1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Ultramafic‐derived or magmatic‐sourced fluids transported upward along strike‐slip faults, and contributed to the local precipitation of hydrothermal dolomites and cherts.

, Abstract

Ordovician carbonate rocks on the northern slope of the Tazhong Uplift in the Tarim Basin are modified to varying degrees by hydrothermal fluids related to multiple tectonic‐thermal events, but the nature, origin and circulation mechanisms of such hydrothermal fluids remain debated. In this article, in situ rare‐earth elements and yttrium (REE + Y) concentrations, previously published geochemical datasets and petrographic investigations are integrated to develop a thermo‐tectonic evolution model to improve understanding of silicification and dolomitisation occurring in the interior of the craton basin. δ30Si values, REE + Y ratios and fluid mixing models using modern black smoker fluid and seawater indicate that magma‐sourced hydrothermal fluids, rather than basinal brine heated by magmatism, are responsible for the precipitation of cherts. Petrological and geochemical evidence suggests that deep‐seated, ultramafic‐derived hydrothermal fluids and/or magmatic fluids associated with Permian volcanism may have been involved in the formation of hydrothermal dolomites in the study area. Accompanying formation and reactivation of the strike‐slip faults on the northern slope of the Tazhong Uplift, small volumes of hydrothermal fluids might have been triggered by seismic pumping. The early formed strike‐slip fault systems may also have served as conduits for the subsequent large‐scale transport of deep‐seated, ultramafic‐derived thermal fluids and/or Permian magmatic fluids, along which fluids were transported upwards at high flow rates. Carbonation of ultramafic rocks through interaction with deep‐seated hydrothermal fluids rich in CO may have served as a magnesium and silica source for dolomitisation and silicification. Trans‐tensional troughs on NNE‐trending strike‐slip faults with positive flower structure are favourable locations for dolomitisation and silicification.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12562
2021-07-17
2024-04-23
Loading full text...

Full text loading...

References

  1. Akbar, S., Yue, X. D., & Han, J. (2019). The characteristics and geological implication of dacite in the Middle‐lower Ordovician of Shunbei Area in Tarim Basin. Journal of Yangtze University (Natural Science Edition), 16, 9–14.(in Chinese with English abstract).
    [Google Scholar]
  2. Al‐Aasm, I. S., & Packard, J. J. (2000). Stabilization of early‐formed dolomite: A tale of divergence from two Mississippian dolomites. Sedimentary Geology, 131, 97–108. https://doi.org/10.1016/S0037‐0738(99)00132‐3
    [Google Scholar]
  3. Alexander, B. W., Bau, M., Andersson, P., & Dulski, P. (2008). Continentally‐derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, https://doi.org/10.1016/j.gca.2007.10.028
    [Google Scholar]
  4. Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shale‐ normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363–372. https://doi.org/10.1016/S0016‐7037(98)00279‐8
    [Google Scholar]
  5. Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214. https://doi.org/10.1016/0016‐7037(89)90286‐X
    [Google Scholar]
  6. André, L., Cardinal, D., Alleman, L. Y., & Moorbath, S. (2006). Silicon isotopes in 3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth and Planetary Science Letters, 245, 162–173. https://doi.org/10.1016/j.epsl.2006.02.046
    [Google Scholar]
  7. Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water‐rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54, 3123–3137. https://doi.org/10.1016/0016‐7037(90)90128‐8
    [Google Scholar]
  8. Baqués, V., Travé, A., Benedicto, A., Labaume, P., & Cantarero, I. (2010). Relationships between carbonate fault rocks and fluid flow regime during propagation of the Neogene extensional faults of the Penedès basin (Catalan Coastal Ranges, NE Spain). Journal of Geochemical Exploration, 106, 24–33. https://doi.org/10.1016/j.gexplo.2009.11.010
    [Google Scholar]
  9. Bau, M. (1991). Rare‐earth element mobility during hydrothermal and metamorphic fluid‐rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93, 219–230. https://doi.org/10.1016/0009‐2541(91)90115‐8
    [Google Scholar]
  10. Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare‐earth elements in the Penge and Kuruman iron‐formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55. https://doi.org/10.1016/0301‐9268(95)00087‐9
    [Google Scholar]
  11. Bau, M., & Möller, P. (1993). Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere–hydrosphere–lithosphere system. Geochimica et Cosmochimica Acta, 57, 2239–2249. https://doi.org/10.1016/0016‐7037(93)90566‐F
    [Google Scholar]
  12. Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M., & Whitehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222, 43–60. https://doi.org/10.1016/j.epsl.2004.02.016
    [Google Scholar]
  13. Breislin, C., Crowley, S., Banks, V. J., Marshall, J. D., Millar, I. L., Riding, J. B., & Hollis, C. (2020). Controls on dolomitization in extensional basins: An example from the Derbyshire Platform, UK. Journal of Sedimentary Research, 90, 1156–1174. https://doi.org/10.2110/jsr.2020.58
    [Google Scholar]
  14. Brengman, L. A., & Fedo, C. M. (2018). Development of a mixed seawater‐hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt. Canada. Geochimica et Cosmochimica Acta, 227, 227–245. https://doi.org/10.1016/j.gca.2018.02.019
    [Google Scholar]
  15. Cabioch, G., Camoin, G., Webb, G. E., Le Cornec, F., Molina, M. G., Pierre, C., & Joachimski, M. M. (2006). Contribution of microbialites to the development of coral reefs during the last deglacial period: Case study from Vanuatu (South‐West Pacific). Sedimentary Geology, 185, 297–318. https://doi.org/10.1016/j.sedgeo.2005.12.019
    [Google Scholar]
  16. Cai, X., Qian, Y., Chen, Q., Chen, Y., You, D., Yang, Y., & Zhao, L. (2011). Discovery and significance of Qrebake and Yijianfang Formations of Ordovician in well GL1, Tarim Basin. Petroleum Geology & Experiment, 33, 348–358.(in Chinese with English abstract).
