1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Evaporites are typically described as impermeable seals, however several laboratory studies including this one show that pore fluid flow can occur through them. In this study, we used numerical modelling and laboratory observations of low permeability evaporites to quantify overpressure in the Western Mediterranean from basin inception to present day and estimate overpressure magnitudes triggering fluid expulsion events during the Messinian.

, Abstract

Evaporites are typically described as impermeable seals that create some of the world's highest reservoir pressures beneath the salt seal. However, several laboratory studies demonstrate that evaporites can retain open pore spaces that hydraulically connect the sediments above and below them in sedimentary basins. During the Messinian Salinity Crisis (5.97–5.33 Ma), up to 2,400 m thickness of evaporites were rapidly deposited in the Western Mediterranean, which may have generated high pore fluid overpressure in the basin sediments. Here we use one‐dimensional numerical modelling to quantify the temporal evolution of overpressure at two distinct locations of the Western Mediterranean, the Liguro‐Provençal and Algero‐Balearic basins, from the Miocene to Present. We reconstruct the sedimentation history of the basin, considering disequilibrium compaction as an overpressure mechanism and constraining model parameters (such as permeability and porosity) using laboratory experiments and the literature. In the Liguro‐Provençal basin the highest overpressure of 11.2 MPa occurs within the halite during deposition of Pliocene to Quaternary sediment, while in the Algero‐Balearic basin at the base of the Emile Baudot Escarpment, the highest overpressure of 3.1 MPa also occurs within the halite but during stage 3 of the Messinian Salinity Crisis (5.55–5.33 Ma). In the Algero‐Balearic basin an overpressure of 3.1 MPa could have been sufficient to hydro fracture the sediments, which agrees with the development of fluid escape features observed on seismic reflection profiles. In general, our models with evaporite deposition rates above 20 m kyr−1 and permeabilities below 10–18 m2, suggest that high overpressure, approaching lithostatic, can be generated in salt basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12554
2021-07-17
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/4/bre12554.html?itemId=/content/journals/10.1111/bre.12554&mimeType=html&fmt=ahah

References

  1. Al‐Balushi, A. N., Neumaier, M., Fraser, A. J., & Jackson, C. A. L. (2016). The impact of the Messinian salinity crisis on the petroleum system of the Eastern Mediterranean: A critical assessment using 2D petroleum system modelling. Petroleum Geoscience, 22(4), 357–379. https://doi.org/10.1144/petgeo2016‐054
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. Wiley.
    [Google Scholar]
  3. Arab, M., Belhai, D., Granjeon, D., Roure, F., Arbeaumont, A., Rabineau, M., Bracene, R., Lassal, A., Sulzer, C., & Deverchere, J. (2016). Coupling stratigraphic and petroleum system modeling tools in complex tectonic domains: Case study in the North Algerian Offshore. Arabian Journal of Geosciences, 9(4), 289. https://doi.org/10.1007/s12517‐015‐2296‐3
    [Google Scholar]
  4. ASTM D4404–84
    ASTM D4404–84 . (2004). Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. ASTM international. www.astm.org
  5. Balkan, E., Erkan, K., & Şalk, M. (2017). Thermal conductivity of major rock types in western and central Anatolia regions, Turkey. Journal of Geophysics and Engineering, 14(4), 909–919. https://doi.org/10.1088/1742‐2140/aa5831
    [Google Scholar]
  6. Beauheim, R. L., & Roberts, R. M. (2002). Hydrology and hydraulic properties of a bedded evaporite formation. Journal of Hydrology, 259(1), 66–88. https://doi.org/10.1016/S0022‐1694(01)00586‐8
    [Google Scholar]
  7. Beauheim, R. L., Saulnier, G. J.Jr, & Avis, J. D. (1991). Interpretation of brine‐permeability tests of the Salado formation at the waste isolation pilot plant site: first interim report. United States, https://doi.org/10.2172/6026281
  8. Bertoni, C., & Cartwright, J. (2015). Messinian evaporites and fluid flow. Marine and Petroleum Geology, 66(1), 165–176. https://doi.org/10.1016/j.marpetgeo.2015.02.003
    [Google Scholar]
  9. Brace, W. F., Walsh, J. B., & Frangos, W. T. (1968). Permeability of granite under high pressure. Journal of Geophysical Research, 73(6), 2225–2236. https://doi.org/10.1029/JB073i006p02225
    [Google Scholar]
  10. Bredehoeft, J. D. (1988). Will salt repositories be dry? Eos, Transactions American Geophysical Union, 69(9), 121–131. https://doi.org/10.1029/88eo00078
    [Google Scholar]
  11. Brodsky, N. S. (1994). Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt. https://www.osti.gov/servlets/purl/10142397
  12. Burollet, P. F., Said, A., & Trouve, P. (1978). Slim holes drilled on the Algerian Shelf. Leg 42B, Istanbul, Turkey, May‐June 1975, 42, 1181.
