1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

The Late Triassic Chapeng thrust and the Dengzhangzi Basin system in the Yanshan Mountains of the North China Craton were an antiformal stack duplex with a frontal depression.

, Abstract

The configuration and kinematics of fold‐thrust belts are essential for clarifying the plate boundary conditions through which ancient orogenic belts evolved. Temporal and spatial variations in extension versus contraction within convergent plate margins are related to changes in plate kinematics and subduction geometry. The Yanshan Mountains, located along the northeastern margin of the North China Craton and bounded by the Central Asian Orogenic Belt to the north and the Pacific subduction zone to the east, underwent multiple phases of intra‐continental deformation during the Mesozoic. The issue of whether early Mesozoic deformation was extensional or contractional has remained controversial. New regional structural mapping and detailed sedimentological investigations, coupled with age constraints provided by zircon U‐Pb geochronology, provide sufficient temporal and spatial resolution to show that shortening and thrust‐top basin systems dominated during the early Mesozoic. Our results show that the Dengzhangzi Basin within the Lingyuan fold‐thrust belt developed during the construction of a major Late Triassic Chapeng antiformal‐stack duplex system, with episodic, east‐vergent forward‐breaking thrusts and subsequent ‘beheading’ by out‐of‐sequence, top‐to‐east thrusting in the latest Triassic or earliest Jurassic. The neighbouring Guojiadian Basin in the east was generated during top‐to‐ sinistral transpression along the Niuyingzi thrust system in the Middle to earliest Late Jurassic. These results support a new model of early craton decratonization involving (a) thrusting along the northern margin of the North China Craton and (b) transpressional deformation in the east driven by the Central Asian Ocean collision and flat‐slab subduction of the Palaeo‐Pacific Plate beneath the East Asian continental margin. Our findings suggest that large‐scale shortening and crustal/lithospheric thickening, triggered by flat‐slab subduction in the North China Craton, were fundamental components of craton decratonization. Subsequent slab roll‐back during the Cretaceous led to lithospheric thinning and crustal extension in the North China Craton.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12558
2021-07-17
2024-04-16
Loading full text...

Full text loading...

References

  1. Anderson, T. (2002). Correction of common lead in U‐Pb analyses that do not report 2 04b. Chemical Geology, 192, 59–79.
    [Google Scholar]
  2. Bernal, A., & Hardy, S. (2002). Syn‐tectonic sedimentation associated with three‐dimensional fault‐bend fold structures; A numerical approach. Journal of Structural Geology, 24, 609–635. https://doi.org/10.1016/S0191‐8141(01)00112‐2
    [Google Scholar]
  3. Bureau of Geology and Mineral Resources of Liaoning Province (BGMRL)
    Bureau of Geology and Mineral Resources of Liaoning Province (BGMRL) . (1997). Stratigraphy (lithostratic) of Liaoning Province (in Chinese) (p. 247). China University of Geosciences Press.
    [Google Scholar]
  4. Clinkscales, C., & Kapp, P. (2019). Structural style and kinematics of the Taihang‐Luliangshan fold belt, North China: Implications for the Yanshanian orogeny. Lithosphere, 11(6), 767–783.
    [Google Scholar]
  5. Cope, T. D., & Graham, S. A. (2007). Upper crustal response to Mesozoic tectonism in western Liaoning, North China, and implications for lithospheric delamination. Geological Society, London, Special Publication, 280, 201–222. https://doi.org/10.1144/SP280.10
    [Google Scholar]
  6. Cope, T. D., Shultz, M. R., & Graham, S. A. (2007). Detrital record of Mesozoic shortening in the Yanshan belt, NE China: Testing structural interpretations with basin analysis. Basin Research, 19, 253–272. https://doi.org/10.1111/j.1365‐2117.2007.00321.x
    [Google Scholar]
  7. Cope, T., Luo, P., Zhang, X. Y., Zhang, X. J., Song, J. M., Zhou, G., & Shultz, R. M. (2010). Structural controls on facies distribution in a small half‐graben basin: Luanping basin, northeast China. Basin Research, 22, 33–44. https://doi.org/10.1111/j.1365‐2117.2009.00417.x.
