1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

Palaeogeographic reconstruction of the Cretaceous Lysing Formation, offshore Norway, showing the interaction of axial and transverse deep‐water systems in a post‐rift setting.

, Abstract

Deep‐water stratigraphic successions from syn‐ to post‐rift stages are an archive of evolving physiographic configurations, and can record axial and transverse sedimentary sources. The healing of topography decreases the influence of syn‐rift structures on sedimentation patterns and transport processes over time, which leads to a long‐term transition from dominantly axial to transverse dispersal patterns. The Halten and Dønna terraces, offshore mid‐Norway, comprise a series of rift‐related sub‐basins established during the Jurassic, which were infilled with sediments during the Cretaceous. The Cretaceous Lysing Formation developed as slope‐ and basin‐floor fans within a series of weakly confined post‐rift sub‐basins with some shallow marine deposits interpreted on the basin margins. A deep‐water setting is supported by seismic interpretation, and bed type and architectural element analysis in all cored and uncored wells in the area. We document that an axial submarine fan system was active throughout the post‐rift stage due to subtle inherited topography from syn‐rift structures, which interacted with locally sourced transverse sediment sources. This led to a complicated stratigraphic architecture, with lobe fringe deposits of the axial fan system juxtaposed with channel‐fills and channel‐lobe transition zone deposits of transverse systems. The refined palaeogeographic reconstruction of the Lysing Formation illustrates how subtle topography can impact sediment routing patterns many millions of years after the end of rifting and can be used for palaeoenvironmental interpretations in other post‐rift settings.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12555
2021-07-17
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/4/bre12555.html?itemId=/content/journals/10.1111/bre.12555&mimeType=html&fmt=ahah

References

  1. Amorosi, A. (2012). The occurrence of glaucony in the stratigraphic record: Distribution patterns and sequence‐stratigraphic significance. In Int. Assoc. Sedimentol. Spec. Publ. (Vol. 45, pp. 37–54).
    [Google Scholar]
  2. Blystad, P., Brekke, H., Faerseth, R. B., Larsen, B. T., Skogseid, J., & Torudbakken, B. (1995). Structural elements of the Norwegian continental shelf: Part II. The Norwegian Sea Region. Norw. Petr. Dir.‐Bull. 8.
  3. Brekke, H., Dahlgren, S., Nyland, B., & Magnus, C. (1999). The prospectivity of the Vøring and Møre basins on the Norwegian Sea conti‐ nental margin. In A. J.Fleet & S. A.Boldy (Eds.), Petroleum geology of Northwest Europe: Proceedings of the 5th conference (pp. 41–61).
    [Google Scholar]
  4. Brekke, H., Sjulstad, H. I., Magnus, C., & Williams, R. W. (2001). Sedimentary environments offshore Norway ‐ An overview. In O. J.Martinsen & T.Dreyer (Eds.), Sedimentary environments offshore Norway ‐ Palaeozoic to recent. NPF Special Publication (pp. 7–37).
    [Google Scholar]
  5. Brooks, H. L., Hodgson, D., Brunt, R. L., Peakall, J., Hofstra, M., & Flint, S. (2018). Deep‐water channel‐lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa. GSA Bulletin, 130(9–10), 1723–1746.
    [Google Scholar]
  6. Carr, M., & Gardner, M. (2000). Portrait of a basin‐floor fan for sandy deepwater systems, Permian lower Brushy Canyon Formation, west Texas. In A.Bouma & C.Stone (Eds.), Fine‐grained turbidite systems: American Association of Petroleum Geologists. Memoir 72, SEPM Special Publications 68 (pp. 215–232).
    [Google Scholar]
  7. Covey, M. (1986). The evolution of foreland basins to steady state: Evidence from the western Taiwan foreland basin. International Association of Sedimentologists Special Publication, 8, 77–90.