  13. Callow, B., Falcon‐Suarez, I., Ahmed, S., & Matter, J. (2018). Assessing the carbon sequestration potential of basalt using X‐ray micro‐CT and rock mechanics. International Journal of Greenhouse Gas Control, 70, 146–156. https://doi.org/10.1016/j.ijggc.2017.12.008
    [Google Scholar]
  14. Capella, W., Spakman, W., van Hinsbergen, D. J. J., Chertova, M. V., & Krijgsman, W. (2020). Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian Salinity Crisis. Terra Nova, 32(2), 141–150. https://doi.org/10.1111/ter.12442
    [Google Scholar]
  15. Carballo, A., Fernandez, M., Torne, M., Jiménez‐Munt, I., & Villaseñor, A. (2014). Thermal and petrophysical characterization of the lithospheric mantle along the northeastern Iberia geo‐transect. Gondwana Research, 27, 1430–1445. https://doi.org/10.1016/j.gr.2013.12.012
    [Google Scholar]
  16. Carminati, E., Doglioni, C., Gelabert, B., Panza, G., Raykova, R., Roca, E., Sàbat, F., & Scrocca, D. (2012). Evolution of the Western Mediterranean. https://doi.org/10.1016/B978‐0‐444‐56357‐6.00011‐1
  17. Casas, E., & Lowenstein, T. K. (1989). Diagenesis of saline pan halite; comparison of petrographic features of modern, Quaternary and Permian halites. Journal of Sedimentary Research, 59(5), 724–739. https://doi.org/10.1306/212f905c‐2b24‐11d7‐8648000102c1865d
    [Google Scholar]
  18. Cherchi, A., Mancin, N., Montadert, L., Murru, M., Putzu, M. T., Schiavinotto, F., & Verrubbi, V. (2008). The stratigraphic response to the Oligo‐Miocene extension in the western Mediterranean from observations on the Sardinia graben system (Italy). Bulletin De La Société Géologique De France, 179(3), 267–287. https://doi.org/10.2113/gssgfbull.179.3.267
    [Google Scholar]
  19. CIESM
    CIESM (2008). The Messinian Salinity Crisis from mega‐deposits to microbiology ‐ A consensus report. In F.Briand (Ed.), No 33 in CIESM Workshop Monographs (p. 168). CIESM Publisher.
    [Google Scholar]
  20. Comas, M. C., Zahn, R., Klaus, A., Aubourg, C., Belanger, P. E., Bernasconi, S. M., Cornell, W., de Kaenel, E. P., de Larouzière, F. D., Doglioni, C., Doose, H., Fukusawa, H., Hobart, M., Iaccarino, S. M., Ippach, P., Marsaglia, K., Meyers, P., Murat, A., O'Sullivan, G. M. … Wilkens, R. H. (1996). Site 975. Proceedings of the Ocean Drilling Program; initial reports; Mediterranean Sea II, the western Mediterranean; covering Leg 161 of the cruises of the drilling vessel JOIDES Resolution. Naples, Italy to Málaga, Spain, sites 974–979, 3 May‐2 July 1995, 161, 113.
