1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

An intraplatform trough and associated platform margins formed in the Sichuan Basin, South China, during the Late Ediacaran to Early Cambrian. Seismic data show three stages of development of the trough. The first stage is characterized by considerable thinning of the lower two members of the Upper Ediacaran from the platform margins to the trough. In the second stage, in the late Late Ediacaran, the platform margins backstepped and the extent of the trough expanded significantly. The third stage, in the early Early Cambrian, was dominated by gradual filling of the trough and onlapping of the platform margins. Integrating with tectonic subsidence analysis, we infer that the trough was a palaeogeographic embayment in a large carbonate platform.

, Abstract

The Upper Ediacaran to Lower Cambrian of the Sichuan Basin in South China has long been considered to be dominated by shallow‐water deposition. Hydrocarbon exploration, however, has revealed that a NW‐SE trending intraplatform trough formed in the basin during the same period. Although different models have been proposed, the formation and evolution of the trough are still not fully understood. In this study, we investigate both the origin of the intraplatform trough and the formation of the Sichuan Basin by integrating seismic interpretation, well correlation and tectonic subsidence analysis. The seismic and well data clearly show three stages of development of the trough. The first stage, in the early Late Ediacaran, is characterized by considerable thinning of the lower two members of the Upper Ediacaran from the platform margins to the trough. In the second stage, in the late Late Ediacaran, the platform margins backstepped and the extent of the trough expanded significantly to a width of ca. ~400 km. The third stage, in the early Early Cambrian, was dominated by gradual filling of the trough and onlapping of the platform margins. Backstripped tectonic subsidence curves show one, or two closely spaced episodes of linear subsidence starting at ~550 Ma and then decreasing exponentially until ~450 Ma. The shape of the subsidence curves is consistent with formation of the Sichuan Basin by low, and slow amounts of lithospheric stretching of thickened cratonic lithosphere. The tectonic subsidence increases from the centre to the NW of the basin. Interestingly the margins of the trough do not correlate with contoured values of increased tectonic subsidence and we infer that the trough was a palaeogeographic embayment in a large carbonate platform that developed in a broad, ramp‐like area of slow and low subsidence tilting down to the proto‐Tethyan ocean located to the NW of the basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12559
2021-07-17
2024-04-25
Loading full text...

Full text loading...

References

  1. Adams, E. W., Schroder, S., Grotzinger, J. P., & McCormick, A. S. (2004). Digital reconstruction and stratigraphic evolution of a microbial‐dominated, isolated carbonate platform (Terminal Proterozoic, Nama Group, Namibia). Journal of Sedimentary Research, 74, 479–497. https://doi.org/10.1306/122903740479
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.(1–619). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  3. Allen, P. A., & Armitage, J. J. (2012). Cratonic basins. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 602–620). Wiley‐Blackwell.
    [Google Scholar]
  4. Armitage, J. J., & Allen, P. A. (2010). Cratonic basins and the long‐term subsidence history of continental interiors. Journal of the Geological Society, London, 167, 61–70. https://doi.org/10.1144/0016‐76492009‐108
    [Google Scholar]
  5. Athy, L. F. (1930). Density, porosity and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  6. Audet, D. M., & McConnell, J. D. C. (1992). Forward modelling of porosity and pore pressure evolution in sedimentary basins. Basin Research, 4, 147–162. https://doi.org/10.1111/j.1365‐2117.1992.tb00137.x
    [Google Scholar]
  7. Bally, A. W., Chou, I. M., Clayton, R., Eugster, H. P., Kidwell, S. M., Meckel, L. D., Ryder, R. T., Watts, A. B., & Wilson, A. A. (1986). Notes on sedimentary basins in China. Report of the American Sedimentary Basins Delegation to the People’s Republic of China. Department of the Interior U. S. Geological Survey.