    [Google Scholar]
  17. Carmichael, S. K., Ferry, J. M., & McDonough, W. F. (2008). Formation of replacement dolomite in the Latemar carbonate buildup, dolomites, Northern Italy: Part 1. Field relations, mineralogy, and geochemistry. American Journal of Science, 308, 851–884. https://doi.org/10.2475/07.2008.03
    [Google Scholar]
  18. Centrella, S., Beaudoin, N. E., Derluyn, H., Motte, G., Hoareau, G., Lanari, P., Piccoli, F., Pecheyran, C., & Callot, J. P. (2021). Micro‐scale chemical and physical patterns in an interface of hydrothermal dolomitization reveals the governing transport mechanisms in nature: Case of the Layens anticline, Pyrenees, France. Sedimentology, 68(2), 834–854. https://doi.org/10.1111/sed.12808
    [Google Scholar]
  19. Chen, C., Lu, H., Jia, D., Cai, D., & Wu, S. (1999). Closing history of the southern Tianshan oceanic basin, western China: An oblique collisional orogeny. Tectonophysics, 302, 23–40. https://doi.org/10.1016/S0040‐1951(98)00273‐X
    [Google Scholar]
  20. Chen, D. Z., Zhang, Y. Q., Zhou, X. Q., & Dong, S. F. (2020). Timing of hydrothermal alteration on the Lower Qiulitag Group dolomites of the Upper Cambrian, western margin of Tarim Basin: Palaeomagnetic constraint. Oil & Gas Geology, 41, 50–58.(in Chinese with English abstract).
    [Google Scholar]
  21. Chen, H. H., Lu, Z. Y., Cao, Z. C., Han, J., & Yun, L. (2015). Hydrothermal alteration of Ordovician reservoir in northeastern slope of Tazhong uplift, Tarim Basin. Acta Petrolei Sinica, 37, 43–63.(in Chinese with English abstract).
    [Google Scholar]
  22. Choquette, P. W., & Hiatt, E. E. (2008). Shallow‐burial dolomite cement: A major component of many ancient sucrosic dolomites. Sedimentology, 55, 423–460. https://doi.org/10.1111/j.1365‐3091.2007.00908.x
    [Google Scholar]
  23. Cole, C., James, R. H., Connelly, D. P., & Hathorne, E. C. (2014). Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system. Geochimica et Cosmochimica Acta, 140, 20–38. https://doi.org/10.1016/j.gca.2014.05.018
    [Google Scholar]
  24. Cruset, D., Cantarero, I., Benedicto, A., John, C. M., Vergés, J., Albert, R., Gerdes, A., & Travé, A. (2020). From hydroplastic to brittle deformation: Controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees). Marine and Petroleum Geology, 120, 104517. https://doi.org/10.1016/j.marpetgeo.2020.104517
    [Google Scholar]
  25. Cruset, D., Cantarero, I., Travé, A., Vergés, J., & John, C. M. (2016). Crestal graben fluid evolution during growth of the Puig‐reig anticline (South Pyrenean fold and thrust belt). Journal of Geodynamics, 101, 30–50. https://doi.org/10.1016/j.jog.2016.05.004
    [Google Scholar]
  26. Cruset, D., Cantarero, I., Vergés, J., John, C. M., Muñoz‐López, D., & Travé, A. (2018). Changes in fluid regime in syn‐orogenic sediments during the growth of the south Pyrenean fold and thrust belt. Global and Planetary Change, 171, 207–224. https://doi.org/10.1016/j.gloplacha.2017.11.001
    [Google Scholar]
  27. Davies, G. R., & Smith, L. B. (2006). Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90, 1641–1690. https://doi.org/10.1306/05220605164
    [Google Scholar]
  28. De La Rocha, C. L., Brzezinski, M. A., & DeNiro, M. J. (2000). A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 64, 2467–2477. https://doi.org/10.1016/S0016‐7037(00)00373‐2
    [Google Scholar]
  29. Delvigne, C., Cardinal, D., Hofmann, A., & André, L. (2012). Stratigraphic changes of Ge/Si, REE+Y and silicon isotopes as insights into the deposition of a Mesoarchaean banded iron formation. Earth and Planetary Science Letters, 355–356, 109–118. https://doi.org/10.1016/j.epsl.2012.07.035
    [Google Scholar]
  30. Den Boorn, S. H., Van Bergen, M. J., Vroon, P. Z., De Vries, S. T., & Nijman, W. (2010). Silicon isotope and trace element constraints on the origin of similar to 3.5 Ga cherts: Implications for Early Archaean marine environments. Geochimica et Cosmochimica Acta, 74, 1077–1103. https://doi.org/10.1016/j.gca.2009.09.009