  21. Dal Cin, M., Del Ben, A., Mocnik, A., Accaino, F., Geletti, R., Wardell, N., Zgur, F., & Camerlenghi, A. (2016). Seismic imaging of Late Miocene (Messinian) evaporites from Western Mediterranean back‐arc basins. Petroleum Geoscience, 22(4), 297–308. https://doi.org/10.1144/petgeo2015‐096
    [Google Scholar]
  22. Domski, P. S., Upton, D. T., & Beauheim, R. L. (1996). Hydraulic testing around room Q: Evaluation of the effects of mining on the hydraulic properties of salado evaporites, SAND96‐0435. Sandia National Laboratories.
    [Google Scholar]
  23. Driussi, O., Maillard, A., Ochoa, D., Lofi, J., Chanier, F., Gaullier, V., Briais, A., Sage, F., Sierro, F., & Garcia, M. (2015). Messinian salinity crisis deposits widespread over the balearic promontory: insights from new high‐resolution seismic data. Marine and Petroleum Geology, 66, 41–54. https://doi.org/10.1016/j.marpetgeo.2014.09.008
    [Google Scholar]
  24. El‐Bassiony, A., Kumar, J., & Martin, T. (2018). Velocity model building in the major basins of the eastern Mediterranean Sea for imaging regional prospectivity. The Leading Edge, 37(7), 519–528. https://doi.org/10.1190/tle37070519.1
    [Google Scholar]
  25. Erickson, A. J., & Von Herzen, R. P. (1978). Down‐hole temperature measurements, Deep Sea Drilling Project, Leg 42A. Leg 42, Part 1, of the cruises of the Drilling Vessel Glomar Challenger. Malaga, Spain, to Istanbul, Turkey, April‐May 1975, 42, 857.
  26. Eruteya, O. E., Waldmann, N., Schalev, D., Makovsky, Y., & Ben‐Avraham, Z. (2015). Intra‐ to post‐Messinian deep‐water gas piping in the Levant Basin, SE Mediterranean. Marine and Petroleum Geology, 66, 246–261. https://doi.org/10.1016/j.marpetgeo.2015.03.007
    [Google Scholar]
  27. Falcon‐Suarez, I., Bayrakci, G., Minshull, T. A., North, L. J., Best, A. I., Rouméjon, S., & IODP Expedition 357 Science Party . (2017). Elastic and electrical properties and permeability of serpentinites from Atlantis Massif, Mid‐Atlantic Ridge. Geophysical Journal International, 211(2), 686–699. https://doi.org/10.1093/gji/ggx341
    [Google Scholar]
  28. Fernandez‐Ibanez, F., & Soto, J. (2017). Pore pressure and stress regime in a thick extensional basin with active shale diapirism (western Mediterranean). AAPG Bulletin, 101, 233–264. https://doi.org/10.1306/07131615228
    [Google Scholar]
  29. Finetti, I., & Del Ben, A. (2005). Crustal tectono‐stratigraphy of te ionian sea from new integrated crop seismic data. In I.Finetti (Ed.), CROP project: Deep seismic exploration of the central Mediterranean and Italy Atlases in Geoscience 1 (pp. 1–30). Elsevier Science.
    [Google Scholar]
  30. Garrison, R. E., Schreiber, B. C., Bernoulli, D., Fabricius, F. H., Kidd, R. B., & Melieres, F. (1978). Sedimentary petrology and structures of Messinian evaporitic sediments in the Mediterranean Sea, Leg 42A, Deep Sea Drilling Project. Leg 42, Part 1, of the cruises of the Drilling Vessel Glomar Challenger; Malaga, Spain, to Istanbul, Turkey, April‐May 1975, 42, 571.
