1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

The late Permian–Triassic trench‐slope basin in the CQMB showing the correlation between spatiotemporal variations in basin sedimentation and the extensional tectonism of the accretionary wedge.

, Abstract

Records of sedimentation and deformation in trench‐slope basins contain valuable tectonic information about the associated oceanic subduction zone. Here, we present a multidisciplinary study on newly discovered late Permian–Triassic sedimentary successions in the >500‐km‐long Central Qiangtang metamorphic belt (CQMB) to better understand the type of basin and the concomitant tectonism. The Mayer Kangri succession contains lithofacies associations of submarine fan siliciclastic rocks, slope‐environment limestone, deep marine chert and minor olistostromes from the forearc basin. The conodont assemblages and sandstone and andesite interlayers yield continuous stratigraphic ages from the Lopingian to middle Norian. The clastic sediments had two provenances, including the epicontinental arc in the North Qiangtang block (NQB) and synchronous volcanism in the accretionary wedge. Moreover, a large suite of the Anisian–early Carnian radiolarian cherts (>30 m thick) was discovered in the Lanling area. Regionally, the CQMB shows evident spatiotemporal variations in late Permian–Triassic sedimentation, with a general depositional trend of southward deepening and getting younger. The three identified subzones include a bathyal setting, a carbonate platform setting and a deep marine setting from north to south. These observations indicate that the late Permian–Triassic sedimentary successions in the CQMB were deposited in a trench‐slope basin environment during the northward subduction of the Longmu Co–Shuanghu Tethys Ocean beneath the NQB. Generally, the CQMB and the concomitant trench‐slope basin is among the well‐preserved ancient analogs characterized by extensional tectonism. The syndepositional horst‐graben‐like structure, forearc basin‐derived olistostromes, abyssal radiolarian cherts and synchronous volcanism provide new implications for the geological evolution of the trench‐slope basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12561
2021-07-17
2024-04-25
Loading full text...

Full text loading...

References

  1. Allmendinger, R. W., Cardozo, N. C., & Fisher, D. (2013). Structural geology algorithms: Vectors & tensors (p. 289). Cambridge University Press.
    [Google Scholar]
  2. Bailleul, J., Chanier, F., Ferrière, J., Robin, C., Nicol, A., Mahieux, G., Gorini, C., & Caron, V. (2013). Neogene evolution of lower trench‐slope basins and wedge development in the central Hikurangi subduction margin, New Zealand. Tectonophysics, 591, 152–174. https://doi.org/10.1016/j.tecto.2013.01.003
    [Google Scholar]
  3. Bouma, A. H. (1962). Sedimentology of some flysch deposits (p. 168). Elsevier.
    [Google Scholar]
  4. Brun, J. P., & Faccenna, C. (2008). Exhumation of high‐pressure rocks driven by slab rollback. Earth and Planetary Science Letters, 272, 1–7. https://doi.org/10.1016/j.epsl.2008.02.038
    [Google Scholar]
  5. Burgreen, B., & Graham, S. (2014). Evolution of a deep‐water lobe system in the Neogene trench‐slope setting of the East Coast Basin, New Zealand: Lobe stratigraphy and architecture in a weakly confined basin configuration. Marine and Petroleum Geology, 54, 1–22. https://doi.org/10.1016/j.marpetgeo.2014.02.011
    [Google Scholar]
  6. Dan, W., Wang, Q., White, W. M., Li, X.‐H., Zhang, X.‐Z., Tang, G.‐J., Ou, Q., Hao, L.‐L., & Qi, Y. (2020). Passive‐margin magmatism caused by enhanced slab‐pull forces in central Tibet. Geology, 49(2), 130–134. https://doi.org/10.1130/G47957.1
    [Google Scholar]
  7. Decelles, P. G., Kapp, P., Ding, L., & Gehrels, G. E. (2007). Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. GSA Bulletin, 119, 654–680. https://doi.org/10.1130/B26074.1
    [Google Scholar]
  8. Deng, W. R., Yin, J. X., & Wo, Z. P. (1996). Studies on the ultra‐mafic and mafic rock and volcanics in the Chasang‐Shuanghu area of Qiangtang [in Chinese with English abstract]. Science in China (series D), 26(4), 296–301.