    [Google Scholar]
  8. Davis, G. A. (2005). The Late Jurassice ‘Tuchengzi/Houcheng’ Formation of the Yanshan fold‐thrust belt: An analysis. Earth Science Frontiers, 12, 331–345.
    [Google Scholar]
  9. Davis, G. A., Meng, J. F., Cao, W. R., & Du, X. Q. (2009). Triassic and Jurassic tectonics in the eastern Yanshan belt, North China: Insights from the controversial Dengzhangzi Formation and its neighboring units. Earth Science Frontiers, 16, 69–86. https://doi.org/10.1016/S1872‐5791(08)60090‐1
    [Google Scholar]
  10. DeCelles, P. G., & Horton, B. K. (2003). Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geological Society of America Bulletin, 115, 58–77. https://doi.org/10.1130/0016‐7606(2003)115<0058:ETMTFB>2.0.CO;2
    [Google Scholar]
  11. Dickinson, W. R., & Gehrels, E. G. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  12. Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., McKittrick, M. A., & Olivares, M. D. (1988). Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of America Bulletin, 100, 1023–1039. https://doi.org/10.1130/0016‐7606(1988)100<1023:PAPSOL>2.3.CO;2
    [Google Scholar]
  13. Heuret, A., & Lallemand, S. (2005). Plate motions, slab dynamics and back‐arc deformation. Physics of the Earth and Planetary Interiors, 149, 31–51. https://doi.org/10.1016/j.pepi.2004.08.022
    [Google Scholar]
  14. Horton, K. B. (2018). Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37(2), 402–429. https://doi.org/10.1002/2017TC004624
    [Google Scholar]
  15. Hu, J. M., Liu, X. W., Xu, G., Liu, J., & Zhang, S. H. (2005). The slidding‐slump mudflow sedimentation during the late Triassic to middle Jurassic in western Liaoning Province, China. Acta Geologica Sinica, 79, 453–464.(in Chinese with English abstract).
    [Google Scholar]
  16. Hu, J. M., Zhao, Y., Liu, X. W., Shi, Y. R., & Zhao, G. C. (2005). SHRIMP U‐Pb dating for zircons from pyroxene andesite of Shuiquangou Formation in western Liaoning province and its tectonic significance. Geological Bulletin of China, 24, 104–109.(in Chinese with English abstract).
    [Google Scholar]
  17. Hu, J., Zhao, Y., Liu, X., & Xu, G. (2010). Early Mesozoic deformations of the eastern Yanshan thrust belt, northern China. International Journal of Earth Sciences, 99, 785–800. https://doi.org/10.1007/s00531‐009‐0417‐5
    [Google Scholar]
  18. Huang, D. Y. (2019). Jurassic integrative stratigraphy and timescale of China. Science China Earth Sciences, 62, 223–255. https://doi.org/10.1007/s11430‐017‐9268‐7
    [Google Scholar]
  19. Jahn, B. M., Vidal, P., & Kröner, A. (1984). Multi‐chronometric ages and origin of Archean tonalitic gneisses in finnish lapland: A case for long crustal residence time. Contributions to Mineralogy & Petrology, 86(4), 398–408. https://doi.org/10.1007/BF01187143
    [Google Scholar]
  20. Jipa, D. C., & Olariu, C. (2018). Significance of the Bucegi Conglomerate olistoliths in the Albian source‐to‐sink system from Carpathian Bend Basin in Romania. Interpretation, 6, 29–37. https://doi.org/10.1190/INT‐2017‐0030.1
    [Google Scholar]
  21. Kusky, M. T., Windley, F. B., Wang, L., Wang, Z. S., Li, X. Y., & Zhu, P. M. (2014). Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630, 208–221. https://doi.org/10.1016/j.tecto.2014.05.028
    [Google Scholar]
  22. Kusky, T., Li, J., & Santosh, M. (2007). The Paleoproterozoic North Hebei Orogen: North China craton's collisionalsuture with the Columbia supercontinent. Gondwana Research, 12(1–2), 4–28. https://doi.org/10.1016/j.gr.2006.11.012
    [Google Scholar]