    [Google Scholar]
  31. Deng, S., Li, H., Zhang, Z., Zhang, J., & Yang, X. (2019). Structural characterization of intracratonic strike‐slip faults in the central Tarim Basin. AAPG Bulletin, 103, 109–137. https://doi.org/10.1306/06071817354
    [Google Scholar]
  32. Dong, S., Chen, D., Zhou, X., Qian, Y., Tian, M., & Qing, H. (2017). Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north‐eastern flank of Tarim Basin, north‐west China. Sedimentology, 64, 1079–1106. https://doi.org/10.1111/sed.12341
    [Google Scholar]
  33. Dong, Y., Chen, H., Wang, J., Hou, M., Xu, S., Zhu, P., Zhang, C., & Cui, Y. (2020). Thermal convection dolomitization induced by the Emeishan Large Igneous Province. Marine and Petroleum Geology, 116, 104308. https://doi.org/10.1016/j.marpetgeo.2020.104308
    [Google Scholar]
  34. Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Jove Colon, C. F., Donval, J. P., Fouquet, Y., Prieur, D., & Appriou, P. (2002). The rainbow vent fluids (36 14′ N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid‐Atlantic Ridge hydrothermal fluids. Chemical Geology, 184, 37–48. https://doi.org/10.1016/S0009‐2541(01)00351‐5
    [Google Scholar]
  35. Du, Y., Fan, T., Machel, H. G., & Gao, Z. (2018). Genesis of Upper Cambrian‐Lower Ordovician dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology, 91, 43–70. https://doi.org/10.1016/j.marpetgeo.2017.12.023
    [Google Scholar]
  36. Duggan, J. P., Mountjoy, E. W., & Stasiuk, L. D. (2001). Fault controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west‐central Alberta, Canada. Sedimentology, 48, 301–323. https://doi.org/10.1046/j.1365‐3091.2001.00364.x
    [Google Scholar]
  37. Gao, Z., & Fan, T. (2012). Extensional tectonics and sedimentary response of the Early‐Middle Cambrian passive continental margin, Tarim Basin, Northwest China. Geoscience Frontiers, 3, 661–668. https://doi.org/10.1016/j.gsf.2012.01.007
    [Google Scholar]
  38. Gregg, J. M., & Shelton, K. L. (2012). Mississippi Valley‐type mineralization and ore deposits in the Cambrian–Ordovician great American carbonate bank. In: J. R.Derby, R. D.Fritz, S. A.Longacre, W. A.Morgan, & C. A.Sternbach (Eds.), The great American carbonate bank: The geology and economic resources of the Cambro‐Ordovician Sauk mega sequence of Laurentia (pp. 161–185). AAPG Memoir. http://doi.org/10.1306/13331493M981487
    [Google Scholar]
  39. Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54, 908–931. https://doi.org/10.1306/212F8535‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  40. Guo, C., Chen, D., Qing, H., Dong, S., Li, G., Wang, D., Qian, Y., & Liu, C. (2016). Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian‐Lower Ordovician carbonates in the northern Tarim Basin, China. Marine and Petroleum Geology, 72, 295–316. https://doi.org/10.1016/j.marpetgeo.2016.01.023
    [Google Scholar]
  41. Guo, R., Zhang, S., Bai, X., Wang, K., Sun, X., & Liu, X. (2020). Hydrothermal dolomite reservoirs in a fault system and the factors controlling reservoir formation‐A case study of Lower Paleozoic carbonate reservoirs in the Gucheng area, Tarim Basin. Marine and Petroleum Geology, 120, 104506. https://doi.org/10.1016/j.marpetgeo.2020.104506
    [Google Scholar]
  42. Han, X., Deng, S., Tang, L., & Cao, Z. (2017). Geometry, kinematics and displacement characteristics of strike‐slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data. Marine and Petroleum Geology, 88, 410–427. https://doi.org/10.1016/j.marpetgeo.2017.08.033
    [Google Scholar]
  43. He, Z. L., Zhang, J. T., Ding, Q., You, D. H., Peng, S. T., Zhu, D. Y., & Qian, Y. X. (2017). Factors controlling the formation of high‐quality deep to ultra‐deep carbonate reservoirs. Oil & Gas Geology, 38, 633–644.(in Chinese with English abstract).
