slagle, A., Talling, P. J., Fraass, A., Watt, S. F. L., Stroncik, N. A., … Wang, F. (2015). Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure‐driven slow‐slip failure. Journal of Geophysical Research: Solid Earth, 120, 7986–8011. https://doi.org/10.1002/2015JB012061
    [Google Scholar]
  20. Hurtado, J. E., & Barbat, A. H. (1998). Monte Carlo techniques in computational stochastic mechanics. Archives of Computational Methods in Engineering, 5, 3–29. https://doi.org/10.1007/BF02736747
    [Google Scholar]
  21. Ingólfsson, Ó., Benediktsson, Í. Ö., Schomacker, A., Kjær, K. H., Brynjólfsson, S., Jónsson, S. A., Korsgaard, N. J., & Johnson, M. D. (2016). Glacial geological studies of surge‐type glaciers in Iceland — Research status and future challenges. Earth Science Reviews, 152, 37–69. https://doi.org/10.1016/j.earscirev.2015.11.008
    [Google Scholar]
  22. Krastel, S., Schmincke, H.‐U., Jacobs, C. L., Rihm, R., Bas, T. P. L., & Alibés, B. (2001). Submarine landslides around the Canary Islands. Journal of Geophysical Research: Solid Earth, 106, 3977–3997. https://doi.org/10.1029/2000JB900413
    [Google Scholar]
  23. Lafuerza, S., Le Friant, A., Manga, M., Boudon, G., Villemant, B., Stroncik, N., Voight, B., Hornbach, M., & Ishizuka, O. (2014). Geomechanical characterization of submarine volcano‐flank sediments, martinique, lesser antilles arc. In G.Lamarche, J.Mountjoy, S.Bull, T.Hubble, S.Krastel, E.Lane, A.Micallef, L.Moscardelli, C.Mueller, I.Pecher, & S.Woelz (Eds.), Submarine mass movements and their consequences, advances in natural and technological hazards research (pp. 73–81). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐00972‐8_7
    [Google Scholar]
  24. Le Friant, A., Boudon, G., Deplus, C., & Villemant, B. (2003). Large‐scale flank collapse events during the activity of Montagne Pelée, Martinique, Lesser Antilles. J Journal of Geophysical Research: Solid Earth, 108, 1–15. https://doi.org/10.1029/2001JB001624
    [Google Scholar]
  25. Le Friant, A., Boudon, G., Komorowski, J. C., & Deplus, C. (2002). L’île de la Dominique, à l’origine des avalanches de débris les plus volumineuses de l’arc des Petites Antilles. Comptes Rendus Geoscience, 334, 235–243. https://doi.org/10.1016/S1631‐0713(02)01742‐X
    [Google Scholar]
  26. Le Friant, A., Ishizuka, O., Boudon, G., Palmer, M. R., Talling, P. J., Villemant, B., Adachi, T., Aljahdali, M., Breitkreuz, C., Brunet, M., Caron, B., Coussens, M., Deplus, C., Endo, D., Feuillet, N., Fraas, A. J., Fujinawa, A., Hart, M. B., Hatfield, R. G., … Watt, S. F. L. (2015). Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODPExpedition 340. Geochemistry, Geophysics, Geosystems, 16, 420–442. https://doi.org/10.1002/2014GC005652
    [Google Scholar]
  27. Le Friant, A., Ishizuka, O., Stroncik, N. A., & Scientists, E.340, 2013a. Proc. IODP, 340, Proceedings of the IODP. Integrated Ocean Drilling Program, Tokyo.
  28. Le Friant, A., Ishizuka, O., Stroncik, N. A., & Scientists, E.340, 2013b. 340, 2013b. Proc. IODP, 340, Proceedings of the IODP. Integrated Ocean Drilling Program, Tokyo.