    [Google Scholar]
  9. Deng, X. G., Ding, L., Liu, X. H., Yin, A., Kapp, P. A., Murphy, M. A., & Manning, C. E. (2000). Discovery of blueschists in Gangmari‐Taoxing Co area, central Qiangtang, northern Tibet (in Chinese with English abstract). Scientia Geologica Sinica, 35(2), 227–232.
    [Google Scholar]
  10. Dickinson, W. R. (1985). Interpreting provenance relation from detrital modes of sandstones. In G. G.Zuffa (Ed.), Provenance of Arenites, NATO ASI Series, Vol. C148 (pp. 333–363). D. Reidel Publishing Company.
    [Google Scholar]
  11. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235. https://doi.org/10.1130/0016‐7606(1983)94<222:PONAPS>2.0.CO;2
    [Google Scholar]
  12. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  13. Dickinson, W. R., & Seely, D. R. (1979). Structure and stratigraphy of forearc regions. The American Association of Petroleum Geologists Bulletin, 63, 2–29.
    [Google Scholar]
  14. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. AAPG, 63, 2164–2182.
    [Google Scholar]
  15. Fan, J. J., Li, C., Xie, C. M., Liu, Y. M., Xu, J. X., & Chen, J. W. (2017). Remnants of late Permian‐Middle Triassic ocean islands in northern Tibet: Implications for the late‐stage evolution of the Paleo‐Tethys Ocean. Gondwana Research, 44, 7–21. https://doi.org/10.1016/j.gr.2016.10.020
    [Google Scholar]
  16. Fildani, A., Hessler, A. M., & Graham, S. A. (2008). Trench‐forearc interactions reflected in the sedimentary fill of Talara basin, northwest Peru. Basin Research, 20(3), 305–331. https://doi.org/10.1111/j.1365‐2117.2007.00346.x
    [Google Scholar]
  17. Folk, R. L., Andrews, P. B., & Lewis, D. W. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4), 937–968. https://doi.org/10.1080/00288306.1970.10418211
    [Google Scholar]
  18. Fu, X. G., Wang, J., Tan, F. W., Chen, M., & Chen, W. B. (2010). The Late Triassic rift‐related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Research, 17, 135–144. https://doi.org/10.1016/j.gr.2009.04.010
    [Google Scholar]
  19. Gao, R., Chen, C., & Lu, Z. W. (2013). New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic refection profiling. Tectonophysics, 606, 160–170.
    [Google Scholar]
  20. Gao, X., Li, J. C., Yuan, G. L., Wang, G. H., Liang, X., Zheng, Y. L., & Wang, Q. (2019). Middle‐Late Triassic magmatic records for the accretionary processes of South Qiangtang accretionary terrane: The mafic dykes in Mayergangri‐Jiaomuri area, North Tibet. Acta Petrologica Sinica, 35(3), 760–774.
    [Google Scholar]
  21. Gazzi, P. (1966). Le Arenarie del Flysche Sopracretaceo dell’Appennino Modenese: Correlazioni conil Flysch di Monghidoro. Mineralogica E Petrografica Acta, 12, 69–97.
    [Google Scholar]
  22. Gehrels, G., Kapp, P., De Celles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., & Yin, A. (2011). Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30, 1–27. https://doi.org/10.1029/2011TC002868
    [Google Scholar]
  23. George, A. D. (1992). Deposition and deformation of an Early Cretaceous trench‐slope basin deposit, Torlesse terrane, New Zealand. Geological Society of America Bulletin, 104(5), 570–580. https://doi.org/10.1130/0016‐7606(1992)104<0570:DADOAE>2.3.CO;2
    [Google Scholar]
  24. Haq, B. U., & Al‐Qahtani, A. M. (2005). Phanerozoic cycles of sea‐level changes on the Arabian Platform. GeoArabia, 10(2), 127–160.
    [Google Scholar]
  25. Haq, B. U., & Schutter, S. R. (2008). Phanerozoic cycles of sea‐level changes. Science, 322(5898), 64–68.
    [Google Scholar]
  26. Hornung, T. (2006). Conodont biostratigraphy of the Lercheck/Konigsleiten section near Berchtesgaden(late Ladinian‐Hallstatt limestones). Geo. Alp, 3, 23–31.