    [Google Scholar]
  8. Barton, P., & Wood, R. (1984). Tectonic evolution of the North Sea basin: Crustal stretching and subsidence. Geophysical Journal of the Royal Astronomical Society, 79, 987–1022. https://doi.org/10.1111/j.1365‐246X.1984.tb02880.x
    [Google Scholar]
  9. Beaumont, C., Keen, C. E., & Boutilier, R. (1982). On the evolution of rifted continental margins: Comparison of models and observations for the Nova Scotian margin. Geophysical Journal of the Royal Astronomical Society, 70, 667–715. https://doi.org/10.1111/j.1365‐246X.1982.tb05979.x
    [Google Scholar]
  10. Berra, F., & Carminati, E. (2010). Subsidence history from a backstripping analysis of the Permo‐Mesozoic succession of the Central Southern Alps (Northern Italy). Basin Research, 22, 952–975. https://doi.org/10.1111/j.1365‐2117.2009.00453.x
    [Google Scholar]
  11. Bertram, G. T., & Milton, N. J. (1989). Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea. Basin Research, 1, 247–257. https://doi.org/10.1111/j.1365‐2117.1988.tb00020.x
    [Google Scholar]
  12. Bond, G. C., & Kominz, M. A. (1984). Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning. Geological Society of America Bulletin, 95, 155–173. https://doi.org/10.1130/0016‐7606(1984)95<155:COTSCF>2.0.CO;2
    [Google Scholar]
  13. Braile, L. W., Hinze, W. J., Keller, G. R., Lidiak, E. G., & Sexton, J. L. (1986). Tectonic development of the New Madrid rift complex, Mississippi Embayment, North America. Tectonophysics, 131, 1–21. https://doi.org/10.1016/0040‐1951(86)90265‐9
    [Google Scholar]
  14. Burchfiel, B. C., Chen, Z. L., Liu, Y. P., & Royden, L. H. (1995). Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37, 661–735. https://doi.org/10.1080/00206819509465424
    [Google Scholar]
  15. Burgess, P. M., Gurnis, M., & Moresi, L. (1997). Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes. Geological Society of America Bulletin, 108, 1515–1535. https://doi.org/10.1130/0016‐7606(1997)109<1515:FOSITC>2.3.CO;2
    [Google Scholar]
  16. Cao, R. J., Yang, W. R., Yin, L. M., Zhang, J. M., Li, Z. P., & Zhao, W. J. (1979). The Sinian System of southwest China. In Nanjing Institute of Geology and Palaeontology. In Chinese Academy of Science (Eds.), Carbonate biostratigraphy of southwest China (pp. 108–154). Science Press (in Chinese).
    [Google Scholar]
  17. Cawood, P. A., Wang, Y. J., Xu, Y. J., & Zhao, G. C. (2013). Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?Geology, 41, 903–906. https://doi.org/10.1130/G34395.1
    [Google Scholar]
  18. Cawood, P. A., Zhao, G. C., Yao, J. L., Wang, W., Xu, Y. J., & Wang, Y. J. (2018). Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth‐Science Reviews, 186, 173–194. https://doi.org/10.1016/j.earscirev.2017.06.001
    [Google Scholar]
  19. Charvet, J. (2013). The Neoproterozoic‐Early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences, 74, 198–209. https://doi.org/10.1016/j.jseaes.2013.02.015
    [Google Scholar]
  20. Chen, Q., Sun, M., Long, X. P., Zhao, G. C., Wang, J., Yu, Y., & Yuan, C. (2018). Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction. Precambrian Research, 309, 271–289. https://doi.org/10.1016/j.precamres.2017.01.022
    [Google Scholar]
  21. Chen, Q., Sun, M., Long, X. P., Zhao, G. C., & Yuan, C. (2016). U‐Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian‐Devonian sedimentary rocks of the western Yangtze Block: Implications for its tectonic evolution and continental affinity. Gondwana Research, 31, 184–199. https://doi.org/10.1016/j.gr.2015.01.009
    [Google Scholar]
  22. Chen, S. F., Wilson, C. J. L., Luo, Z. L., & Deng, Q. D. (1994). The evolution of the Western Sichuan Foreland Basin, southwestern China. Journal of Southeast Asian Earth Sciences, 10, 159–168.
    [Google Scholar]
  23. Chen, Z., Zhou, C. M., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X. L., & Xiao, S. H. (2013). Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224, 690–701. https://doi.org/10.1016/j.precamres.2012.11.004
    [Google Scholar]
  24. Chen, Z., Zhou, C. M., Xiao, S. H., Wang, W., Guan, C. G., Hua, H., & Yuan, X. L. (2014). New Ediacaran fossils preserved in marine limestone and their ecological implications. Scientific Reports, 4, 4180. https://doi.org/10.1038/srep04180
    [Google Scholar]
  25. Cocks, L. R. M., & Torsvik, T. H. (2013). The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth‐Science Reviews, 117, 40–79. https://doi.org/10.1016/j.earscirev.2012.12.001
    [Google Scholar]
  26. Cohen, K. M., Harper, D. A. T., & Gibbard, P. L. (2018). ICS International Chronostratigraphic Chart 2018/08. International Commission on Stratigraphy, IUGS. www.stratigraphy.org (visited: 2018/08/17).
  27. Condon, D., Zhu, M. Y., Bowring, S., Wang, W., Yang, A. H., & Jin, Y. G. (2005). U‐Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98. https://doi.org/10.1126/science.1107765
    [Google Scholar]
  28. Deng, S. L., Song, J. M., Liu, S. G., Luo, P., Li, Z. W., Yang, D., Sun, W., Li, J. X, & Yu, J. J. (2020). Mixed sedimentary characteristics of the third Member of Dengying Formation, Sichuan Basin, and its geological significance. Acta Sedimentologica Sinica, 38, 598–612. https://doi.org/10.14027/j.issn.1000-0550.2019.109. (in Chinese with English abstract).