    [Google Scholar]
  8. Cullen, T., Collier, R. E., Gawthorpe, R. L., Hodgson, D. M., & Barrett, B. J. (2020). Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, 32, 1105–1139. https://doi.org/10.1111/bre.12416
    [Google Scholar]
  9. Dodd, T. J. H., McCarthy, D. J., & Richards, P. C. (2019). A depositional model for deep‐lacustrine, partially confined, turbidite fans: Early Cretaceous, North Falkland Basin. Sedimentology, 66, 53–80. https://doi.org/10.1111/sed.12483
    [Google Scholar]
  10. Doré, A. G., & Lundin, E. R. (1996). Cenozoic compressional structures on the NE Atlantic margin: Nature, origin and potential significance for hydrocarbon exploration. Petroleum Geoscience, 2, 299–311. https://doi.org/10.1144/petgeo.2.4.299
    [Google Scholar]
  11. Elliott, G. M., Wilson, P., Jackson, C., Gawthorpe, R., Michelsen, L., & Sharp, I. R. (2012). The linkage between fault throw and footwall scarp erosion patterns: An example from the Bremstein Fault Complex, offshore Mid‐Norway. Basin Research, 24(2), 180–197. https://doi.org/10.1111/j.1365‐2117.2011.00524.x
    [Google Scholar]
  12. Færseth, R. B., & Lien, T. (2002). Cretaceous evolution in the Norwegian Sea ‐ A period characterized by tectonic quiescence. Marine and Petroleum Geology, 19(8), 1005–1027. https://doi.org/10.1016/S0264‐8172(02)00112‐5
    [Google Scholar]
  13. Fjellanger, E., Surlyk, F., Wamsteeker, L. C., & Midtun, T. (2005). Upper cretaceous basin‐floor fans in the Vøring Basin, Mid Norway shelf. In B. T.Wandås, J. P.Nystuen, E.Eide, & F.Gradstein (Eds.), Proceedings of the Norwegian Petroleum Society Conference (pp. 135–164). Norwegian Petroleum Society Special Publications.
    [Google Scholar]
  14. Fonneland, H. C., Lien, T., Martinsen, O. J., Pedersen, R. B., & Košler, J. (2004). Detrital zircon ages: A key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sedimentary Geology, 164(1–2), 147–159. https://doi.org/10.1016/j.sedgeo.2003.09.005
    [Google Scholar]
  15. Fugelli, E., & Olsen, T. (2007). Delineating confined slope turbidite systems offshore mid‐Norway: The Cretaceous deep‐marine Lysing Formation. AAPG Bulletin, 91(11), 1577–1601. https://doi.org/10.1306/07090706137
    [Google Scholar]
  16. García, M., & Parker, G. (1993). Experiments on the entrainment of sediment into suspension by a dense bottom current. Journal of Geophysical Research, 98(3), 4793–4807. https://doi.org/10.1029/92JC02404
    [Google Scholar]
  17. Gawthorpe, R. L., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society (London), 150, 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  18. Gibbs, A. D. (1984). Structural evolution of extensional basin margins. Journal of the Geological Society (London), 141, 609–620. https://doi.org/10.1144/gsjgs.141.4.0609
    [Google Scholar]
  19. Hadlari, T., Midwinter, D., Galloway, J. M., Dewing, K., & Durbano, A. M. (2016). Mesozoic rift to post‐rift tectonostratigraphy of the Sverdrup Basin, Canadian Arctic. Marine and Petroleum Geology, 76, 148–158. https://doi.org/10.1016/j.marpetgeo.2016.05.008
    [Google Scholar]
  20. Hamberg, L., Dam, G., Wilhelmson, C., & Ottesen, T. G. (2005). Paleocene deep‐marine sandstone plays in the Siri Canyon, offshore Denmark–southern Norway. Geological Society, London, Petroleum Geology Conference Series, 6, 1185–1198. https://doi.org/10.1144/0061185
    [Google Scholar]
  21. Hampton, M. A., Lee, H., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34, 33–59. https://doi.org/10.1007/978‐3‐319‐57852‐1_13
    [Google Scholar]
  22. Hastings, D. S. (1987). Sand‐prone facies in the Cretaceous of Mid‐Norway. In J.Brooks & K. W.Glennie (Eds.), Petroleum geology of Northwest Europe (pp. 1065–1078). Graham and Trotman.
    [Google Scholar]
  23. Haughton, P. D. W., Barker, S. P., & McCaffrey, W. D. (2003). 'Linked" debrites in sand‐rich turbidite systems – Origin and significance. Sedimentology, 50, 459–482. https://doi.org/10.1046/j.1365‐3091.2003.00560.x
    [Google Scholar]
  24. Hofstra, M. (2016). The stratigraphic record of submarine channel‐lobe transition zones. University of Leeds. Unpublished PhD thesis.