    [Google Scholar]
  27. Ji, Z. S., Yao, J. X., & Wu, G. C. (2010). Discovery of late Triassic coral fossils at the Guoganjianian mountain in the Qiangtang central uplift, North Tibet and its geological significances [in Chinese with English abstract]. Acta Geologica Sinica, 84(8), 1095–1104.
    [Google Scholar]
  28. Jolivet, L., Faccenna, C., & Piromallo, C. (2009). From Mantle to crust: Stretching the Mediterranean. Earth and Planetary Science Letters, 285, 198–209. https://doi.org/10.1016/j.epsl.2009.06.017
    [Google Scholar]
  29. Kapp, P., & Decelles, P. G. (2019). Mesozoic‐Cenozoic geological evolution of the Himalayan‐Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319, 159–254. https://doi.org/10.2475/03.2019.01
    [Google Scholar]
  30. Kapp, P., Yin, A. N., Manning, C. E., Harrison, T. M., Taylor, M. H., & Ding, L. (2003). Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22, 17‐9–17‐22. https://doi.org/10.1029/2002TC001383
    [Google Scholar]
  31. Kapp, P., Yin, A. N., Manning, C. E., Murphy, M., Harrison, T. M., Spurlin, M., Lin, D., Xi‐Guang, D., & Cun‐Ming, W. U. (2000). Blueschist‐bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28(1), 19. https://doi.org/10.1130/0091‐7613(2000)28<19:BMCCIT>2.0.CO;2
    [Google Scholar]
  32. Kozur, H. (1989). Significance of events in conodont evolution for the Permian and Triassicstratigraphy. Courier Forschungsinstitut Senckenberg, 117, 385–408.
    [Google Scholar]
  33. Kozur, H. (1993). First evidence of Pseudofurnishius(Conodonta) in the Triassic of Hungray. Jahrbuch Der Geologischen Bundesanstalt A, 136(4), 783–793.
    [Google Scholar]
  34. Laskowski, A. K., Orme, D. A., Cai, F., & Ding, L. (2019). The ancestral Lhasa river: A late cretaceous trans‐arc river that drained the proto‐Tibetan plateau. Geology, 47(11), 1029–1033. https://doi.org/10.1130/G46823.1
    [Google Scholar]
  35. Li, C. (1987). The Longmucuo‐Shuanghu‐Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permo‐Carboniferous system in northern Xizang, China [in Chinese with English abstract]. Journal of Changchun College of Geology, 17, 156–162.
    [Google Scholar]
  36. Li, C., Chen, L. R., Hu, K., Yang, Z. R., & Hong, Y. R. (1995). Study on the Paleo‐Tethys suture zone of Lungmu Co–Shuanghu, Tibet (pp. 24–87) [in Chinese with English abstract]. Geological Publishing House.
    [Google Scholar]
  37. Li, C., Dong, Y. S., Zhai, Q. G., Yu, J. J., & Huang, X. P. (2008). High‐pressure metamorphic belt in Qiangtang, Qinghai‐Tibet Plateau, and its tectonic significance [in Chinese with English abstract]. Geological Bulletin of China, 27(1), 27–35.
    [Google Scholar]
  38. Li, C., He, Z. H., & Li, H. M. (2004). U‐Pb and Sm‐Nb dating of mafic dike swarm in southern Qiangtang, Qinghai‐Tibetan plateau and its tectonic significance. Geology in China, 31(4), 384–387.
    [Google Scholar]
  39. Li, C., Xie, C. M., Wang, M., Wu, Y. W., Hu, P. Y., Zhang, X. Z., & Xu, F. (2016). Qiangtang geology (pp. 1–182). Geological Publishing House.
    [Google Scholar]
  40. Li, C., Zhai, Q. G., Dong, Y. S., & Huang, X. P. (2006). Discovery of eclogite and its geological significance in Qiangtang area, central Tibet [in Chinese with English abstract]. Chinese Science Bulletin, 51, 1095–1100. https://doi.org/10.1007/s11434‐006‐1095‐3
    [Google Scholar]
  41. Li, C., Zhai, Q. G., Dong, Y. S., Yu, J. J., & Huang, X. P. (2007). Establishment of the Upper Triassic Wanghuling Formation at Guoganjianian Mountain, central Qiangtang, Qinghai‐Tibet Plateau and its significance [in Chinese with English abstract]. Geological Bulletin of China, 26(8), 1003–1008.