    [Google Scholar]
  29. Dong, Y., Zhang, X., Liu, X., Li, W., Chen, Q., Zhang, G., Zhang, H., Yang, Z., Sun, S., & Zhang, F. (2015). Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104, 84–98. https://doi.org/10.1016/j.jseaes.2014.10.007
    [Google Scholar]
  30. Downey, N. K., & Gurnis, M. (2009). Instantaneous dynamics of the cratonic Congo basin. Journal of Geophysical Research, 114, B06401. https://doi.org/10.1029/2008JB006066
    [Google Scholar]
  31. Du, J. H., Wang, Z. C., Zou, C. N., Xu, C. C., Shen, P., Zhang, B. M., Jiang, H., & Huang, S. P. (2016). Discovery of intracratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field. Acta Petrolei Sinica, 37, 1–16 (in Chinese with English abstract). https://doi.org/10.7623/SYXB201601001
    [Google Scholar]
  32. Du, J., Zou, C., Xu, C., He, H., Shen, P., Yang, Y., Li, Y., Wei, G., Wang, Z., & Yang, Y. U. (2014). Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo‐uplift, Sichuan Basin. Petroleum Exploration and Development, 41, 294–305. https://doi.org/10.1016/S1876‐3804(14)60035‐5
    [Google Scholar]
  33. Duda, J.‐P., Zhu, M. Y., & Reitner, J. (2016). Depositional dynamics of a bituminous carbonate facies in a tectonically induced intra‐platform basin: The Shibantan Member (Dengying Formation, Ediacaran Period). Carbonates and Evaporites, 31, 87–99. https://doi.org/10.1007/s13146‐015‐0243‐8
    [Google Scholar]
  34. Farrington, R. J., Stegman, D. R., Moresi, L. N., Sandiford, M., & May, D. A. (2010). Interactions of 3D mantle flow and continental lithosphere near passive margins. Tectonophysics, 483, 20–28. https://doi.org/10.1016/j.tecto.2009.10.008
    [Google Scholar]
  35. Fowler, C. M. R., & Nisbet, E. G. (1985). The subsidence of the Williston Basin. Canadian Journal of Earth Sciences, 22, 408–415. https://doi.org/10.1139/e85‐039
    [Google Scholar]
  36. Fu, Q. L., Hu, S. Y., Xu, Z. H., Zhao, W. Z., Shi, S. Y., & Zeng, H. L. (2020). Depositional and diagenetic controls on deeply buried Cambrian carbonate reservoirs: Longwangmiao Formation in the Moxi‐Gaoshiti area, Sichuan Basin, southwestern China. Marine and Petroleum Geology, 117, 104318. https://doi.org/10.1016/j.marpetgeo.2020.104318
    [Google Scholar]
  37. Gao, R., Chen, C., Wang, H., Lu, Z., Brown, L., Dong, S., Feng, S., Li, Q., Li, W., Wen, Z., & Li, F. (2016). SINOPROBE deep reflection profile reveals a Neo‐Proterozoic subduction zone beneath Sichuan Basin. Earth and Planetary Science Letters, 454, 86–91. https://doi.org/10.1016/j.epsl.2016.08.030
    [Google Scholar]
  38. Giles, M. R. (1997). Diagenesis: A quantitative perspective. Implications for basin modelling and rock property prediction (p. 1–526). Dordrecht, Netherland: Kluwer Academic Publishers.
    [Google Scholar]
  39. Grotzinger, J., & Al‐Rawahi, Z. (2014). Depositional facies and platform architecture of microbialite‐dominated carbonate reservoirs, Ediacaran‐Cambrian Ara Group, Sultanate of Oman. AAPG Bulletin, 98, 1453–1494. https://doi.org/10.1306/02271412063
    [Google Scholar]
  40. Gu, Z. D., Wang, X., Nunns, A., Zhang, B., Jiang, H., Fu, L., & Zhai, X. F. (2021). Structural styles and evolution of a thin‐skinned fold‐and‐thrust belt with multiple detachments in the eastern Sichuan Basin, South China. Journal of Structural Geology, 142, 104191. https://doi.org/10.1016/j.jsg.2020.104191
    [Google Scholar]
  41. Gu, Z. D., & Wang, Z. C. (2014). The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the Central Sichuan Block, Sichuan Basin, South China. Science China: Earth Sciences, 57, 2758–2768. https://doi.org/10.1007/s11430‐014‐4961‐x
    [Google Scholar]
  42. Gu, Z., Yin, J., Jiang, H., Li, Q., Zhai, X., Huang, P., Peng, P., Yang, F., & Zhang, H. (2016). Discovery of Xuanhan‐Kaijiang paleouplift and its significance in the Sichuan Basin, SW China. Petroleum Exploration and Development, 43, 976–987. https://doi.org/10.1016/S1876‐3804(16)30115‐X
    [Google Scholar]
  43. Gu, Z. D., Zhang, W., & Yuan, M. (2014). Zircon SHRIMP U‐Pb dating of basal granite and its geological significance in Weiyuan area of Sichuan Basin. Chinese Journal of Geology, 49, 202–213.(in Chinese with English abstract).