  23. Lawton, T. F. (2019). Laramide sedimentary basins and sediment‐dispersal systems. In A. D.Miall (Ed.), The sedimentary basins of the United States and Canada (pp. 529–557). Elsevier. https://doi.org/10.1016/B978‐0‐444‐63895‐3.00013‐9
    [Google Scholar]
  24. Li, C., Zhang, C., Cope, T. D., & Lin, Y. (2016). Out‐of‐sequence thrusting in polycyclic thrust belts: An example from the Mesozoic Yanshan belt, North China Craton. Tectonics, 35, 2082–2116. https://doi.org/10.1002/2016TC004187
    [Google Scholar]
  25. Lin, C. F., Liu, S. F., Shi, X. F., & Zhuang, Q. T. (2019). Late Jurassic‐Early Cretaceous deformation of the western Yanshan fold‐and‐thrust belt: Insights from syntectonic conglomerates and growth strata in the Chicheng basin, Zhangjiakou, North China. Tectonics, 38, 2449–2476. https://doi.org/10.1029/2018TC005402
    [Google Scholar]
  26. Lin, C. F., Liu, S. F., Zhuang, Q. T., & Steel, R. J. (2018). Sedimentation of Jurassic fan‐delta wedges in the Xiahuayuan basin reflecting thrust‐fault movements of the western Yanshan fold‐and‐thrust belt, China. Sedimentary Geology, 368, 24–43. https://doi.org/10.1016/j.sedgeo.2018.03.005
    [Google Scholar]
  27. Liu, J., Zhao, Y., Liu, X. M., Wang, Y., & Liu, X. W. (2012). Rapid exhumation of basement rocks along the northern margin of the North China craton in the early Jurassic: Evidence from the Xiabancheng Basin, Yanshan Tectonic Belt. Basin Research, 24, 544–558. https://doi.org/10.1111/j.1365‐2117.2011.00538.x
    [Google Scholar]
  28. Liu, S. F., Gurnis, M., Ma, P. F., & Zhang, B. (2017). Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth‐Science Reviews, 175, 114–142. https://doi.org/10.1016/j.earscirev.2017.10.012
    [Google Scholar]
  29. Liu, S., Lin, C., Liu, X., & Zhuang, Q. (2018). Syn‐tectonic sedimentation and its linkage to fold‐thrusting in the region of Zhangjiakou, North Hebei, China. Science China Earth Sciences, 61, 681–710. https://doi.org/10.1007/s11430‐017‐9175‐3
    [Google Scholar]
  30. Liu, S. F., Qian, T., Li, W. P., Dou, G. X., & Wu, P. (2015). Oblique closure of the north‐eastern Palaeo‐Tethys in central China. Tectonics, 34(3), 413–434. https://doi.org/10.1002/2014TC003784
    [Google Scholar]
  31. Liu, S. F., Su, S., & Zhang, G. W. (2013). Early Mesozoic basin development in North China: Indications of cratonic deformation. Journal of Asian Earth Sciences, 62, 221–236. https://doi.org/10.1016/j.jseaes.2012.09.011
    [Google Scholar]
  32. Liu, S. F., Zhang, G. W., Pan, F., Zhang, H. P., Wang, P., Wang, K., & Wang, Y. (2013). Timing of Xunhua and Guide basin development and growth of the northeastern Tibetan Plateau, China. Basin Research, 25, 74–96. https://doi.org/10.1111/j.1365‐2117.2012.00548.x
    [Google Scholar]
  33. Liu, S. F., Zhang, G. W., Ritts, B. D., Zhang, H. P., Gao, M. X., & Qian, C. C. (2010). Tracing exhumation of the Dabie Shan ultrahigh‐pressure metamorphic complex using the sedimentary record in the Hefei Basin, China. Geological Society of America Bulletin, 122, 198–218. https://doi.org/10.1130/B26524.1
    [Google Scholar]
  34. Liu, S. F., Zhang, J., Hong, S. Y., & Ritts, B. D. (2007). Early Mesozoic basin development and its response to thrusting in the Yanshan fold‐and ‐thrust‐belt, China. International Geology Review, 49, 1025–1049. https://doi.org/10.2747/0020‐6814.49.11.1025
    [Google Scholar]
  35. Ludwig, K. R. (2012). User’s manual for ISOPLOT 3.75—A geochronological toolkit for Microsoft Excel (Vol. 5, pp. 75). Berkeley Geochronology Center, Special Publication.