    [Google Scholar]
  42. Li, D., Wang, G. H., Bons, P. D., Zhao, Z. B., Du, J. X., Wang, S. L., Yuan, G. L., Liang, X., Zhang, L., Li, C., Fang, D. R., Tang, Y., Hu, Y. L., & Fu, Y. Z. (2020). Subduction reversal in a divergent double subduction zone drives the exhumation of Southern Qiangtang blueschist‐Bearing Mélange, Central Tibet. Tectonics, 39, e2019TC006051. https://doi.org/10.1029/2019TC006051
    [Google Scholar]
  43. Li, D., Wang, G.‐H., Gao, J., Yuan, G., Zhou, J., Fang, D., Zhang, L. I., Gong, Y., & Zhao, H. (2019). The continental subduction in the evolution of central Qiangtang mélange belt and its tectonic significance. International Geology Review. International Geology Review, 61(9), 1143–1170. https://doi.org/10.1080/00206814.2018.1499450
    [Google Scholar]
  44. Li, G. M., Li, J. X., Zhao, J. X., Qin, K. Z., Cao, M. J., & Evans, N. J. (2015). Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: Evidence from U‐Pb ages, petrochemistry and Sr‐Nd‐Hf isotopes. Journal of Asian Earth Sciences, 105, 443–453. https://doi.org/10.1016/j.jseaes.2015.02.017
    [Google Scholar]
  45. Li, J. C., Zhao, Z. B., Zheng, Y. L., Yuan, G. L., Liang, X., Wang, G. H., & Liu, X. (2015). The magmatite evidences in southern Qiangtang for paleo‐Tethys ocean subducting conllision: Gangtang‐co granites in Rongma, Tibet. Acta Petrologica Sinica, 31(7), 2078–2088.
    [Google Scholar]
  46. Li, L. G., Liang, X., Wang, G. H., Wang, X. L., Gao, X., Jiao, P. W., & Huang, Z. G. (2018). Discovery of the Middle‐Late Triassic Carbonatite Formation in the Central Qiangtang Accretionary Complex, North Tibet and its tectonic significance. Acta Geologica Sinica, 92(4), 828–844.
    [Google Scholar]
  47. Li, S., Ding, L., Guilmette, C., Fu, J. J., Xu, Q., Yue, Y. H., & Henrique‐Pinto, R. (2017). The subduction‐accretion history of the Bangong‐Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics, 702, 42–60. https://doi.org/10.1016/j.tecto.2017.02.023
    [Google Scholar]
  48. Li, Y. J., Wu, H. R., & Li, H. S. (1997). Discovery of radiolarians in the Amugang and Chasang Groups and Lugu Formation in northern Tibet and some related geological problems [in Chinese with English abstract]. Geological Review, 43(3), 250–256.
    [Google Scholar]
  49. Liang, D. Y., Nie, Z. T., & Guo, T. Y. (1983). Permo‐Carboniferous Gondwana‐Tethys facies in southern Karakoran, Ali, Xizang (Tibet) [in Chinese with English abstract]. Earth Science‐Journal of Wuhan Colledge of Geology, 1, 9–25.
    [Google Scholar]
  50. Liang, X., Sun, X. H., Wang, G. H., Gao, J. H., & An, X. Y. (2020). Sedimentary evolution and provenance of the late Permian–middle Triassic Raggyorcaka deposits in North Qiangtang (Tibet, Western China): Evidence for a forearc basin of the Longmu Co‐Shuanghu Tethys Ocean. Tectonics, 39, e2019TC005589. https://doi.org/10.1029/2019TC005589
    [Google Scholar]
  51. Liang, X., Wang, G. H., Yang, B., Ran, H., Zheng, Y. L., Du, J. X., & Li, L. G. (2017). Stepwise exhumation of the Triassic Lanling high‐pressure metamorphic belt in Central Qiangtang, Tibet: Insights from a coupled study of metamorphism, deformation, and geochronology. Tectonics, 36, 652–670. https://doi.org/10.1002/2016TC004455
    [Google Scholar]
  52. Liang, X., Wang, G. H., Yuan, G. L., & Che, X. C. (2015). Mesozoic and Cenozoic deformations in the Raggyorcaka area, Tibet: Implications for the tectonic evolution of the North Qiangtang terrane. Journal of the Geological Society, London, 172, 614–623. https://doi.org/10.1144/jgs2014‐075
    [Google Scholar]
  53. Liang, X., Wang, G. H., Yuan, G. L., & Liu, Y. (2012). Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: Implications for the Late Triassic subduction of the Paleo‐Tethys Ocean. Gondwana Research, 22, 470–481. https://doi.org/10.1016/j.gr.2011.11.012
    [Google Scholar]
  54. Liu, B. P., Feng, Q. L., Chonglakmani, C., & Helmcke, D. (2002). Framework of paleotethyan archipelago ocean of western Yunnan and its elongation towards North and South [in Chinese with English abstract]. Earth Science Frontiers, 9, 163–164.