    [Google Scholar]
  44. Guo, Z. W., Deng, K. L., Han, Y. H., Liu, Y. K., Yin, J. T., Wang, Q. G., Liang, E. Y., Li, G. J., Chen, Z. G., Liu, Z. Z., Wu, C. S., & Zhao, Z. H. (1996). The formation and evolution of the Sichuan Basin. (1–200). Beijing, China: Geological Publishing Press. (in Chinese).
    [Google Scholar]
  45. Hartley, R. W., & Allen, P. A. (1994). Interior cratonic basins of Africa: Relation to continental break‐up and role of mantle convection. Basin Research, 6, 95–113. https://doi.org/10.1111/j.1365‐2117.1994.tb00078.x
    [Google Scholar]
  46. Huang, J. Z. (1985). Geochemical characteristics of natural gases in the Sichuan basin. Geochemistry, 4, 343–361.
    [Google Scholar]
  47. Jarvis, G. T., & McKenzie, D. P. (1980). Sedimentary basin formation with finite extension rates. Earth and Planetary Science Letters, 48, 42–52. https://doi.org/10.1016/0012‐821X(80)90168‐5
    [Google Scholar]
  48. Jiang, G. Q., Shi, X. Y., Zhang, S. H., Wang, Y., & Xiao, S. H. (2011). Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19, 831–849. https://doi.org/10.1016/j.gr.2011.01.006
    [Google Scholar]
  49. Korsch, R. J., Mai, H. Z., Sun, Z. C., & Gorter, J. D. (1991). The Sichuan Basin, southwest China: A Late Proterozoic (Sinian) petroleum province. Precambrian Research, 54, 45–63. https://doi.org/10.1016/0301‐9268(91)90068‐L
    [Google Scholar]
  50. Lambert, I. B., Walter, M. R., Zang, W. L., Lu, S. N., & Ma, G. G. (1987). Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 325, 140–142. https://doi.org/10.1038/325140a0
    [Google Scholar]
  51. Le Pichon, X., & Sibuet, J.‐C. (1981). Passive margins: A model of formation. Journal of Geophysical Research, 86, 3708–3720. https://doi.org/10.1029/JB086iB05p03708
    [Google Scholar]
  52. Lee, E. Y., Novotny, J., & Wagreich, M. (2016). BasinVis 1.0: A MATLAB®‐based program for sedimentary basin subsidence analysis and visualization. Computers & Geosciences, 91, 119–217. https://doi.org/10.1016/j.cageo.2016.03.013
    [Google Scholar]
  53. Li, J. Y., Wang, X. L., & Gu, Z. D. (2018). Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia Assembly. Precambrian Research, 309, 181–197. https://doi.org/10.1016/j.precamres.2017.04.040
    [Google Scholar]
  54. Li, L., Tan, X., Zeng, W., Zhou, T., Yang, Y. U., Hong, H., Luo, B., & Bian, L. (2013). Development and reservoir significance of mud mounds in Sinian Dengying Formation, Sichuan Basin. Petroleum Exploration Development, 40, 714–721. https://doi.org/10.1016/S1876‐3804(13)60096‐8
    [Google Scholar]
  55. Li, S., Zhao, S., Liu, X., Cao, H., Yu, S., Li, X., Somerville, I., Yu, S., & Suo, Y. (2018). Closure of the Proto‐Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth‐Science Reviews, 186, 37–75. https://doi.org/10.1016/j.earscirev.2017.01.011
    [Google Scholar]
  56. Li, W., Yu, H. Q., & Deng, H. B. (2012). Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central‐southern Sichuan Basin. Petroleum Exploration and Development, 39, 725–735. https://doi.org/10.1016/S1876‐3804(12)60097‐4
    [Google Scholar]
  57. Li, Z. X., Li, X. H., Kinny, P. D., & Wang, J. (1999). The breakup of Rodinia: Did it started with a mantle plume beneath South China?Earth and Planetary Science Letters, 173, 171–181. https://doi.org/10.1016/s0012‐821x(99)00240‐x
    [Google Scholar]
  58. Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S., & Zhou, H. (2003). Geochronology of Neoproterozoic syn‐rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122, 85–109. https://doi.org/10.1016/S0301‐9268(02)00208‐5
    [Google Scholar]
  59. Li, Z., Liu, J. I., Li, Y., Hang, W., Hong, H., Ying, D., Chen, X., Liu, R., Duan, X., & Peng, J. I. (2015). Formation and evolution of Weiyuan‐Anyue tensional corrosion trough in Sinian system, Sichuan Basin. Petroleum Exploration and Development, 42, 29–36. https://doi.org/10.1016/S1876‐3804(15)60003‐9
    [Google Scholar]
  60. Lin, X. X., Peng, J., Du, L. C., Yan, J. P., & Hou, Z. J. (2017). Characterization of the microbial dolomite of the Upper Sinian Dengying Formation in the Hanyuan area of Sichuan Province, China. Acta Geologica Sinica (English Edition), 91, 806–821. https://doi.org/10.1111/1755‐6724.13311
    [Google Scholar]