    [Google Scholar]
  36. McClay, K. R. (1992). Glossary of thrust tectonics terms. In K. R.McClay (Ed.), Thrust tectonics (p. 447). Chapman and Hall.
    [Google Scholar]
  37. Meng, Q. R., Wei, H. H., Wu, G. L., & Duan, L. (2014). Early Mesozoic tectonic settings of the northern North China craton. Tectonophysics, 611, 155–166. https://doi.org/10.1016/j.tecto.2013.11.015
    [Google Scholar]
  38. Meng, Q.‐R., Wu, G.‐L., Fan, L.‐G., Wei, H.‐H., & Wang, E. (2020). Late Triassic uplift, magmatism and extension of the northern North China block: Mantle signatures in the surface. Earth and Planetary Science Letters, 547, 116451. https://doi.org/10.1016/j.epsl.2020.116451
    [Google Scholar]
  39. Meng, X. H., Ge, M., & Tucker, M. E. (1997). Sequence stratigraphy, sea‐level changes and depositional systems in the Cambro‐Ordovician of the North China carbonate platform. Sedimentary Geology, 114, 189–222.
    [Google Scholar]
  40. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: their significant features and some comments on gravellymass‐flow deposits. In E. H.Koster & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates (Vol. 10, pp. 1–31). Canadian Society of Petroleum Geologists Memoir.
    [Google Scholar]
  41. Noblet, C., Lavenu, A., & Marocco, R. (1996). Concept of continuum as opposed to periodic tectonism in the Andes. Tectonophysics, 255, 65–78. https://doi.org/10.1016/0040‐1951(95)00081‐X
    [Google Scholar]
  42. Olariu, C., Jipa, D. C., Steel, R. J., Mihaela, C., & Melinte‐Dobrinescu, C. (2014). Genetic significance of an Albian conglomerate clastic wedge, Eastern Carpathians (Romania). Sedimentary Geology, 299, 42–59. https://doi.org/10.1016/j.sedgeo.2013.10.004
    [Google Scholar]
  43. Poblet, J. (2012). 2D kinematic models of growth fault‐related folds in contractional settings. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins (pp. 538–564). Wiley‐Blackwell, A John Wiley & Sons, Ltd., Publication.
    [Google Scholar]
  44. Qi, G. W., Zhang, J. J., & Wang, M. (2015). Mesozoic tectonic setting of rift basins in eastern North China and implications for destruction of the North China Craton. Journal of Asian Earth Sciences, 111, 414–427. https://doi.org/10.1016/j.jseaes.2015.06.022
    [Google Scholar]
  45. Qu, H. J., Meng, Q. R., & Zhang, Y. L. (2006). Late Jurassic volcano‐sedimentary sequences, filling process and evolution of basins in the Chengde area, Yanshan tectonic belt, China. Geological Bulletin of China, 25, 1326–1337.
    [Google Scholar]
  46. Rafini, S., & Mercier, E. (2002). Forward modelling of foreland basins progressive unconformities. Sedimentary Geology, 146, 75–89. https://doi.org/10.1016/S0037‐0738(01)00167‐1
    [Google Scholar]
  47. Riba, O. (1976). Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: A genetic interpretation. Sedimentary Geology, 15, 213–233. https://doi.org/10.1016/0037‐0738(76)90017‐8
    [Google Scholar]
  48. Royden, L. H. (1993). The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12, 303–325. https://doi.org/10.1029/92TC02248
    [Google Scholar]
  49. Scholz, C. H., & Campos, J. (1995). On the mechanism of seismic decoupling and back‐arc spreading in subduction zones. Journal of Geophysical Research, 100, 22103–22115.