    [Google Scholar]
  55. Lu, L., Qin, Y., Li, Z. F., Yan, L. L., Jin, X., & Zhang, K. J. (2019). Diachronous closure of the Shuanghu Paleo‐Tethys Ocean: Constraints from the Late Triassic Tanggula arc‐related volcanism in the East Qiangtang subterrane, Central Tibet. Lithos, 328–329, 182–199. https://doi.org/10.1016/j.lithos.2019.01.034
    [Google Scholar]
  56. Lu, Z. W., Gao, R., Li, Y. T., Xue, A. M., Li, Q. S., Wang, H. Y., Kuang, C. Y., & Xiong, X. S. (2013). The upper crustal structure of the Qiangtang Basin revealed by seismic reflection data. Tectonophysics, 606, 171–177. https://doi.org/10.1016/j.tecto.2013.07.019
    [Google Scholar]
  57. Ludwig, K. (2012). User's manual for Isoplot Version 3.75–4.15: A geochronological toolkit for Microsoft. Excel Berkley Geochronological Center Special Publication.
    [Google Scholar]
  58. Mccrory, P. A. (1995). Evolution of a trench‐slope basin within the Cascadia subduction margin: The Neogene Humboldt Basin, California. Sedimentology, 42(2), 223–247. https://doi.org/10.1111/j.1365‐3091.1995.tb02100.x
    [Google Scholar]
  59. Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
    [Google Scholar]
  60. Miall, A. D. (1978). Lithofacies types and vertical profile models in braided river deposits: A summary. In A. D.Miall (Ed.), Fluvial sedimentology, Mem. Can. Soc. Petrol. Geol (Vol. 5, pp. 597–604).
    [Google Scholar]
  61. Miall, A. D. (1985). Architectural‐element analysis: A new method of facies analysis applied to fluvial deposits. Earth‐Science Reviews, 22, 261–308. https://doi.org/10.1016/0012‐8252(85)90001‐7
    [Google Scholar]
  62. Moore, G. F., & Karig, D. E. (1976). Development of sedimentary basins on the lower trench slope. Geology, 4, 693–697. https://doi.org/10.1130/0091‐7613(1976)4<693:DOSBOT>2.0.CO;2
    [Google Scholar]
  63. Orchard, M. J. (2007). New conodonts and zonation Ladinian–Carnian boundary beds British Columbia, Canada. In S. G.Lucas & J. A.Spielmann (Eds.). The global Triassic. New Mexico Museum of Natural History and Science Bulletin (Vol. 41, pp. 321–330).
    [Google Scholar]
  64. Orchard, M. J., & Tozer, E. T. (1997). Triassic conodont biochronology, its calibration with the annoniod standard, and a biostatigraphic summary for western Canada sedimentrary basin. The Bulletin of Canadian Petroleum Geology, 45(4), 675–692.
    [Google Scholar]
  65. Orme, D. A., Carrapa, B., & Kapp, P. (2015). Sedimentology, provenance and geochronology of the upper Cretaceous‐lower Eocene western Xigaze forearc basin, southern Tibet. Basin Research, 27, 387–411. https://doi.org/10.1111/bre.12080
    [Google Scholar]
  66. Peng, H., Li, C., Xie, C. M., Wang, M., Jiang, Q. Y., & Chen, J. W. (2014). Riwanchaka Group in central Qiangtang Basin, the Tibetan Plateau: Evidence from detrital zircons. Geological Bulletin of China, 33(11), 1715–1727.
    [Google Scholar]
  67. Pownall, J. M., Hall, R., & Lister, G. S. (2016). Rolling open Earth’s deepest forearc basin. Geology, 44(11), 947–950. https://doi.org/10.1130/G38051.1
    [Google Scholar]
  68. Pullen, A., & Kapp, P. (2014). Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet. The Geological Society of America, Special Paper, 507.