    [Google Scholar]
  44. Hendry, J. P., Gregg, J. M., Shelton, K. L., Somerville, I. D., & Crowley, S. F. (2015). Origin, characteristics and distribution of fault‐related and fracture‐related dolomitization: Insights from Mississippian carbonates, Isle of Man. Sedimentology, 62, 717–752. https://doi.org/10.1111/sed.12160
    [Google Scholar]
  45. Hirani, J., Bastesen, E., Boyce, A., Corlett, H., Eker, A., Gawthorpe, R., Hollis, C., Korneva, I., & Rotevatn, A. (2018). Structural controls on non‐fabric‐selective dolomitization within rift‐related basin‐bounding normal fault systems: Insights from the Hammam Faraun Fault, Gulf of Suez, Egypt. Basin Research, 30, 990–1014. https://doi.org/10.1111/bre.12290
    [Google Scholar]
  46. Hofmann, A., & Bolhar, R. (2007). Carbonaceous cherts in the Barberton greenstone belt and their significance for the study of early life in the Archean record. Astrobiology, 7, 355–388. https://doi.org/10.1089/ast.2005.0288
    [Google Scholar]
  47. Hollis, C., Bastesen, E., Boyce, A., Corlett, H., Gawthorpe, R., Hirani, J., Rotevatn, A., & Whitaker, F. (2017). Fault‐controlled dolomitization in a rift basin. Geology, 45, 219–222. https://doi.org/10.1130/G38s394.1
    [Google Scholar]
  48. Hong, C. J., Kang, R. D., Han, J., Wu, X., Wen, S. S., & Fang, X. L. (2018). Geochemical characteristics and origin of the ordovician siliceous rocks in yuejin region. Xinjiang Geology, 36, 239–245.(in Chinese with English abstract).
    [Google Scholar]
  49. Hu, W., Wang, X., Zhu, D., You, D., & Wu, H. (2018). An overview of types and characterization of hot fluids associated with reservoir formation in petroliferous basins. Energy Exploration & Exploitation, 36, 1359–1375. https://doi.org/10.1177/0144598718763895
    [Google Scholar]
  50. Ishihara, S., Hua, R., Hoshino, M., & Murakami, H. (2008). REE abundance and REE minerals in granitic rocks in the Nanling range, Jiangxi Province, southern China, and generation of the REE‐rich weathered crust deposits. Resource Geology, 58, 355–372. https://doi.org/10.1111/j.1751‐3928.2008.00070.x
    [Google Scholar]
  51. James, R. H., Elderfield, H., & Palmer, M. R. (1995). The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid‐Atlantic ridge. Geochimica et Cosmochimica Acta, 59, 651–659. https://doi.org/10.1016/0016‐7037(95)00003‐I
    [Google Scholar]
  52. Jia, C. Z. (2004). Continental peripheral development stage of southern part of Eurasia continent in Carboniferous‐Triassic: Plate tectonics and continental dynamics, Tarim Basin (pp. 117–134). Beijing: Petroleum Industry Press.
    [Google Scholar]
  53. Jia, C. Z., & Wei, G. Q. (2002). Structural characteristics and oil & gas of the Tarim basin. Chinese Science Bulletin, 47, 1–11.(in Chinese with English abstract).
    [Google Scholar]
  54. Jia, C. Z., Zhao, Z. Z., Du, J. H., Zhao, W. Z., Zou, C. N., & Hu, S. Y. (2008). Petro China key exploration domains: Geological cognition, core technology, exploration effect and exploration direction. Petroleum Exploration and Development, 35, 385–396.(in Chinese with English abstract). https://doi.org/10.1016/S1876‐3804(08)60087‐7
    [Google Scholar]
  55. Jones, B., & Renaut, R. W. (1996). Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90 °C: Evidence from Kenya and New Zealand. Canadian Journal of Earth Sciences, 33, 72–83. https://doi.org/10.1139/e96‐008
    [Google Scholar]
  56. Kang, Y., & Kang, Z. (1994). Tectonic evolution and oil and gas of Tarim Basin. Acta Geoscientica Sinica, 3, 180–191.(in Chinese with English abstract).