    [Google Scholar]
  25. Hofstra, M., Hodgson, D., Peakall, J., & Flint, S. (2015). Giant scour‐fills in ancient channel‐lobe transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329, 98–114. https://doi.org/10.1016/j.sedgeo.2015.09.004
    [Google Scholar]
  26. Ito, M. (2008). Downfan transformation from turbidity currents to debris flows at a channel‐to‐lobe transitional zone: The lower Pleistocene Otadai Formation, Boso Peninsula, Japan. Journal of Sedimentary Research, 78(10), 668–682. https://doi.org/10.2110/jsr.2008.076
    [Google Scholar]
  27. Jackson, C., Barber, G. P., & Martinsen, O. J. (2008). Submarine slope morphology as a control on the development of sand‐rich turbidite depositional systems: 3D seismic analysis of the Kyrre Fm (Upper Cretaceous), Maloy Slope, offshore Norway. Marine and Petroleum Geology, 25(8), 663–680. https://doi.org/10.1016/j.marpetgeo.2007.12.007
    [Google Scholar]
  28. Kane, I., Pontén, A. S. M., Vangdal, B., Eggenhuisen, J., Hodgson, D., & Spychala, Y. T. (2017). The stratigraphic record and processes of turbidity current transformation across deep‐marine lobes. Sedimentology, 64, 1236–1273. https://doi.org/10.1111/sed.12346
    [Google Scholar]
  29. Kilhams, B., Morton, A., Borella, R., Wilkins, A., & Hurst, A. (2014). Understanding the provenance and reservoir quality of the Sele Formation sandstones of the UK Central Graben utilizing detrital garnet suites. Geological Society, London, Special Publications, 386, 129–142. https://doi.org/10.1144/SP386.16
    [Google Scholar]
  30. Kneller, B., Dykstra, M., Fairweather, L., & Milana, J. P. (2016). Mass‐transport and slope accommodation: Implications for turbidite sandstone reservoirs. AAPG Bulletin, 100(2), 213–235. https://doi.org/10.1306/09011514210
    [Google Scholar]
  31. Komar, P. (1971). Hydraulic jumps in turbidity currents. Geological Society of America Bulletin, 82, 1477–1488. https://doi.org/10.1130/0016‐7606(1971)82
    [Google Scholar]
  32. Leinfelder, R. R., Wilson, R., & Chris, L. (1998). Third‐order sequences in an upper Jurassic rift‐related second‐order sequence, Central Lusitanian Basin, Portugal. In P. C.Graciansky, J.Hardenbol, T.Jacquin, & P. R.Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins (pp. 507–525). SEPM.
    [Google Scholar]
  33. Lien, T. (2005). From rifting to drifting: Effects on the development of deep‐water hydrocarbon reservoirs in a passive margin setting, Norwegian Sea. Norwegian Journal of Geology, 85(4), 319–332.
    [Google Scholar]
  34. Lien, T., Midtbø, R. E., & Martinsen, O. J. (2006). Depositional facies and reservoir quality of deep‐marine sandstones in the Norwegian Sea. Norwegian Journal of Geology, 86(2), 71–92.
    [Google Scholar]
  35. Macdonald, H. A., Peakall, J., Wignall, P. B., & Best, J. (2011). Sedimentation in deep‐sea lobe‐elements: Implications for the origin of thickening‐upward sequences. Journal of the Geological Society, London, 168, 319–331. https://doi.org/10.1144/0016‐76492010‐036
    [Google Scholar]
  36. Martinsen, O. J., Lien, T., & Jackson, C. (2005). Cretaceous and Palaeogene turbidite systems in the North Sea and Norwegian Sea Basins: source, staging area and basin physiography controls on reservoir development. In A. G.Doré & B. A.Viking (Eds.), Petroleum geology: North‐West Europe and global perspectives – Proceedings of the 6th petroleum geology conferences (pp. 1147–1164). London: Geological Society.
    [Google Scholar]
  37. McArthur, A., Hartley, A. J., Archer, S. G., Jolley, D. W., & Lawrence, H. M. (2016). Spatiotemporal relationships of deep‐marine, axial, and transverse depositional systems from the synrift Upper Jurassic of the central. North Sea, 9(9), 1469–1500. https://doi.org/10.1306/04041615125
    [Google Scholar]
  38. McCracken, S. R., Compton, J., & Hicks, K. (1996). Sequence‐stratigraphic significance of glaucony‐rich lithofacies at site 903. In Proceedings of the Ocean Drilling Program (Vol. 150(1981)). http://www‐odp.tamu.edu/publications/150_SR/VOLUME/CHAPTERS/sr150_10.pdf
    [Google Scholar]
  39. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74, 1234–1253.