  29. Le Friant, A., Lebas, E., Clément, V., Boudon, G., Deplus, C., De Voogd, B., & Bachlery, P. (2011). A new model for the evolution of la Reunion volcanic complex from complete marine geophysical surveys. Geophysical Research Letters, 38, 6–11. https://doi.org/10.1029/2011GL047489
    [Google Scholar]
  30. Lebas, E., Le Friant, A., Boudon, G., Watt, S. F. L., Talling, P. J., Feuillet, N., Deplus, C., Berndt, C., & Vardy, M. E. (2011). Multiple widespread landslides during the long‐term evolution of a volcanic island: Insights from high‐resolution seismic data, Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 12(5), Q05006. https://doi.org/10.1029/2010GC003451
    [Google Scholar]
  31. Llopart, J., Urgeles, R., Forsberg, C. F., Camerlenghi, A., Vanneste, M., Rebesco, M., Lucchi, R. G., Rüther, D. C., & Lantzsch, H. (2019). Fluid flow and pore pressure development throughout the evolution of a trough mouth fan, western Barents Sea. Basin Research, 31, 487–513. https://doi.org/10.1111/bre.12331
    [Google Scholar]
  32. Lunne, T., Berre, T., Andersen, K. H., Strandvik, S., & Sjursen, M. (2006). Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Canadian Geotechnical Journal, 43, 726–750. https://doi.org/10.1139/t06‐040
    [Google Scholar]
  33. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Lvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1845), 2009–2039.
    [Google Scholar]
  34. Micallef, A., Masson, D. G., Berndt, C., & Stow, D. A. (2009). Development and mass movement processes of the north‐eastern Storegga Slide. Quaternary Science Reviews, 28, 433–448. https://doi.org/10.1016/j.quascirev.2008.09.026
    [Google Scholar]
  35. Moernaut, J., & De Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285, 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
    [Google Scholar]
  36. Moore, J. G., Normark, W. R., & Holcomb, R. T. (1994). Giant hawaiian landslides. Annual Review of Earth and Planetary Sciences, 22, 119–144. https://doi.org/10.1146/annurev.ea.22.050194.001003
    [Google Scholar]
  37. Nadim, F. (2015). Accounting for Uncertainty and Variability in Geotechnical Characterization of Offshore Sites. In T.Schweckendiek, A. F. Van Tol, D.Pereboom, A. Van Staveren, & P. M. C. B. M.Cools (Eds.), Geotechnical safety and risk V (23–34). IOS Press. https://doi.org/10.3233/978‐1‐61499‐580‐7‐23
    [Google Scholar]
  38. Nilsson, B., Højberg, A. L., Refsgaard, J. C., & Troldborg, L. (2007). Uncertainty in geological and hydrogeological data. Hydrology and Earth System Sciences, 11, 1551–1561. https://doi.org/10.5194/hess‐11‐1551‐2007
    [Google Scholar]
  39. Oehler, J.‐F., Lénat, J.‐F., & Labazuy, P. (2008). Growth and collapse of the Reunion Island volcanoes. Bulletin of Volcanology, 70, 717–742. https://doi.org/10.1007/s00445‐007‐0163‐0
    [Google Scholar]
  40. Poulain, P., Le Friant, A., Mangeney, A., Viroulet, S., Fernandez‐Nieto, E., Castro Diaz, M. J., Peruzzetto, M., Bouchut, F., & Grandjean, G. (2020). Submarine granular flows and generated tsunami waves: from laboratory experiments to numerical simulations of Montagne Pelée flank collapses. Journal of Geophysical Research: Earth Surface.
    [Google Scholar]
  41. Puzrin, A. M., Germanovich, L. N., & Friedli, B. (2016). Shear band propagation analysis of submarine slope stability. Géotechnique, 66, 188–201. https://doi.org/10.1680/jgeot.15.LM.002
    [Google Scholar]
  42. Reid, R. P., Carey, S. N., & Ross, D. R. (1996). Late Quaternary sedimentation in the Lesser Antilles island arc. GSA Bull., 108, 78–100. https://doi.org/10.1130/0016‐7606(1996)108<0078:LQSITL>2.3.CO;2
    [Google Scholar]
  43. Solaro, C., Boudon, G., Le Friant, A., Balcone‐Boissard, H., Emmanuel, L., & Paterne, M. (2020). New insights into the recent eruptive and collapse history of Montagne Pelée (Lesser Antilles Arc) from offshore marine drilling site U1401A (IODP Expedition 340). Journal of Volcanology and Geothermal Research, 403, 107001. https://doi.org/10.1016/j.jvolgeores.2020.107001
    [Google Scholar]
  44. Talwani, M., Windisch, C. C., Stoffa, P. L., Buhl, P., & Houtz, R. (1977). Multichannel seismic study in the Veneuzela n B asin and the Curac aoRidge. In: M.Talwani, & W. C.Pitman III (Eds.), Island Arcs, Deep Sea Trenches and Back‐Arc Basins, MauriceEwing Ser (pp. 83–98). AGU.