    [Google Scholar]
  57. Kareem, K. H., Al‐Aasm, I. S., & Mansurbeg, H. (2019). Structurally‐controlled hydrothermal fluid flow in an extensional tectonic regime: A case study of Cretaceous Qamchuqa Formation, Zagros Basin, Kurdistan Iraq. Sedimentary Geology, 386, 52–78. https://doi.org/10.1016/j.sedgeo.2019.04.001
    [Google Scholar]
  58. Kırmacı, M. Z., Yıldız, M., Kandemir, R., & Eroğlu‐Gümrük, T. (2018). Multistage dolomitization in Late Jurassic‐Early Cretaceous platform carbonates (Berdiga Formation), Başoba Yayla (Trabzon), NE Turkey: Implications of the generation of magmatic arc on dolomitization. Marine and Petroleum Geology, 89, 515–529. https://doi.org/10.1016/j.marpetgeo.2017.10.018
    [Google Scholar]
  59. Kirschner, D. L., & Kennedy, L. A. (2001). Limited syntectonic fluid flow in carbonate‐hosted thrust faults of the Front Ranges, Canadian Rockies, inferred from stable isotope data and structures. Journal of Geophysical Research: Solid Earth, 106, 8827–8840. https://doi.org/10.1029/2000JB900414
    [Google Scholar]
  60. Koeshidayatullah, A., Corlett, H., Stacey, J., Swart, P. K., Boyce, A., Robertson, H., Whitaker, F., & Hollis, C. (2020). Evaluating new fault‐controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology, 67, 2945–2973. https://doi.org/10.1111/sed.12729
    [Google Scholar]
  61. Land, L. S. (1983). The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. In M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer, & L. S. Land (Eds.), Stable isotopes in sedimentary geology, sepm short course, 10, 4‐1–4‐22.
    [Google Scholar]
  62. Lavoie, D., & Chi, G. (2006). Hydrothermal dolomitization in the Lower Silurian La Vieille Formation in northern New Brunswick: Geological context and significance for hydrocarbon exploration. Bulletin of Canadian Petroleum Geology, 54, 380–395. https://doi.org/10.2113/gscpgbull.54.4.380
    [Google Scholar]
  63. Lawrence, M. G., Greig, A., Collerson, K. D., & Kamber, B. S. (2006). Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12, 39–72. https://doi.org/10.1007/s10498‐005‐4471‐8
    [Google Scholar]
  64. Lawrence, M. G., & Kamber, B. S. (2006). The behaviour of the rare earth elements during estuarine mixing‐revisited. Marine Chemistry, 100, 147–161. https://doi.org/10.1016/j.marchem.2005.11.007
    [Google Scholar]
  65. Leach, D. L., Plumlee, G. S., Hofstra, A. H., Landis, G. P., Rowan, E. L., & Viets, J. G. (1991). Origin of late dolomite cement by CO2‐saturated deep basin brines: Evidence from the Ozark region, central United States. Geology, 19, 348–351. https://doi.org/10.1130/0091‐7613(1991)019<0348:OOLDCB>2.3.CO;2
    [Google Scholar]
  66. Li, C., Wang, X., Li, B., & He, D. (2013). Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China. Marine and Petroleum Geology, 39, 48–58. https://doi.org/10.1016/j.marpetgeo.2012.09.010
    [Google Scholar]
  67. Li, F., Webb, G. E., Algeo, T. J., Kershaw, S., Lu, C., Oehlert, A. M., Gong, Q., Pourmand, A., & Tan, X. (2019). Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 163–177, https://doi.org/10.1016/j.chemgeo.2019.01.015
    [Google Scholar]
  68. Li, H., Lü, H. T., & Pu, R. H. (2017). LA‐ICP‐MS zircon U‐Pb age of dykes from central Tarim Basin and its geological significance. Geological Bulletin of China, 36, 1010–1021.(in Chinese with English abstract).
    [Google Scholar]
  69. Li, K. B., Yun, L., Pu, R. H., & Cao, Z. C. (2016). Relationships among volcanic and hydrothermal activity and faults from the Shunnan 3‐D well zone in the Tadong Area (Tarim Basin, China). Arabian Journal of Geosciences, 9, 692. https://doi.org/10.1007/s12517‐016‐2685‐2
    [Google Scholar]
  70. Li, S., Ren, J., Xing, F., Liu, Z., Li, H., Chen, Q., & Li, Z. (2012). Dynamic processes of the Paleozoic Tarim Basin and its significance for hydrocarbon accumulation—A review and discussion. Journal of Earth Science, 23, 381–394.(in Chinese with English abstract). https://doi.org/10.1007/s12583‐012‐0262‐5
    [Google Scholar]
  71. Li, Y. T. (2016). Research of carbonate reservoir characterization and formation mechanism in Middle‐Lower Ordovician. PhD dissertation, Chengdu University of Technology, Chengdu.
    [Google Scholar]
  72. Li, Y. T., Ye, N., Yuan, X. Y., Huang, Q. Y., Su, B. R., & Zhou, R. Q. (2015). Geological and geochemical characteristics of silicified hydrothermal fluids in Well Shunnan 4, Tarim Basin. Oil & Gas Geology, 6, 934–944.(in Chinese with English abstract).