  69. Pullen, A., Kapp, P., & Gehrels, G. E. (2008). Mediterranean‐style closure of the Paleo‐Tethys Ocean. Geology, 36(5), 351–354.
    [Google Scholar]
  70. Pullen, A., Kapp, P., Gehrels, G. E., Ding, L., & Zhang, Q. (2011). Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. GSA Bulletin, 123(3–4), 585–600. https://doi.org/10.1130/B30154.1
    [Google Scholar]
  71. Scholl, D. W., Von Huene, R., Vallier, T. L., & Howell, D. G. (1980). Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geology, 8, 564–568. https://doi.org/10.1130/0091‐7613(1980)8<564:SMACAT>2.0.CO;2
    [Google Scholar]
  72. Searle, M. P., Elliott, J. R., Phillips, R. J., & Chung, S.‐L. (2011). Crustal–lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3), 633–672. https://doi.org/10.1144/0016‐76492010‐139
    [Google Scholar]
  73. Smith, G. W., Howell, D. G., Ingersoll, R. V. (1979). Late Cretaceous trench‐slope basins of central California. Geology, 7(6), 303–306. https://doi.org/10.1130/0091‐7613(1979)7<303:lctboc>2.0.co;2
    [Google Scholar]
  74. Stevens, S. H., & Moore, G. F. (1985). Deformational and sedimentary processes in trench slope basins of the western Sunda Arc, Indonesia. Marine Geology, 69, 93–112. https://doi.org/10.1016/0025‐3227(85)90135‐5
    [Google Scholar]
  75. Tucker, M. E. (2011). Sedimentary rocks in the field. A practical guide, 1–269 (4th ed.). John Wiley & Sons Ltd.
    [Google Scholar]
  76. Underwood, M. B., Moore, G. F., Taira, A., Klaus, A., Wilson, M. E., Fergusson, C. L., Hirano, S., & Steurer, J. (2003). Sedimentary and tectonic evolution of a trench‐slope basin in the Nankai Subduction Zone of Southwest Japan. Journal of Sedimentary Research, 73(4), 589–602. https://doi.org/10.1306/092002730589
    [Google Scholar]
  77. Underwood, M. B., & Karig, D. E. (1980). Role of submarine canyons in trench and trench‐slope sedimentation. Geology, 8(9), 432–436. https://doi.org/10.1130/0091‐7613(1980)8<432:roscit>2.0.co;2
    [Google Scholar]
  78. Underwood, M. B., & Norville, C. R. (1986). Deposition of sand in a trench‐slope basin by unconfined turbidity currents. Marine Geology, 71(3–4), 383–392. https://doi.org/10.1016/0025‐3227(86)90080‐0
    [Google Scholar]
  79. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  80. Vinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008
    [Google Scholar]
  81. Walker, R. G. (1978). Deep‐water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps. AAPG Bulletin, 62(5), 239–263.
    [Google Scholar]
  82. Wallin, E. T., & Trabert, D. W. (1994). Eruption‐controlled epiclastic sedimentation in a Devonian trench‐slope basin: Evidence from sandstone petrofacies, Klamath Mountains, California. Journal of Sedimentary Research, 64(2), 373–385.
    [Google Scholar]
  83. Wang, B. D., Wang, L. Q., Chen, J. L., Liu, H., Yin, F. G., & Li, X. B. (2017). Petrogenesis of Late Devonian‐Early Carboniferous volcanic rocks in northern Tibet: New constraints on the Paleozoic tectonic evolution of the Tethyan Ocean. Gondwana Research, 41, 142–156. https://doi.org/10.1016/j.gr.2015.09.007
    [Google Scholar]
  84. Wang, C. S., & Yin, H. S. (2001). The geological evolution and prospective oil and gas assessment of the Qiangtang basin in Northern Tibetan Plateau [in Chinese] (pp. 35–100). Geological Publishing House.
    [Google Scholar]
  85. Wang, G. H., Han, F. L., Yang, Y. J., Li, Y. Q., & Cui, J. L. (2009). Discovery and geologic significance of Late Paleozoic accretionary complexes in Central Qiangtang, northern Tibet, China [in Chinese with English abstract]. Geological Bulletin of China, 28(9), 1181–1187.