  31. Haq, B., Gorini, C., Baur, J., Moneron, J., & Rubino, J.‐L. (2020). Deep Mediterranean's Messinian evaporite giant: How much salt?Global and Planetary Change, 184, 103052. https://doi.org/10.1016/j.gloplacha.2019.103052
    [Google Scholar]
  32. Hardie, L. A., & Lowenstein, T. K. (2004). Did the mediterranean sea dry out during the miocene? A reassessment of the evaporite evidence from DSDP legs 13 and 42A cores. Journal of Sedimentary Research, 74(4), 453–461. https://doi.org/10.1306/112003740453
    [Google Scholar]
  33. Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology, 23(1), 45–48. https://doi.org/10.1130/0091‐7613(1995)023<0045:paproc>2.3.co;2
    [Google Scholar]
  34. Hsü, K., Montadert, L., Bernouilli, D., Cita, M., Erikson, A., Garrison, R. E., Kidd, R. B., MeÁlieÂres, F., & Wright, R. (1977). History of the Messinian Salinity Crisis. Nature, 267, 399–403. https://doi.org/10.1038/267399a0
    [Google Scholar]
  35. Hsü, K. J., Montadert, L., Bernoulli, D., Bizon, G., Cita, M. B., Erickson, A. J., Fabricius, F. H., Garrison, R. E., Kidd, R. B., Melieres, F., Mueller, C., & Wright, R. C. (1978a). Site 371; South Balearic Basin. Initial Reports of the Deep Sea Drilling Project, 42, 29–57. https://doi.org/10.2973/dsdp.proc.42‐1.102.1978
    [Google Scholar]
  36. Hsü, K. J., Montadert, L., Bernoulli, D., Bizon, G., Cita, M. B., Erickson, A. J., Fabricius, F. H., Garrison, R. E., Kidd, R. B., Melieres, F., Mueller, C., & Wright, R. C. (1978b). Site 372; menorca rise. Initial Reports of the Deep Sea Drilling Project, 42, 59–150. https://doi.org/10.2973/dsdp.proc.42‐1.103.1978
    [Google Scholar]
  37. Iadanza, A., Sampalmieri, G., Cipollari, P., Mola, M., & Cosentino, D. (2013). The “Brecciated Limestones” of Maiella, Italy: Rheological implications of hydrocarbon‐charged fluid migration in the Messinian Mediterranean Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 390, 130–147. https://doi.org/10.1016/j.palaeo.2013.05.033
    [Google Scholar]
  38. Iona, A., Theodorou, A., Sofianos, S., Watelet, S., Troupin, C., & Beckers, J.‐M. (2018). Mediterranean Sea climatic indices: Monitoring long‐term variability and climate changes. Earth System Science Data, 10, 1829–1842. https://doi.org/10.5194/essd‐10‐1829‐2018
    [Google Scholar]
  39. Jobmann, M., Müller, C., & Schirmer, S. (2015). Remaining porosity and permeability of compacted crushed rock salt backfill in a HLW repository. Final Report. DBE Technology Contribution: DBE Technology GmbH.
  40. Jolivet, L., Augier, R., Robin, C., Suc, J.‐P., & Rouchy, J. M. (2006). Lithospheric‐scale geodynamic context of the Messinian salinity crisis. Sedimentary Geology, 188–189, 9–33. https://doi.org/10.1016/j.sedgeo.2006.02.004
    [Google Scholar]
  41. Klee, G., & Rummel, F. (2007). Gateway LNG storage project: hydraulic/hydrofrac testing in borehole gateway‐1e. MeSy GEO‐MeB systeme report. Final Report Part I: Results of in‐situ tests, Report No. 09.07A, 86 pp.
  42. Klimchouk, A. (1996). The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology, 25, 21–36. https://doi.org/10.5038/1827‐806X.25.3.2
    [Google Scholar]
  43. Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. Drilling and production practice (p. 14). American Petroleum Institute.