  61. Liu, H. S. (1979). Mantle convection and subcrustal stresses under Australia. Modern Geology, 7, 29–36.
    [Google Scholar]
  62. Liu, J., Li, W., Zhang, B., Zhou, H., Yuan, X., Shan, X., Zhang, J., Deng, S., Gu, Z., Fan, R., & Wang, Y. (2015). Sedimentary palaeogeography of the Sinian in Upper Yangtze region. Journal of Palaeogeography, 17, 735–753.(in Chinese with English abstract).
    [Google Scholar]
  63. Liu, P. J., Chen, S. M., Zhu, M. Y., Li, M., Yin, C. Y., & Shang, X. D. (2014). High‐resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System. Precambrian Research, 249, 199–214. https://doi.org/10.1016/j.precamres.2014.05.014
    [Google Scholar]
  64. Liu, S., Deng, B., Jansa, L., Zhong, Y., Sun, W., Song, J., Wang, G., Wu, J., Li, Z., & Tian, Y. (2017). The Early Cambrian Mianyang‐Changning intracratonic sag and its control on petroleum accumulation in the Sichuan Basin, ChinaGeofluids , 2017, 1–16. https://doi.org/10.1155/2017/6740892
    [Google Scholar]
  65. Liu, S., Ning, M., & Xie, G. P. (2015). Geological significance of paleo‐aulacogen and exploration potential of reef flat gas reservoirs in the Western Sichuan Depression. Natural Gas Industry, B2, 406–414. https://doi.org/10.1016/j.ngib.2015.09.016
    [Google Scholar]
  66. Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Evans, D. A. D., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., & Vernikovsky, V. (2008). Assembly, configuration, and break‐up history of Rodinia: A synthesis. Precambrian Research, 160, 179–210. https://doi.org/10.1016/j.precamres.2007.04.021.
    [Google Scholar]
  67. Luo, B., Yang, Y., Zhou, G., Luo, W. J., Shan, S. J., & Xia, M. L. (2018). Basic characteristics and accumulation mechanism of Sinian‐Cambrian giant highly mature and oil‐cracking gas reservoirs in the Sichuan Basin, SW China. Energy Exploration & Exploitation, 36, 568–590. https://doi.org/10.1177/0144598717736856
    [Google Scholar]
  68. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  69. McKenzie, D., & Priestley, K. (2016). Speculations on the formation of cratons and cratonic basins. Earth and Planetary Science Letters, 435, 94–104. https://doi.org/10.1016/j.epsl.2015.12.010
    [Google Scholar]
  70. McKenzie, D., & Tribaldos, V. R. (2018). Lithospheric heating by crustal thickening: A possible origin of the Parnaíba Basin. In M. C.Daly, R. A.Fuck, J.Julia, D. I. M.Macdonald, & A. B.Watts (Eds.), Cratonic basin formation: A case study of the Parnaíba Basin of Brazil (Vol. 472, pp. 37–44). Geological Society, London, Special Publications. https://doi.org/10.1144/SP472.5
    [Google Scholar]
  71. Meng, Q. R., Zhang, G. W., Yu, Z. P., & Mei, Z. C. (1996). Late Paleozoic sedimentation and tectonics of rift and limited ocean basin at southern margin of the Qinling. Science in China (Series D), 39(Supp.), 24–32.