    [Google Scholar]
  50. Shao, J. A., Meng, Q. R., Wei, H. Q., Zhang, L. Q., & Wang, P. Y. (2003). Nature and tectonic environment of Late Jurassic volcanicsedimentary basins in northwestern Hebei Province (in Chinese with English abstract). Geological Bulletin of China, 22, 751–761.
    [Google Scholar]
  51. Snyder, B. D., Humphreys, E., & Pearson, D. G. (2017). Construction and destruction of some North American cratons. Tectonophysics, 694, 464–485. https://doi.org/10.1016/j.tecto.2016.11.032
    [Google Scholar]
  52. Suppe, J. (1983). Geometry and kinematics of fault bend folding. American Journal of Science, 283, 684–721. https://doi.org/10.2475/ajs.283.7.684
    [Google Scholar]
  53. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  54. Wan, T. F. (2013). A new Asian tectonic unit map. Geology in China (in Chinese), 40(5), 1351–1365.
    [Google Scholar]
  55. Wang, W., Liu, S., Santosh, M., Deng, Z., Guo, B., Zhao, Y., Zhang, S., Yang, P., Bai, X., & Guo, R. (2015). Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U‐Pb‐Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27(1), 300–325. https://doi.org/10.1016/j.gr.2013.10.004
    [Google Scholar]
  56. Wang, Y., Zhou, L. Y., & Li, J. Y. (2011). Intracontinental superimposed tectonics—A case study in the Western Hills of Beijing, eastern China. Geological Society of America Bulletin, 123, 1033–1055. https://doi.org/10.1130/B30257.1
    [Google Scholar]
  57. Wang, Y., Zhou, L. Y., Liu, S. F., Li, J. Y., & Yang, T. N. (2018). Post‐cratonization deformation processes and tectonic evolution of the North China Craton. Earth‐Science Reviews, 177, 320–365. https://doi.org/10.1016/j.earscirev.2017.11.017
    [Google Scholar]
  58. Wang, Y., Zhou, L. Y., & Zhao, L. J. (2013). Cratonic reactivation and orogeny: An example from the northern margin of the North China Craton. Gondwana Research, 24, 1203–1222. https://doi.org/10.1016/j.gr.2013.02.011
    [Google Scholar]
  59. Wang, Y., Zhou, L. Y., Zhao, L. J., Cope, T., & Liu, J. (2015). Tectonic transformations in the north of eastern China during 170–150 Ma: Causal linkage to the rapid formation of the paleo–Pacific plate. In T. H.Anderson, A. N.Didenko, C. L.Johnson, A. I.Khanchuk & J. H.MacDonaldJr. (Eds.), Late Jurassic margin of Laurasia—A record of faulting accommodating plate rotation. Geological Society of America Special Paper 513 (pp. 561–587).
    [Google Scholar]
  60. Wei, H. H., Meng, Q. R., Wu, G. L., & Li, L. (2012). Multiple controls on rift basin sedimentation in volcanic settings: Insights from the anatomy of a small Early Cretaceous basin in the Yanshan belt, northern North China. Geological Society of America Bulletin, 124(3–4), 380–399. https://doi.org/10.1130/B30495.1
    [Google Scholar]
  61. Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. K., & Badarch, G. (2007). Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London, 164, 31–47. https://doi.org/10.1144/0016‐76492006‐022
    [Google Scholar]
  62. Wong, W. H. (1927). Crustal movements and igneous activities in Eastern China since Mesozoic time. Bulletin of Geological Society of China, 6, 9–37.