    [Google Scholar]
  44. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400(6745), 652–655. https://doi.org/10.1038/23231
    [Google Scholar]
  45. Krijgsman, W., & Meijer, P. T. (2008). Depositional environments of the Mediterranean “Lower Evaporites” of the Messinian salinity crisis: Constraints from quantitative analyses. Marine Geology, 253(3), 73–81. https://doi.org/10.1016/j.margeo.2008.04.010
    [Google Scholar]
  46. Kröhn, K.‐P., Stührenberg, D., Jobmann, M., Heemann, U., Czaikowski, O., Wieczorek, K., Müller, C., Zhang, C.‐L., Moog, H., Schirmer, S., & Friedenberg, L. (2017). Mechanical and hydraulic behaviour of compacting crushed salt backfill at low porosities ‐ Project REPOPERM ‐ Phase 2. FKZ 02 E 10740 (BMWi), Gesellschaft für Anlagen‐ und Reaktorsicherheit (GRS) mbH, GRS‐450, Köln, ISBN 978‐3‐946607‐32‐8.
  47. Kröhn, K. P., Zhang, C. L., Czaikowski, O., Stührenberg, D., & Heemann, U. (2015). The compaction behaviour of salt backfill as a THM‐process. 49–60. https://doi.org/10.1201/b18393‐8
  48. Lafuerza, S., Sultan, N., Canals, M., Frigola, J., Berne, S., Jouet, G., Galavazi, M., & Sierro, F. J. (2009). Overpressure within upper continental slope sediments from CPTU data, Gulf of Lion, NW Mediterranean Sea. International Journal of Earth Sciences, 98(4), 751–768. https://doi.org/10.1007/s00531‐008‐0376‐2
    [Google Scholar]
  49. Leroux, E., Rabineau, M., Aslanian, D., Gorini, C., Molliex, S., Bache, F., & Suc, J.‐P. (2017). High‐resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: Relation with climate and tectonics. Basin Research, 29(3), 305–339. https://doi.org/10.1111/bre.12178
    [Google Scholar]
  50. Lewis, S., & Holness, M. (1996). Equilibrium halite‐H2O dihedral angles: High rock‐salt permeability in the shallow crust?Geology, 24(5), 431–434. https://doi.org/10.1130/0091‐7613(1996)024<0431:ehhoda>2.3.co;2
    [Google Scholar]
  51. Liner, C. L., & McGilvery, T. A. M. (2019). The art and science of seismic interpretation. Springer eBooks.
    [Google Scholar]
  52. Liu, X., & Flemings, P. (2009). Dynamic response of oceanic hydrates to sea level drop. Geophysical Research Letters, 36, L17308. https://doi.org/10.1029/2009GL039821
    [Google Scholar]
  53. Lofi, J. (2018). Seismic atlas of the Messinian salinity crisis markers in the Mediterranean Sea‐Volume 2 (Vol. 181, pp. 1–72). Société Géologique de France.
    [Google Scholar]
  54. Lozar, F., Violanti, D., Bernardi, E., Dela Pierre, F., & Natalicchio, M. (2018). Identifying the onset of the Messinian salinity crisis: A reassessment of the biochronostratigraphic tools (Piedmont Basin, NW Italy). Newsletters on Stratigraphy, 51, 11–31. https://doi.org/10.1127/nos/2017/0354
    [Google Scholar]
  55. Lugli, S., Schreiber, B., & Triberti, B. (1999). Giant polygons in the Realmonte Mine (Agrigento, Sicily); evidence for the desiccation of a Messinian halite basin. Journal of Sedimentary Research, 69, 764–771. https://doi.org/10.2110/jsr.69.764
    [Google Scholar]
  56. Luo, G., Hudec, M. R., Flemings, P. B., & Nikolinakou, M. A. (2017). Deformation, stress, and pore pressure in an evolving suprasalt basin. Journal of Geophysical Research: Solid Earth, 122(7), 5663–5690. https://doi.org/10.1002/2016JB013779
    [Google Scholar]