    [Google Scholar]
  72. Merdith, A. S., Collins, A. S., Williams, S. E., Pisarevsky, S., Foden, J. D., Archibald, D. B., Blades, M. L., Alessio, B. L., Armistead, S., Plavsa, D., Clark, C., & Müller, R. D. (2017). A full‐plate global reconstruction of the Neoproterozoic. Gondwana Research, 50, 84–134. https://doi.org/10.1016/j.gr.2017.04.001
    [Google Scholar]
  73. Nunn, J. A., & Sleep, N. H. (1984). Thermal contraction and flexure of intracratonal basins: A three‐dimensional study of the Michigan basin. Geophysical Journal of the Royal Astronomical Society, 76, 587–635. https://doi.org/10.1111/j.1365‐246X.1984.tb01912.x
    [Google Scholar]
  74. Peng, S., Babcock, L. E., & Cooper, R. A. (2012). The Cambrian period. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), The geologic time scale 2012 (pp. 437–488). Elsevier B. V.https://doi.org/10.1016/B978‐0‐444‐59425‐9.00019‐6
    [Google Scholar]
  75. Priestley, K., & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78–91. https://doi.org/10.1016/j.epsl.2013.08.022
    [Google Scholar]
  76. Quinlan, G. M. (1987). Models of subsidence mechanisms in intracratonic basins and their applicability to North American examples. In C.Beaumont & A. J.Tankard (Eds.), Sedimentary basins and basin‐forming mechanisms (pp. 463‐481). Canadian Society Petroleum Geologists, Memoir 12.
    [Google Scholar]
  77. Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y., & Zhong, N. (2017). Dolomite geochemistry of the Cambrian Longwangmiao Formation, eastern Sichuan Basin: Implication for dolomitization and reservoir prediction. Petroleum Research, 2, 64–76. https://doi.org/10.1016/j.ptlrs.2017.06.002
    [Google Scholar]
  78. Richardson, N. J., Densmore, A. L., Seward, D., Fowler, A., Wipf, M., Ellis, M. A., Yong, L. I., & Zhang, Y. (2008). Extraordinary denudation in the Sichuan Basin: Insights from low‐temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research, 113, B04409. https://doi.org/10.1029/2006JB004739
    [Google Scholar]
  79. Schmoker, J. W., & Halley, R. B. (1982). Carbonate porosity versus depth: A predictable relation for South Florida. AAPG Bulletin, 66, 2561–2570.
    [Google Scholar]
  80. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research, 85, 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  81. Shen, A. J., Hu, A. P., Pan, L. Y., & She, M. (2017). Origin and distribution of grain dolostone reservoirs in the Cambrian Longwangmiao Formation, Sichuan Basin, China. Acta Geologica Sinica (English Edition), 91, 204–218. https://doi.org/10.1111/1755‐6724.13072
    [Google Scholar]
  82. Sleep, N. H. (2009). Stagnant lid convection and the thermal subsidence of sedimentary basins with reference to Michigan. Geochemistry, Geophysics, Geosystems, 10, Q12015. https://doi.org/10.1029/2009GC002881
    [Google Scholar]
  83. Sleep, N. H. (2018). Cratonic basins with reference to the Michigan basin. In M. C.Daly, R. A.Fuck, J.Julià, D. I. M.Macdonald, & A. B.Watts (Eds.), Cratonic basin formation: A case study of the Parnaíba Basin of Brazil (Vol. 472, pp. 17–35). Geological Society. London, Special Publications. https://doi.org/10.1144/SP472.1
    [Google Scholar]
  84. Sloss, L. L. (1963). Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74, 93–114.doi:10.1130/0016‐7606(1963)74[93:SITCIO]2.0.CO;2
    [Google Scholar]
  85. Sloss, L. L., & Speed, R. C. (1974). Relationships of cratonic and continental‐margin tectonic episodes. Paleontologists and Mineralogists, 22, 98–119.
    [Google Scholar]
  86. Song, J., Liu, S., Qing, H., Jansa, L., Li, Z., Luo, P., Yang, D. I., Sun, W., Peng, H., & Lin, T. (2018). The depositional evolution, reservoir characteristics, and controlling factors of microbial carbonates of Dengying Formation in upper Neoprotozoic, Sichuan Basin, Southwest China. Energy Exploration & Exploitation, 36, 591–619. https://doi.org/10.1177/0144598717743995
    [Google Scholar]
  87. Stecker, M. S., & Watts, A. B. (1981). Subsidence history and tectonic evolution of Atlantic‐type continental margins. In R. A.Scrutton (Ed.), Dynamics of passive margins, Geodynamics (Vol. 6, pp. 184–196). American Geophysical Union.
    [Google Scholar]
  88. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41, 1–13. https://doi.org/10.1016/0012‐821X(78)90036‐5
    [Google Scholar]
  89. Torsvik, T. H., & Cocks, L. R. M. (2017). Earth history and palaeogeography (p. 1–317). Cambridge, UK: Cambridge University Press. http://www.cambridge.org/9781107105324.