    [Google Scholar]
  40. Morton, A. C., Whitham, A. G., & Fanning, C. M. (2005). Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 182(1–4), 3–28. https://doi.org/10.1016/j.sedgeo.2005.08.007
    [Google Scholar]
  41. Mosar, J., Eide, E. A., Osmundsen, P. T., Sommaruga, A., & Torsvik, T. H. (2002). Greenland ‐ Norway separation: A geodynamic model for the North Atlantic. Norwegian Journal of Geology, 82, 281–298.
    [Google Scholar]
  42. Moscardelli, L., Ramnarine, S. K., Wood, L., & Dunlap, D. B. (2013). Seismic geomorphological analysis and hydrocarbon potential of the Lower Cretaceous Cromer Knoll Group, Heidrun field, Norway. AAPG Bulletin, 97(8), 1227–1248. https://doi.org/10.1306/02081312155
    [Google Scholar]
  43. Muravchik, M., Henstra, G. A., Eliassen, G. T., Gawthorpe, R. L., Leeder, M., Kranis, H., Skourtsos, E., & Andrews, J. (2020). Deep‐water sediment transport patterns and basin floor topography in early rift basins: Plio‐Pleistocene syn‐rift of the Corinth Rift, Greece. Basin Research, 32(5), 1194–1222. https://doi.org/10.1111/bre.12423
    [Google Scholar]
  44. Mutti, E., & Normark, W. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J.Leggett, & G.Zuffa (Eds.), Marine clastic sedimentology (pp. 1–38). Graham and Trotman.
    [Google Scholar]
  45. Mutti, E., & Normark, W. (1991). An integrated approach to the study of turbidite systems. In P.Weimer, & M.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–106). Springer‐Verlag.
    [Google Scholar]
  46. Patacci, M., Haughton, P., & McCaffrey, W. D. (2014). Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France. Journal of Sedimentary Research, 84(4), 270–277. https://doi.org/10.2110/jsr.2014.26
    [Google Scholar]
  47. Pickering, K. T., Clark, J. D., Smith, R. D. A., Hiscott, R. N., Ricci Lucchi, F., & Kenyon, N. H. (1995). Architectural element analysis of turbidite systems, and selected topical problems for sand‐prone deep‐water systems. Atlas of Deep Water Environments, 1–10, https://doi.org/10.1007/978‐94‐011‐1234‐5_1
    [Google Scholar]
  48. Pickering, K. T., & Hilton, V. C. (1998). Turbidite systems of southeast France: Application to hydrocarbon prospectivity. Vallis Press.
    [Google Scholar]
  49. Pierce, C. S., Haughton, P. D. W., Shannon, P. M., Pulham, A. J., Barker, S. P., & Martinsen, O. J. (2018). Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, Western Ireland, Sedimentology, 65, 952–992, https://doi.org/10.1111/sed.12412
    [Google Scholar]
  50. Pohl, F., Eggenhuisen, J. T., Cartigny, M. J. B., Tilston, M. C., de Leeuw, J., & Hermidas, N. (2020). The influence of a slope break on turbidite deposits: An experimental investigation. Marine Geology, 424(February), https://doi.org/10.1016/j.margeo.2020.106160
    [Google Scholar]
  51. Pohl, F., Eggenhuisen, J. T., Tilston, M., & Cartigny, M. J. B. (2019). New flow relaxation mechanism explains scour fields at the end of submarine channels. Nature Communications, 10(1), 1–8. https://doi.org/10.1038/s41467‐019‐12389‐x
    [Google Scholar]
  52. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82(5 A), 701–728. https://doi.org/10.1306/1d9bc5d9‐172d‐11d7‐8645000102c1865d
    [Google Scholar]
  53. Prélat, A., & Hodgson, D. (2013). The full range of turbidite bed thickness patterns in submarine lobes: Controls and implications. Journal of the Geological Society, 170(1), 209–214. https://doi.org/10.1144/jgs2012‐056
    [Google Scholar]
  54. Prélat, A., Hodgson, D., & Flint, S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56(7), 2132–2154. https://doi.org/10.1111/j.1365‐3091.2009.01073.x
    [Google Scholar]
  55. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. In G.D.Williams & A.Dobb (Eds.), Tectonics and seismic sequence stratigraphy (pp. 35–66). London: Geological Society London, Special Publications.
    [Google Scholar]
  56. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  57. Shanmugam, G., Lehtonen, L. R., Straume, T., Syvertsen, S. E., & Hodgkinson, R. J. (1994). Slump and debris‐flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61–67° N ): Implications for sand distribution 1. AAPG Bulletin, 78(6), 910–937.