  57. MacDonald, M. (2014). Preesall underground gas storage facility: Geological summary report. (p. 169).
  58. Magara, K. (1980). Comparison of porosity‐depth relationships of shale and sandstone. Journal of Petroleum Geology, 3(2), 175–185. https://doi.org/10.1111/j.1747‐5457.1980.tb00981.x
    [Google Scholar]
  59. Maillard, A., Gaullier, V., Vendeville, B. C., & Odonne, F. (2003). Influence of differential compaction above basement steps on salt tectonics in the Ligurian‐Provençal Basin, northwest Mediterranean. Marine and Petroleum Geology, 20(1), 13–27. https://doi.org/10.1016/S0264‐8172(03)00022‐9
    [Google Scholar]
  60. Maillard, A., Jolivet, L., Lofi, J., Thinon, I., Couëffé, R., Canva, A., & Dofal, A. (2020). Transfer zones and associated volcanic province in the eastern Valencia Basin: Evidence for a hot rifted margin?Marine and Petroleum Geology, 119, 104419. https://doi.org/10.1016/j.marpetgeo.2020.104419
    [Google Scholar]
  61. Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M. J., & Iona, A. (2004). Physical and biochemical averaged vertical profiles in the Mediterranean regions: An important tool to trace the climatology of water masses and to validate incoming data from operational oceanography. Journal of Marine Systems, 48(1), 83–116. https://doi.org/10.1016/j.jmarsys.2003.11.025
    [Google Scholar]
  62. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. (2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 1–8. https://doi.org/10.1111/ter.12038
    [Google Scholar]
  63. Mariner, P. E., Gardner, W. P., Hammond, G. E., Sevougian, S. D., & Stein, E. R. (2015). Application of generic disposal system models. SAND2015‐10037R. Sandia National Laboratories.
    [Google Scholar]
  64. Marín‐Moreno, H., Minshull, T. A., & Edwards, R. A. (2013). A disequilibrium compaction model constrained by seismic data and application to overpressure generation in The Eastern Black Sea Basin. Basin Research, 25(3), 331–347. https://doi.org/10.1111/bre.12001
    [Google Scholar]
  65. Marín‐Moreno, H., Minshull, T. A., & Edwards, R. A. (2013). Inverse modelling and seismic data constraints on overpressure generation by disequilibrium compaction and aquathermal pressuring: Application to the Eastern Black Sea Basin. Geophysical Journal International, 194(2), 814–833. https://doi.org/10.1093/gji/ggt147
    [Google Scholar]
  66. Mauffret, A., Frizon de Lamotte, D., Lallemant, S., Gorini, C., & Maillard, A. (2004). E‐W opening of the Algerian Basin (Western Mediterranean). Terra Nova, 16(5), 257–264. https://doi.org/10.1111/j.1365‐3121.2004.00559.x
    [Google Scholar]
  67. Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511626753
    [Google Scholar]
  68. Metwally, Y. M., & Sondergeld, C. H. (2011). Measuring low permeabilities of gas‐sands and shales using a pressure transmission technique. International Journal of Rock Mechanics and Mining Sciences, 48(7), 1135–1144. https://doi.org/10.1016/j.ijrmms.2011.08.004
    [Google Scholar]
  69. Mianaekere, V., & Adam, J. (2020). ‘Halo‐kinematic’ sequence stratigraphic analysis adjacent to salt diapirs in the deepwater contractional province, Liguro‐Provençal Basin, Western Mediterranean Sea. Marine and Petroleum Geology, 115, 104258. https://doi.org/10.1016/j.marpetgeo.2020.104258
    [Google Scholar]
  70. Milsch, H., Priegnitz, M., & Blöcher, G. (2011). Permeability of gypsum samples dehydrated in air. Geophysical Research Letters, 38(18), L18304. https://doi.org/10.1029/2011gl048797
    [Google Scholar]
  71. Mourad, M., Déverchère, J., Graindorge, D., Bracène, R., Badji, R., Ouabadi, A., & Bendiab, F. (2014). The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system. Journal of Geodynamics, 77, 186–205. https://doi.org/10.1016/j.jog.2014.01.003
    [Google Scholar]
  72. Neuzil, C. E. (1994). How permeable are clays and shales?Water Resources Research, 30(2), 145–150. https://doi.org/10.1029/93WR02930
    [Google Scholar]
  73. Nikolinakou, M. A., Flemings, P. B., & Hudec, M. R. (2014). Modeling stress evolution around a rising salt diapir. Marine and Petroleum Geology, 51, 230–238. https://doi.org/10.1016/j.marpetgeo.2013.11.021
    [Google Scholar]
  74. Olivet, J. L. (1996). La cinématique de la plaque Ibérie. Bulletin Des Centres De Recherches Exploration‐Production elf‐aquitaine, Pau, 20, 131–195.