    [Google Scholar]
  86. Wang, G. H., Liang, X., & Yang, Y. J. (2014). Geologic map of the Qomo Ri and Mayer Kangri sheet (scale 1:50 000). Institute of geological survey of China University of Geosciences.
    [Google Scholar]
  87. Wang, J., Tan, F. W., & Li, Y. L. (2004). The potential of the oil and gas resources in major sedimentary basins on the Qinghai‐Tibet plateau (pp. 1–100) [in Chinese]. Geological Publishing House.
    [Google Scholar]
  88. Wang, L. Q., Pan, G. T., Li, C., Dong, Y. S., Zhu, D. C., Yuan, S. H., & Zhu, T. X. (2008). SHRIMP U‐Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mt. from central Qiangtang area of northern Tibet‐Considering the evolvement of Proto‐ and Paleo‐Tethys. Geological Bulletin of China, 27(12), 2045–2056.
    [Google Scholar]
  89. Wang, M., Li, C., & Fan, J. J. (2015). Geochronology and geochemistry of the Dabure basalts, central Qiangtang, Tibet: Evidence for ~550 Ma rifting of Gondwana. International Geology Review, 57(14), 1791–1805.
    [Google Scholar]
  90. Wang, Y. X., Liang, X., Wang, G. H., Yuan, G. L., & Bons, P. D. (2018). Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): Implications for the Triassic–early Jurassic tectonics associated with the Paleo‐Tethys Ocean. International Journal of Earth Sciences, 107(2), 757–776. https://doi.org/10.1007/s00531‐017‐1526‐1
    [Google Scholar]
  91. Wang, Z. H., & Zhong, R. (1990). Triassic conodont biostratigraphy of different facies realms in eastern Yunnan, western Guizhou and northern Guangxi. Journal of Stratigraphy, 14(1), 15–35.
    [Google Scholar]
  92. Wu, G. C., Yao, J. X., & Ji, Z. S. (2007). Triassic conodont biostratigraphy in the Coqên area, western Gangdise, Tibet, China. Geological Bulletin of China, 26(8), 938–946.
    [Google Scholar]
  93. Wu, G. C., Yao, J. X., Ji, Z. S., & Wang, L. T. (2008). Discovery of the Upper Qingyanian Conodonts in the Qingyan Cross‐Section of Guizhou and its Significance. Acta Geologica Sinica, 82(2), 145–154.
    [Google Scholar]
  94. Wu, H., Li, C., Chen, J. W., & Xie, C. M. (2015). Late Triassic tectonic framework and evolution of Central Qiangtang, Tibet, SW China. Lithosphere, 8(2), 141–149. https://doi.org/10.1130/L468.1
    [Google Scholar]
  95. Wu, Y. W., Li, C., Xie, C. M., Wang, M., & Hu, P. Y. (2010). Petrology and geochronology of Guoganjianianshan Permian ophiolite in central Qiangtang, Qinghai‐Tibet Plateau, China [in Chinese with English abstract]. Geological Bulletin of China, 29, 1773–1779.
    [Google Scholar]
  96. Xie, C. M., Li, C., Ren, Y. S., Wang, M., & Su, L. (2018). Detrital provenance, depositional environment, and palaeogeographic implications of Lower Triassic marine sediments in central Tibet. International Geology Review, 60(4), 418–430. https://doi.org/10.1080/00206814.2017.1336945
    [Google Scholar]
  97. Xiong, X. G., Xu, A. Q., Yue, L., Zhu, X., & Yi, C. X. (2006). Determination of Triassic Strata of Caimarcuo, Qiangtang Grassland and its Significance. Guizhou Geology, 23(1), 29–31.