    [Google Scholar]
  90. Tozer, B., Watts, A. B., & Daly, M. C. (2017). Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. Journal of Geophysical Research: Solid Earth, 122, 5591–5621. https://doi.org/10.1002/2017JB014348
    [Google Scholar]
  91. Vernhet, E., & Reijmer, J. J. G. (2010). Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China). Sedimentary Geology, 225, 99–115. https://doi.org/10.1016/j.sedgeo.2010.01.005
    [Google Scholar]
  92. Vyssotski, A. V., Vyssotski, V. N., & Nezhdanov, A. A. (2006). Evolution of the West Siberian Basin. Marine and Petroleum Geology, 23, 93–126. https://doi.org/10.1016/j.marpetgeo.2005.03.002
    [Google Scholar]
  93. Wang, J., & Li, Z. X. (2003). History of Neoproterozoic rift basins in South China: Implications for Rodinia break‐up. Precambrian Research, 122, 141–158. https://doi.org/10.1016/S0301‐9268(02)00209‐7
    [Google Scholar]
  94. Wang, W., Cawood, P. A., Pandit, M. K., Xia, X., Raveggi, M., Zhao, J., Zheng, J., & Qi, L. (2021). Fragmentation of South China from greater India during the Rodinia‐Gondwana transition. Geology, 49, 228–232. https://doi.org/10.1130/G48308.1
    [Google Scholar]
  95. Wang, Y. J., Zhang, Y. H., Fan, W. M., & Peng, T. P. (2005). Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27, 985–998. https://doi.org/10.1016/j.jsg.2005.04.004
    [Google Scholar]
  96. Wang, Z., Jiang, H., Wang, T., Lu, W., Gu, Z., Xu, A., Yang, Y. U., & Xu, Z. (2014). Paleo‐geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation. Petroleum Exploration and Development, 41, 338–345. https://doi.org/10.1016/S1876‐3804(14)60038‐0
    [Google Scholar]
  97. Watts, A. B. (1982). Tectonic subsidence, flexure and global changes of sea level. Nature, 297, 469–474. https://doi.org/10.1038/297469a0
    [Google Scholar]
  98. Watts, A. B., & Steckler, M. S. (1979). Subsidence and eustasy at the continental margin of eastern North America. In Deep drilling results in the Atlantic Ocean: Continental margins and paleoenvironment, Maurice Ewing Series (Vol. 3, pp. 218–234). American Geophysical Union.
    [Google Scholar]
  99. Watts, A. B., Tozer, B., Daly, M. C., & Smith, J. (2018). A comparative study of the Parnaíba, Michigan and Congo cratonic basins. In M. C.Daly, R. A.Fuck, J.Julià, D. I. M.Macdonald, & A. B.Watts (Eds.), Cratonic basin formation: A case study of the Parnaíba Basin of Brazil (Vol. 472, pp. 45–66). Geological Society. London, Special Publications. https://doi.org/10.1144/SP472.6
    [Google Scholar]
  100. Wei, G., Yang, W., Du, J., Xu, C., Zou, C., Xie, W., Zeng, F., & Wu, S. (2015). Geological features of Sinian‐Early Cambrian intracratonic rift of the Sichuan Basin. Natural Gas Industry, B2, 37–48. https://doi.org/10.1016/j.ngib.2015.02.004
    [Google Scholar]
  101. Xie, X. Y., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121, 55–64. https://doi.org/10.1130/B26398.1
    [Google Scholar]
  102. Xu, Y. J., Cawood, P. A., Du, Y. S., Hu, L. S., Yu, W. C., Zhu, Y. H., & Li, W. C. (2013). Linking south China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U‐Pb and Hf isotopes in Cambrian strata. Tectonics, 32, 1547–1558. https://doi.org/10.1002/tect.20099
    [Google Scholar]
  103. Yan, D. P., Zhou, Y., Qiu, L., Wells, M. L., Mu, H. X., & Xu, C. G. (2018). The Longmenshan tectonic complex and adjacent tectonic units in the eastern margin of the Tibetan Plateau: A review. Journal of Asian Earth Sciences, 164, 33–57. https://doi.org/10.1016/j.jseaes.2018.06.017
    [Google Scholar]
  104. Yang, C., Li, X. H., Zhu, M. Y., & Condon, D. J. (2017). SIMS U‐Pb zircon geochronological constraints on upper Ediacaran stratigraphic correlations, South China. Geological Magazine, 154, 1202–1216. https://doi.org/10.1017/S0016756816001102
    [Google Scholar]
  105. Yang, Y. M., Wen, L., Luo, B., Wang, W. Z., & Shan, S. J. (2016). Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan‐Longnüsi paleohigh, Sichuan Basin, SW China. Petroleum Exploration and Development, 43, 197–207. https://doi.org/10.1016/S1876‐3804(16)30023‐4
    [Google Scholar]