    [Google Scholar]
  75. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81, 1023–1041.
    [Google Scholar]
  76. Peter, M. (2008). Experimental study of the dehydration reactions gypsum‐bassanite and bassanite‐anhydrite at high pressure: Indication of anomalous behavior of H2O at high pressure in the temperature range of 50–300 degrees C. The Journal of Chemical Physics, 128, 74502. https://doi.org/10.1063/1.2826321
    [Google Scholar]
  77. Pfeifle, T. W., & Hurtado, L. D. (1998). Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing. United States.
  78. Popp, T., Kern, H., & Schulze, O. (2001). Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. Journal of Geophysical Research: Solid Earth, 106(B3), 4061–4078. https://doi.org/10.1029/2000jb900381
    [Google Scholar]
  79. Proshlyakov, B. (1960). Reservoir properties of rocks as a function of their depth and lithology. Associated Technical Services, Incorporated.
    [Google Scholar]
  80. Revil, A., Pezard, P. A., & de Larouzière, F. D. (1999). Fluid overpressures in western Mediterranean sediments, Sites 974–979. In R.Zahn, M. C.Comas, & A.Klaus (Eds.), Proc. ODP, Sci. Results, 161: College Station, TX (Ocean Drilling Program), 117–128. https://doi.org/10.2973/odp.proc.sr.161.274.1999
  81. Robertson, E. C., & Geological Survey (U.S.) . (1988). Thermal properties of rocks. [Denver, Colo.?] : U.S. Dept. of the Interior, Geological Survey : [Books and Open‐file Reports Section, distributor].
  82. Robinson, A., Spadini, G., Cloetingh, S., & Rudat, J. (1995). Stratigraphic evolution of the Black Sea: Inferences from basin modelling. Marine and Petroleum Geology, 12(8), 821–835. https://doi.org/10.1016/0264‐8172(95)98850‐5
    [Google Scholar]
  83. Roveri, M., Bassetti, M. A., & Ricci Lucchi, F. (2001). The Mediterranean Messinian salinity crisis: An Apennine foredeep perspective. Sedimentary Geology, 140(3), 201–214. https://doi.org/10.1016/S0037‐0738(00)00183‐4
    [Google Scholar]
  84. Roveri, M., Flecker, R., Krijgsman, W., & Lofi, J. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  85. Ryan, W. B. F., Hsü, K. J., Cita, M. B., Dumitrica, P., Lort, J. M., Maync, W., Nesteroff, W. D., Pautot, G., Stradner, H., Wezel, F. C., & Kaneps, A. G. (1973a). Boundary of Sardinia Slope with Balearic abyssal plain; sites 133 and 134. Initial Reports of the Deep Sea Drilling Project, 13, 465–514. https://doi.org/10.2973/dsdp.proc.13.114.1973
    [Google Scholar]
  86. Ryan, W. B. F., Hsü, K. J., Cita, M. B., Dumitrica, P., Lort, J. M., Maync, W., Nesteroff, W. D., Pautot, G., Stradner, H., Wezel, F. C., & Kaneps, A. G. (1973b). Valencia trough; site 122. Initial Reports of the Deep Sea Drilling Project, 13, 91–109. https://doi.org/10.2973/dsdp.proc.13.104.1973
    [Google Scholar]
  87. Sàbat, F., Gelabert, B., & Perea, A. R. (2018). Minorca, an exotic Balearic island (western Mediterranean). Geologica Acta, 16(4), 411–426. https://doi.org/10.1344/GeologicaActa2018.16.4.5
    [Google Scholar]
  88. Schettino, A., & Turco, E. (2006). Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene. Geophysical Journal International, 166(3), 1398–1423. https://doi.org/10.1111/j.1365‐246X.2006.02997.x
    [Google Scholar]
  89. Schofield, D., Lewis, M., Smedley, P., Bloomfield, J. P., & Boon, D. (2014). Illustrative components of the geological environment. Nottingham, UK, British Geological Survey, p. 34 (CR/14/132N) (Unpublished).