    [Google Scholar]
  45. Urgeles, R., Masson, D. G., Canals, M., Watts, A. B., & Le Bas, T. (1999). Recurrent large‐scale landsliding on the west flank of La Palma, Canary Islands. Journal of Geophysical Research: Solid Earth, 104, 25331. https://doi.org/10.1029/1999JB900243
    [Google Scholar]
  46. Urlaub, M., Talling, P. J., & Masson, D. G. (2013). Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quaternary Science Reviews, 72, 63–82. https://doi.org/10.1016/j.quascirev.2013.04.020
    [Google Scholar]
  47. Van Daele, M., Versteeg, W., Pino, M., Urrutia, R., & De Batist, M. (2013). Widespread deformation of basin‐plain sediments in Aysén fjord (Chile) due to impact by earthquake‐triggered, onshore‐generated mass movements. Marine Geology, 337, 67–79. https://doi.org/10.1016/j.margeo.2013.01.006
    [Google Scholar]
  48. Van Hinte, J. E. (1978). Geohistory analysis; application of micropaleontology in exploration geology. AAPG Bull., 62, 201–222.
    [Google Scholar]
  49. Vincent, P. M., Bourdier, J. L., & Boudon, G. (1989). The primitive volcano of Mount Pelée: Its construction and partial destruction by flank collapse. Journal of Volcanology and Geothermal Research, 38, 1–15. https://doi.org/10.1016/0377‐0273(89)90026‐7
    [Google Scholar]
  50. Watson, S. J., Whittaker, J. M., Lucieer, V., Coffin, M. F., & Lamarche, G. (2017). Erosional and depositional processes on the submarine flanks of Ontong Java and Nukumanu atolls, western equatorial Pacific Ocean. Marine Geology, 392, 122–139. https://doi.org/10.1016/j.margeo.2017.08.006
    [Google Scholar]
  51. Watt, S. F. L., Talling, P. J., Vardy, M. E., Heller, V., Hühnerbach, V., Urlaub, M., Sarkar, S., Masson, D. G., Henstock, T. J., Minshull, T. A., Paulatto, M., Le Friant, A., Lebas, E., Berndt, C., Crutchley, G. J., Karstens, J., Stinton, A. J., & Maeno, F. (2012). Combinations of volcanic‐flank and seafloor‐sediment failure offshore Montserrat, and their implications for tsunami generation. Earth and Planetary Science Letters, 319–320, 228–240. https://doi.org/10.1016/j.epsl.2011.11.032
    [Google Scholar]
  52. Watt, S. F. L., Talling, P. J., Vardy, M. E., Masson, D. G., Henstock, T. J., Hühnerbach, V., Minshull, T. A., Urlaub, M., Lebas, E., Le Friant, A., Berndt, C., Crutchley, G. J., & Karstens, J. (2012). Widespread and progressive seafloor‐sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles. Marine Geology, 323–325, 69–94. https://doi.org/10.1016/j.margeo.2012.08.002
    [Google Scholar]
  53. Westercamp, D., d’Archimbaud, J. D., de Lapparent, A. F., Marinelli, G., Tazieff, H., & Brousse, R. (1972). Contribution à l’étude du volcanisme en Martinique. éditeur non identifié.
  54. Westercamp, D., Pelletier, B., Thibaut, P., Traineau, H., & Andreieff, P. (1990). Carte géologique de la France (1/50 000), feuille Martinique.
  55. Williams, R., Rowley, P., & Garthwaite, M. C. (2019). Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology, 47, 973–976. https://doi.org/10.1130/G46517.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12553
Loading
/content/journals/10.1111/bre.12553
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error