    [Google Scholar]
  73. Li, Z., Chen, H., Song, B., Li, Y., Yang, S., & Yu, X. (2011). Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. Journal of Asian Earth Sciences, 42, 917–927. https://doi.org/10.1016/j.jseaes.2011.05.009
    [Google Scholar]
  74. Li, Z. L., Li, Y. Q., Zou, S. Y., Sun, H. W., & Li, D. X. (2017). The temporospatial characteristics and magma dynamics of the early Permian Tarim Large Igneous Province. Bulletin of Mineralogy, Petrology and Geochemistry, 36, 418–431.(in Chinese with English abstract).
    [Google Scholar]
  75. Lin, C. S., Yang, H. J., Liu, J. Y., Rui, Z. F., Cai, Z. Z., & Zhu, Y. F. (2012). Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: Significance for the evolution of paleo‐uplifts and tectonic geography during deformation. Journal of Asian Earth Sciences, 46, 1–19. https://doi.org/10.1016/j.jseaes.2011.10.004
    [Google Scholar]
  76. Liu, K. F., Wang, Y. H., Jiang, G. L., Zhang, S. M., & Zhang, K. X. (2014). Evolution of Neoproterozoic– Mesozoic sedimentary basins of west Kunlun area: Earth Science. Journal of China University of Geosciences, 39, 987–999.(in Chinese with English abstract).
    [Google Scholar]
  77. Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G., & Chen, H. H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA‐ICP‐MS without applying an internal standard. Chemical Geology, 257, 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    [Google Scholar]
  78. Lonnee, J., & Machel, H. G. (2006). Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada. AAPG Bulletin, 90, 1739–1761. https://doi.org/10.1306/03060605069
    [Google Scholar]
  79. López‐Horgue, M. A., Iriarte, E., Schröder, S., Fernández‐Mendiola, P. A., Caline, B., Corneyllie, H., Frémont, J., Sudrie, M., & Zerti, S. (2010). Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain. Marine and Petroleum Geology, 27, 1069–1092. https://doi.org/10.1016/j.marpetgeo.2009.10.015
    [Google Scholar]
  80. Lu, Z., Chen, H., Qing, H., Chi, G., Chen, Q., You, D., Yin, H., & Zhang, S. (2017). Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China: Implications for the nature and timing of silicification. Sedimentary Geology, 359, 29–43. https://doi.org/10.1016/j.sedgeo.2017.08.002
    [Google Scholar]
  81. Ma, Y. S., He, Z. L., Zhao, P. R., Zhu, H. Q., Han, J., You, D. H., & Zhang, J. T. (2019). A new progress in formation mechanism of deep and ultra‐deep carbonate reservoir. Acta Petrolei Sinica, 40, 1415–1425.(in Chinese with English abstract).
    [Google Scholar]
  82. Machel, H. G. (2004). Concepts and models of dolomitization: a critical reappraisal. Geological Society, London, Special Publications, 235(1), 7–63. https://doi.org/10.1144/GSL.SP.2004.235.01.02
    [Google Scholar]
  83. Machel, H. G., & Lonnee, J. (2002). Hydrothermal dolomite‐a product of poor definition and imagination. Sedimentary Geology, 152, 163–171. https://doi.org/10.1016/S0037‐0738(02)00259‐2
    [Google Scholar]
  84. Mahboubi, A., Nowrouzi, Z., Al‐Aasm, I. S., Moussavi‐Harami, R., & Mahmudy‐Gharaei, M. H. (2016). Dolomitization of the Silurian Niur Formation, Tabas block, east central Iran: Fluid flow and dolomite evolution. Marine and Petroleum Geology, 77, 791–805. https://doi.org/10.1016/j.marpetgeo.2016.07.023
    [Google Scholar]
  85. Martín‐Martín, J. D., Gomez‐Rivaz, E., Gomes‐Gras, D., Trave, A., Ameneiro, R., Koehn, D., & Bons, P. D. (2018). Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geological Society, London, Special Publications, 459, 157–176. https://doi.org/10.1144/SP459.3
    [Google Scholar]
  86. Martín‐Martín, J. D., Travé, A., Gomez‐Rivas, E., Salas, R., Sizun, J.‐P., Vergés, J., & Alfonso, P. (2015). Fault‐controlled and stratabound dolostones in the Late Aptian‐earliest Albian Benassal Formation (Maestrat Basin, E Spain): Petrology and geochemistry constraints. Marine and Petroleum Geology, 65, 83–102. https://doi.org/10.1016/j.marpetgeo.2015.03.019
    [Google Scholar]
  87. Mattern, F., & Schneider, W. (2000). Suturing of the Proto‐ and Paleo‐Tethys oceans in the western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18, 637–650. https://doi.org/10.1016/S1367‐9120(00)00011‐0
    [Google Scholar]
  88. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Geochemistry and Mineralogy of Rare Earth Elements, Reviews in Mineralogy, 21, 169–200.