  106. Yong, L., Allen, P. A., Densmore, A. L., & Qiang, X. (2003). Evolution of the Longmen Shan foreland basin (western Sichuan, China) during the Late Triassic Indosinian Orogeny. Basin Research, 15, 117–138. https://doi.org/10.1046/j.1365‐2117.2003.00197.x
    [Google Scholar]
  107. Zhai, X., Luo, P., Gu, Z., Jiang, H., Zhang, B., Wang, Z., Wang, T., & Wu, S. (2020). Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones, Western Yangtze Platform, SW China. Journal of Asian Earth Sciences, 195, 104334. https://doi.org/10.1016/j.jseaes.2020.104334
    [Google Scholar]
  108. Zhang, S., Evans, D. A. D., Li, H., Wu, H., Jiang, G., Dong, J., Zhao, Q., Raub, T. D., & Yang, T. (2013). Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block. Journal of Asian Earth Sciences, 72, 164–177. https://doi.org/10.1016/j.jseaes.2012.11.022
    [Google Scholar]
  109. Zhang, S. H., Jiang, G. Q., Zhang, J. M., Song, B., Kennedy, M. J., & Christie‐Blick, N. (2005). U‐Pb sensitive high‐resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 33, 473–476. https://doi.org/10.1130/G21418.1
    [Google Scholar]
  110. Zhang, S., Li, H., Jiang, G., Evans, D. A. D., Dong, J., Wu, H., Yang, T., Liu, P., & Xiao, Q. (2015). New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications. Precambrian Research, 259, 130–142. https://doi.org/10.1016/j.precamres.2014.09.018
    [Google Scholar]
  111. Zhang, W. T., Yuan, K. X., Zhou, Z. Y., Qian, Y., & Wang, Z. Z. (1979). The Cambrian System of southwest China. In Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science (Eds.), Carbonate biostratigraphy of southwest China (pp. 39–107). Science Press (in Chinese).
    [Google Scholar]
  112. Zhao, G. C., & Cawood, P. A. (2012). Precambrian geology of China. Precambrian Research, 222–223, 13–54. https://doi.org/10.1016/j.precamres.2012.09.017
    [Google Scholar]
  113. Zhao, J. H., Li, Q. W., Liu, H., & Wang, W. (2018). Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction‐transform‐edge‐propagator. Earth‐Science Reviews, 187, 1–18. https://doi.org/10.1016/j.earscirev.2018.10.004
    [Google Scholar]
  114. Zhou, C. M., Yuan, X. L., Xiao, S. H., Chen, Z., & Hua, H. (2019). Ediacaran integrative stratigraphy and timescale of China. Science China Earth Sciences, 62, 7–24. https://doi.org/10.1007/s11430‐017‐9216‐2
    [Google Scholar]
  115. Zhou, H., Li, W., Zhang, B., Liu, J., Deng, S., Zhang, S., Shan, X., Zhang, J., Wang, X., & Jiang, H. (2017). Formation and evolution of intraplatform basin from the late Sinian to early Cambrian in Sichuan Basin, China. Petroleum Research, 2, 41–53. https://doi.org/10.1016/j.ptlrs.2017.01.001
    [Google Scholar]
  116. Zhou, Z., Wang, X. Z., Yin, G., Yuan, S. S., & Zeng, S. J. (2016). Characteristics and genesis of the (Sinian) Dengying Formation reservoir in Central Sichuan, China. Journal of Natural Gas Science and Engineering, 29, 311–321. https://doi.org/10.1016/j.jngse.2015.12.005
    [Google Scholar]
  117. Zhu, G. Y., Wang, T. S., Xie, Z. Y., Xie, B. H., & Liu, K. Y. (2015). Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins. Precambrian Research, 262, 45–66. https://doi.org/10.1016/j.precamres.2015.02.023
    [Google Scholar]
  118. Zhu, M. Y., Zhang, J. M., Steiner, M., Yang, A. H., Li, G. X., & Erdtmann, B. D. (2003). Sinian‐Cambrian stratigraphic framework for shallow‐ to deep‐water environments of the Yangtze Platform: An integrated approach. Progress in Natural Science, 13, 951–960. https://doi.org/10.1080/10020070312331344710
    [Google Scholar]
  119. Zhu, M. Y., Zhang, J. M., & Yang, A. H. (2007). Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 7–61. https://doi.org/10.1016/j.palaeo.2007.03.025
    [Google Scholar]
  120. Zou, C., Du, J., Xu, C., Wang, Z., Zhang, B., Wei, G., Wang, T., Yao, G., Deng, S., Liu, J., Zhou, H., Xu, A., Yang, Z., Jiang, H., & Gu, Z. (2014). Formation, distribution, resource potential, and discovery of Sinian‐Cambrian giant gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41, 306–325. https://doi.org/10.1016/S1876‐3804(14)60036‐7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12559
Loading
/content/journals/10.1111/bre.12559
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error