    [Google Scholar]
  63. Wu, F. Y., Yang, J. H., Xu, Y. G., Wilde, A. S., & Walker, R. J. (2019). Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47, 173–195. https://doi.org/10.1146/annurev‐earth‐053018‐060342
    [Google Scholar]
  64. Xiao, W. J., Windley, B. F., Hao, J., & Zhai, M. G. (2003). Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22, https://doi.org/10.1029/2002TC001484
    [Google Scholar]
  65. Xu, G., Zhao, Y., Hu, J., Zeng, Q., Liu, X., Wu, H., & Song, B. (2003). Late Triassic thrusting in the Niuyingzi region, western Liaoning, China. Acta Geologica Sinica, 77, 25–34.
    [Google Scholar]
  66. Xu, G., Zhao, Y., Wu, H., & Zhang, S. H. (2005). Late Triassic‐Middle Jurassic stratigraphic succession in the Niuyingzi basin, Lingyuan County, western Liaoning and the correlation of regional stratigraphic sequences in the Yanliao region. Acta Geoscientica Sinica, 26, 299–308.
    [Google Scholar]
  67. Yonkee, W. A., & Weil, A. B. (2015). Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth‐Science Reviews, 150, 531–593. https://doi.org/10.1016/j.earscirev.2015.08.001
    [Google Scholar]
  68. Zhai, M. G., Guo, J. H., & Liu, W. J. (2005). Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24, 547–561. https://doi.org/10.1016/j.jseaes.2004.01.018
    [Google Scholar]
  69. Zhang, A. D., Liu, S. F., Lin, C. F., & Zhang, B. (2020). Timing of deposition in the Dengzhangzi and Guojiadian Basins of the Yanshan fold‐thrust belt, North China. International Geology Review. 62(18), 2344–2365. https://doi.org/10.1080/00206814.2019.1697969
    [Google Scholar]
  70. Zhang, C. H., Li, C. M., Deng, H. L., Liu, Y., Liu, L., Wei, B., Li, H. B., & Liu, Z. (2011). Mesozoic contraction deformation in the Yanshan and northern Taihang mountains and its implications to the destruction of the North China Craton. Science China Earth Sciences, 54, 798–822. https://doi.org/10.1007/s11430‐011‐4180‐7
    [Google Scholar]
  71. Zhang, H. R., Zhang, Y. K., Cai, X. M., Qu, H. J., Li, H. L., & Wang, M. (2013). The Triggering of Yanshanian movement: Yanshan Event (in Chinese). Acta Geologica Sinica, 87, 1779–1790.
    [Google Scholar]
  72. Zhao, Y. (1990). Mesozoic orogenic movement and structural evolution in Yanshan area (in Chinese). Geological Review, 36, 1–12.
    [Google Scholar]
  73. Zhao, Y., Cui, S. Q., Guo, T., & Xu, G. (2002). Evolution of a Jurassic basin of the Western Hills, Beijing, North China and Its tectonic implications. Geological Bulletin of China, 21(4–5), 211–217.(in Chinese with English abstract).
    [Google Scholar]
  74. Zhao, Y., Xu, G., Zhang, S. H., Yang, Z. Y., Zhang, Y. Q., & Hu, J. M. (2004). The Jurassic major tectonic events of the Yanshan intraplate deformation belt. Geological Bulletin of China, 23, 854–863.(in Chinese with English abstract).
    [Google Scholar]
  75. Zheng, Y. F., Xu, Z., Zhao, Z. F., & Dai, L. Q. (2018). Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 61, 353–385. https://doi.org/10.1007/s11430‐017‐9160‐3
    [Google Scholar]
  76. Zhu, R. X., Xu, Y. G., Zhu, G., Zhang, H. F., Xia, Q. K., & Zheng, T. Y. (2012). Destruction of the North China Craton. Science China Earth Sciences, 55, 1565–1587. https://doi.org/10.1007/s11430‐012‐4516‐y
    [Google Scholar]
  77. Zorin, Y. A. (1999). Geodynamics of the western part of the Mongolia‐Okhotsk collisional belt, Trans‐Baikal region (Russia) and Mongolia. Tectonophysics, 306, 33–56. https://doi.org/10.1016/S0040‐1951(99)00042‐6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12558
Loading
/content/journals/10.1111/bre.12558
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error