    [Google Scholar]
  89. Michard, A. (1989). Rare earth element systematics in hydrothermal fluids. Geochimca et Cosmochimica Acta, 53, 745–750. https://doi.org/10.1016/0016‐7037(89)90017‐3
    [Google Scholar]
  90. Mills, R. A., & Elderfield, H. (1995). Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid‐Atlantic Ridge. Geochimica et Cosmochimica Acta, 59, 3511–3524. https://doi.org/10.1016/0016‐7037(95)00224‐N
    [Google Scholar]
  91. Nothdurft, L. D., Webb, G. E., & Kamber, B. S. (2004). Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68, 263–283. https://doi.org/10.1016/S0016‐7037(03)00422‐8
    [Google Scholar]
  92. Okamoto, A., & Tsuchiya, N. (2009). Velocity of vertical fluid ascent within vein‐forming fractures. Geology, 37, 563–566. https://doi.org/10.1130/G25680A.1
    [Google Scholar]
  93. Packard, J. J., Alaasm, I. S., Samson, I. M., Berger, Z., & Davies, J. (2001). A Devonian hydrothermal chert reservoir: The 225 bcf Parkland field, British Columbia, Canada. AAPG Bulletin, 85, 51–84.
    [Google Scholar]
  94. Putnis, A., Prieto, M., & Fernandez‐Diaz, L. (1995). Fluid supersaturation and crystallization in porous media. Geological Magazine, 132, 1–13. https://doi.org/10.1017/S0016756800011389
    [Google Scholar]
  95. Qing, H. R., & Veizer, J. (1994). Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater. Geochimica et Cosmochimica Acta, 58, 4429–4442. https://doi.org/10.1016/0016‐7037(94)90345‐X
    [Google Scholar]
  96. Qiu, H., Deng, S., Cao, Z., Yin, T., & Zhang, Z. (2019). The evolution of the complex anticlinal belt with crosscutting strike‐slip faults in the central Tarim basin, NW China. Tectonics, 38, 2087–2113. https://doi.org/10.1029/2018TC005229
    [Google Scholar]
  97. Qiu, H. B., Yin, T., Cao, Z. C., Han, J., Huang, C., Wei, H. D., & Liu, Z. H. (2017). Strike‐slip fault and Ordovician petroleum exploration in northern slope of Tazhong uplift, Tarim Basin. Marine Origin Petroleum Geology, 4, 48–56.(in Chinese with English abstract).
    [Google Scholar]
  98. Ren, J. Y., Hu, D. S., Yang, H. Z., Yin, X. Y., & Li, P. (2011). Fault system and its control of carbonate platform in Tazhong uplift area, Tarim basin. Geology in China, 38, 935–944.(in Chinese with English abstract).
    [Google Scholar]
  99. Robertson, H., Corlett, H., Hollis, C., Kibblewhite, T., & Whitaker, F. (2019). Listwanitization as a source of Mg for dolomitization: Field evaluation in Atlin, British Columbia. Goldschmidt Conference, Barcelona.
  100. Rustichelli, A., Iannace, A., Tondi, E., Di Celma, C., Cilona, A., Giorgioni, M., Parente, M., Girundo, M., & Invernizzi, C. (2017). Fault‐controlled dolomite bodies as palaeotectonic indicators and geofluid reservoirs: New insights from Gargano Promontory outcrops. Sedimentology, 64, 1871–1900. https://doi.org/10.1111/sed.12378
    [Google Scholar]
  101. Savage, P. S., Georg, R. B., Williams, H. M., & Halliday, A. N. (2013). The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109, 384–399. https://doi.org/10.1016/j.gca.2013.02.004
    [Google Scholar]
  102. Schandl, E. S., & Gorton, M. P. (2012). Hydrothermal alteration and CO2 metasomatism (natural carbon sequestration) of komatiites in the south‐western Abitibi greenstone belt. The Canadian Mineralogist, 50, 129–146. https://doi.org/10.3749/canmin.50.1.129
    [Google Scholar]
  103. Sibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, 29, 469–499. https://doi.org/10.1016/S0264‐3707(99)00042‐3
    [Google Scholar]
  104. Spencer, R. J. (1987). Origin of Ca‐Cl brines in Devonian formations, western Canada sedimentary basin. Applied Geochemistry, 2, 373–384. https://doi.org/10.1016/0883‐2927(87)90022‐9
    [Google Scholar]
  105. Stacey, J., Hollis, C., Corlett, H., & Koeshidayatullah, A. (2020). Burial dolomitization driven by modified seawater and basal aquifer‐sourced brines: Insights from the Middle and Upper Devonian of the Western Canadian Sedimentary Basin. Basin Research, 33, 648–680. https://doi.org/10.1111/bre.12489
    [Google Scholar]
  106. Tanaka, K., Miura, N., Asahara, Y., & Kawabe, I. (2003). Rare earth element and strontium isotopic study of seamount‐type limestones in Mesozoic accretionary complex of Southern Chichibu Terrane, central Japan: Implication for incorporation process of seawater REE into limestones. Geochemical Journal, 37, 163–180. https://doi.org/10.2343/geochemj.37.163
    [Google Scholar]
  107. Taylor, B. E. (1987). Stable isotope geochemistry of ore‐forming fluids: Short course in stable isotope geochemistry of low temperature fluids (pp. 337–445). Québec: Mineralogical Association of Canada.