    [Google Scholar]
  58. Sharman, G. R., Hubbard, S. M., Covault, J. A., Hinsch, R., Linzer, H. G., & Graham, S. A. (2018). Sediment routing evolution in the North Alpine Foreland Basin, Austria: Interplay of transverse and longitudinal sediment dispersal. Basin Research, 30(3), 426–447. https://doi.org/10.1111/bre.12259
    [Google Scholar]
  59. Sinclair, H. D. (2000). Delta‐fed turbidites infilling topographically complex basins: A new depositional model for the Annot Sandstones, SE France. Journal of Sedimentary Research, 70, 504–519. https://doi.org/10.1306/2DC40923‐0E47‐11D7‐8643000102C1865D
    [Google Scholar]
  60. Sinclair, H. D., & Tomasso, M. (2002). Depositional evolution of confined turbidite basins. Journal of Sedimentary Research, 72(4), 451–456. https://doi.org/10.1306/111501720451
    [Google Scholar]
  61. Skogseid, J., Planke, S., Faleide, J. I., Pedersen, T., Eldholm, O., & Neverdal, F. (2000). NE Atlantic continental rifting and volcanic margin formation. Dynamics of the Norwegian Margin. Geological Society, London, Special Publication, 167, 295–326. https://doi.org/10.1144/GSL.SP.2000.167.01.12
    [Google Scholar]
  62. Southern, S. J., Kane, I., Warchoł, M. J., Porten, K., & McCaffrey, W. D. (2017). Hybrid event beds dominated by transitional‐flow facies: Character, distribution and significance in the maastrichtian springar formation, north‐west vøring basin, Norwegian Sea. Sedimentology, 64(3), 747–776. https://doi.org/10.1111/sed.12323
    [Google Scholar]
  63. Spychala, Y. T., Hodgson, D., Flint, S., & Mountney, N. P. (2015). Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sedimentary Geology, 322, 67–81. https://doi.org/10.1016/j.sedgeo.2015.03.013
    [Google Scholar]
  64. Spychala, Y. T., Hodgson, D., & Lee, D. R. (2017). Autogenic controls on hybrid bed distribution in submarine lobe complexes. Marine and Petroleum Geology, 88, 1078–1093. https://doi.org/10.1016/j.marpetgeo.2017.09.005
    [Google Scholar]
  65. Spychala, Y. T., Hodgson, D., Prelat, A., Kane, I., Flint, S., & Mountney, N. (2017). Frontal and lateral submarine lobe fringes: Comparing sedimentary facies, architecture and flow processes. Journal of Sedimentary Research, 87(January), 75–96. https://doi.org/10.2110/jsr.2017.2
    [Google Scholar]
  66. Stevenson, C., Jackson, C., Hodgson, D., Hubbard, S., & Eggenhuisen, J. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  67. Swiecicki, T., Gibbs, P. B., Farrow, G. E., & Coward, M. P. (1998). A tectonostratigraphic framework for the Mid‐Norway region. Marine and Petroleum Geology, 15, 245–276. https://doi.org/10.1016/S0264‐8172(97)00029‐9
    [Google Scholar]
  68. Torsvik, T. H., & Cocks, L. R. M. (2005). Norway in space and time: A centennial cavalcade. Norwegian Journal of Geology, 85, 73–86.
    [Google Scholar]
  69. van Cappelle, M., Ravnas, R., Hampson, G. J., & Johnson, H. D. (2017). Depositional evolution of a progradational to aggradational, mixed‐influenced deltaic succession: Jurassic Tofte and Ile formations, southern Halten Terrace, offshore Norway. Marine and Petroleum Geology, 80, 1–22. https://doi.org/10.1016/j.marpetgeo.2016.11.013
    [Google Scholar]
  70. Walker, R. (1978). Deep‐water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps. AAPG Bulletin, 62(6), 932–966. https://doi.org/10.1306/C1EA4F77‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  71. Wynn, R., Kenyon, N. H., Masson, D., Stow, D., & Weaver, P. (2002). Characterization and recognition of deep‐water channel‐lobe transition zones. AAPG Bulletin, 86, 1441–1462.
    [Google Scholar]
  72. Wynn, R., Piper, D., & Gee, M. (2002). Generation and migration of coarse‐grained sediment waves in turbidity current channels and channel–lobe transition zones. Marine Geology, 192(1–3), 59–78. https://doi.org/10.1016/S0025‐3227(02)00549‐2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12555
Loading
/content/journals/10.1111/bre.12555
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error