    [Google Scholar]
  98. Xu, W., Liu, F. L., & Dong, Y. S. (2020). Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet. Earth‐science Reviews, 201, 103083.–https://doi.org/10.1016/j.earscirev.2020.103083
    [Google Scholar]
  99. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    [Google Scholar]
  100. Zhai, Q. G., Jahn, B. M., Su, L., Ernst, R. E., Wang, K. L., Zhang, R. Y., Wang, J., & Tang, S. H. (2013). SHRIMP zircon U‐Pb geochronology, geochemistry and Sr‐Nd‐Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174, 28–43. https://doi.org/10.1016/j.lithos.2012.10.018
    [Google Scholar]
  101. Zhai, Q. G., Jahn, B. M., Wang, J., Hu, P. Y., Chung, S. L., Lee, H. Y., Tang, S. H., & Tang, Y. (2016). Oldest Paleo‐Tethyan ophiolitic mélange in the Tibetan Plateau. GSA Bulletin, 128(3–4), 355–373. https://doi.org/10.1130/B31296.1
    [Google Scholar]
  102. Zhai, Q. G., Jahn, B. M., Wang, J., Su, L., Mo, X. X., Wang, K. L., Tang, S. H., & Lee, H. Y. (2013). The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U‐Pb dating, geochemical and Sr‐Nd‐Hf isotopic characteristics. Lithos, 168–169, 186–199. https://doi.org/10.1016/j.lithos.2013.02.005
    [Google Scholar]
  103. Zhai, Q. G., Zhang, R. Y., Jahn, B. M., Li, C., Song, S. G., & Wang, J. (2011). Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P‐T path. Lithos, 125(1), 173–189. https://doi.org/10.1016/j.lithos.2011.02.004
    [Google Scholar]
  104. Zhang, K.‐J., Cai, J.‐X., Zhang, Y.‐X., & Zhao, T.‐P. (2006). Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth and Planetary Science Letters, 245, 722–727. https://doi.org/10.1016/j.epsl.2006.02.025
    [Google Scholar]
  105. Zhang, K. J., Tang, X. C., Wang, Y., & Zhang, Y. X. (2011). Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: Constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos, 121, 167–174. https://doi.org/10.1016/j.lithos.2010.10.015
    [Google Scholar]
  106. Zhang, X. Z., Dong, Y. S., Li, C., Chen, W., Shi, J. R., Zhang, Y., & Wang, S. Y. (2010). Identification of the eclogites with different ages and their tectonic significance in central Qiangtang, Tibetan Plateau: Constraints from 40Ar‐39Ar geochronology. Geological Bulletin of China, 29(12), 1815–1824.
    [Google Scholar]
  107. Zhang, X. Z., Dong, Y. S., Wang, Q., Dan, W., Zhang, C., Deng, M. R., Xu, W., Xia, X. P., Zeng, J. P., & Liang, H. (2016). Carboniferous and Permian evolutionary records for the Paleo‐Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35, 1670–1686. https://doi.org/10.1002/2016TC004170
    [Google Scholar]
  108. Zhang, X. Z., Dong, Y. S., Wang, Q., Dan, W., Zhang, C. F., Xu, W., & Huang, M. L. (2017). Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet‐staurolite‐muscovite schists in central Qiangtang, Tibet. Geochemistry, Geophysics, Geosystems, 18, 1–14. https://doi.org/10.1002/2016GC006576
    [Google Scholar]
  109. Zhang, Y. C., Shen, S. Z., Shi, G. R., Wang, Y., Yuan, D. X., & Zhang, Y. J. (2012). Tectonic evolution of the Qiangtang block, northern Tibet during the late Cisuralian (late early Permian): Evidence from fusuline fossil records. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 139–148. https://doi.org/10.1016/j.palaeo.2012.06.025
    [Google Scholar]
  110. Zhao, Z. B., Bons, P. D., Wang, G. H., Liu, Y., & Zheng, Y. L. (2014). Origin and pre‐Cenozoic evolution of the south Qiangtang basement, Central Tibet. Tectonophysics, 623, 52–66. https://doi.org/10.1016/j.tecto.2014.03.016
    [Google Scholar]
  111. Zhao, Z. B., Bons, P. D., Wang, G., Soesoo, A., & Liu, Y. (2015). Tectonic evolution and high‐pressure rock exhumation in the Qiangtang Terrane, Central Tibet. Solid Earth, 6, 457–473. https://doi.org/10.5194/se‐6‐457‐2015
    [Google Scholar]
  112. Zhu, T. X., Zhang, Q. Y., Dong, H., Wang, Y. J., Yu, Y. S., & Feng, X. T. (2006). Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic melanges in the Cedo Caka area, Shuanghu, northern Tibet, China. Geological Bulletin, 25(12), 1413–1418.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12561
Loading
/content/journals/10.1111/bre.12561
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): accretionary wedge; deformation; Qiangtang; sediment; tectonics; trench‐slope basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error