    [Google Scholar]
  108. Taylor, H. P.Jr (1979). Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits: Geochemistry of hydrothermal ore deposits (pp. 236–277). New York, NY: Wiley.
    [Google Scholar]
  109. Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., & Wood, R. A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate‐dominated marine settings. Chemical Geology, 438, 146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027
    [Google Scholar]
  110. Varela, D. E., Pride, C. J., & Brzezinski, M. A. (2004). Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 18, 1041–1048. https://doi.org/10.1029/2003GB002140
    [Google Scholar]
  111. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., & Strauss, H. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemistry Geology, 161, 59–88. https://doi.org/10.1016/S0009‐2541(99)00081‐9
    [Google Scholar]
  112. Wang, D. Y. (2017). Study of hydrothermal processes and hydrothermal reservoir on Ordovician at Shunnan area, central of Tarim Basin. MA thesis, Chengdu University of Technology, Chengdu.
    [Google Scholar]
  113. Wang, K., Hu, S. Y., Hu, Z. Y., Liu, W., Huang, Q. Y., Shi, S. Y., & Li, M. (2016). Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development. Acta Petrolei Sinica, 37, 439–453.(in Chinese with English abstract).
    [Google Scholar]
  114. Wang, S., Cao, Y., Du, D., Zhang, Y., & Liu, C. (2020). Characteristics and pore genesis of dolomite in Ordovician Yingshan Formation in Gucheng area, Tarim Basin. Acta Petrologica Sinica, 36, 3477–3492. https://doi.org/10.18654/1000‐0569/2020.11.14
    [Google Scholar]
  115. Wang, T. G., Song, D. F., Li, M. J., Yang, C. Y., Ni, Z. Y., Li, H. L., & Feng, Z. H. (2014). Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan‐Gucheng region, Tarim Basin. Oil & Gas Geology, 35, 753–762.(in Chinese with English abstract).
    [Google Scholar]
  116. Webb, G. E., & Kamber, B. S. (2000). Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64, 1557–1565. https://doi.org/10.1016/S0016‐7037(99)00400‐7
    [Google Scholar]
  117. Webb, G. E., Nothdurft, L. D., Kamber, B. S., Kloprogge, J. T., & Zhao, J. X. (2009). Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56, 1433–1463. https://doi.org/10.1111/j.1365‐3091.2008.01041.x
    [Google Scholar]
  118. White, W. (2013). Geochemistry. Chichester: John Wiley & Sons, Ltd.
    [Google Scholar]
  119. Xiao, C. Y., Yang, L., Lin, B., & You, D. H. (2020). Volcanic activity stages and distribution during the Permian in the Shunbei area, Tarim Basin. Petroleum Geology & Experiment, 42, 177–185.(in Chinese with English abstract).
    [Google Scholar]
  120. Yang, S. F., Chen, H. L., Li, Z. L., Li, Y. Q., Yu, X., Li, D. X., & Meng, L. F. (2013). Early Permian Tarim Large Igneous Province in northwest China. Science China Earth Sciences, 56, 2015–2026. https://doi.org/10.1007/s11430‐013‐4653‐y
    [Google Scholar]
  121. Yao, Z., He, G., Li, C. F., & Dong, C. (2018). Sill geometry and emplacement controlled by a major disconformity in the Tarim Basin, China. Earth and Planetary Science Letters, 501, 37–45. https://doi.org/10.1016/j.epsl.2018.08.026
    [Google Scholar]
  122. Yu, X. (2009). Magma evolution and deep geological processes of Early Permian Tarim Large Igneous Province. PhD dissertation, Zhejiang University, Hangzhou.
    [Google Scholar]
  123. Yu, X., Yang, S. F., Chen, H. L., Li, Z. L., & Li, Y. Q. (2017). Petrogenetic model of the Permian Tarim Large Igneous Province. Science China: Earth Sciences, 60, 1805–1816.(in Chinese with English abstract).
    [Google Scholar]
  124. Yun, L., & Cao, Z. C. (2014). Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin. Oil and Gas Geology, 35, 788–797.(in Chinese with English abstract).
    [Google Scholar]
  125. Zhang, W., Guan, P., Jian, X., Feng, F., & Zou, C. (2014). In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids. Geochemistry Geophysics Geosystems, 15, 2744–2764. https://doi.org/10.1002/2013GC005194
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12562
Loading
/content/journals/10.1111/bre.12562
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): dolomitisation; silicification; strike‐slip faults; volcanism

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error