  90. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the Post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  91. Stefano, L., Manzi, V., Roveri, M., & Schreiber, B. (2010). The primary lower gypsum in the mediterranean: A new facies interpretation for the first stage of the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 83–99. https://doi.org/10.1016/j.palaeo.2010.07.017
    [Google Scholar]
  92. Stormont, J. C. (1997). Conduct and interpretation of gas permeability measurements in rock salt. International Journal of Rock Mechanics and Mining Sciences, 34(3), 303.e301–303.e311. https://doi.org/10.1016/S1365‐1609(97)00250‐5
    [Google Scholar]
  93. Stormont, J. C. (2001). Evaluation of Salt Permeability Tests. SMRI Project No.2000‐1‐SRMI, prepared by Department of Civil Engineering, University of New Mexico, Albuquerque, NM, for the Solution Mining Research Institute.
  94. Stormont, J. C., Daemen, J. J. K., & Desai, C. S. (1992). Prediction of dilation and permeability changes in rock salt. International Journal for Numerical and Analytical Methods in Geomechanics, 16(8), 545–569. https://doi.org/10.1002/nag.1610160802
    [Google Scholar]
  95. Swarbrick, R. (2012). Review of pore‐pressure prediction challenges in high‐temperature areas. The Leading Edge, 31(11), 1288–1294. https://doi.org/10.1190/tle31111288.1
    [Google Scholar]
  96. The International Association for the Properties of Water and Steam
    The International Association for the Properties of Water and Steam . (2008). Release on the IAPWS formulation 2008 for the viscosity of ordinary water substances. The International Association for the Properties of Water and Steam.
  97. Tingay, M., Hillis, R., Swarbrick, R., Morley, C., & Damit, A. (2009). Origin of overpressure and pore‐pressure prediction in the Baram province, Brunei. AAPG Bulletin, 93, 51–74. https://doi.org/10.1306/08080808016
    [Google Scholar]
  98. Topper, R. P. M., Flecker, R., Meijer, P. Th., & Wortel, M. J. R. (2011). A box model of the Late Miocene Mediterranean Sea: Implications from combined 87Sr/86Sr and salinity data. Paleoceanography and Paleoclimatology, 26, PA3223. https://doi.org/10.1029/2010PA002063
    [Google Scholar]
  99. Urai, J., Schmatz, J., & Klaver, J. (2019). Over‐pressured salt solution mining caverns and leakage mechanisms Phase 1: Micro‐scale processes (Project KEM‐17), MaP – Microstructure and Pores GmbH. Aachen.
    [Google Scholar]
  100. Virtus
    Virtus (2014). VIRTUS – Virtuelles Untertagelabor im Steinsalz. Gesellschaft für Anlagen‐ und Reaktorsicherheit (GRS) mbH, GRS‐354 and appendices. ISBN 978‐3‐944161‐34‐1. https://www.grs.de/publikation/grs‐354
  101. Wardell, N., Camerlenghi, A., Urgeles, R., Geletti, R., Tinivella, U., Giustiniani, M., & Accettella, D. (2014). Seismic evidence for Messinian salt deformation and fluid circulation on the South Balearic margin (Western Mediterranean). Paper presented at the EGU General Assembly Conference Abstracts. https://ui.adsabs.harvard.edu/abs/2014EGUGA..1611078W
  102. Warren, J. K. (2016). Evaporites: A geological compendium (pp. 786–812). Springer International Publishing.
    [Google Scholar]
  103. Zhang, D., Skoczylas, F., Agostini, F., & Jeannin, L. (2020). Experimental investigation of gas transfer properties and stress coupling effects of salt rocks. Rock Mechanics and Rock Engineering, 53(9), 4015–4029. https://doi.org/10.1007/s00603‐020‐02151‐x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12554
Loading
/content/journals/10.1111/bre.12554
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error