1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

The BQART formulais an empirical relationship between observed total suspend sediment load (Tss) and catchment area (A), relief (R), temperature (T), water discharge (Q) and erodibility (B) in modern river systems. Application of the method for anancient S2S mass budget study requires: (1) an assessment of the methods suitability, (2) a paleogeographicreconstruction, (3) a paleoclimate reconstruction and (4) Monte Carlo simulations.

, Abstract

Constraining the timing and volume of sediment dispersal in an ancient sedimentary system is vital to understand a basin's infill history. One preferred method for a first‐order approximation of ancient sediment load estimates, the BQART model, is based on empirical observations of modern river systems relating basin morphology, topography, climate, run‐off and bedrock characteristics. Despite the popularity of such methods, a comprehensive assessment on the validity of using modern river observations to measure sediment load on geological timescales is lacking. Here, we investigate the uncertainties, sensitivities and practicalities surrounding the use of modern empirical observations in general and the BQART model in particular, to evaluate ancient sediment river loads. Although catchment area and relief are the least constrained parameters in an ancient sedimentary system, the temperature parameter may have an even more significant impact in the range of predicted sediment load estimates using a BQART approach. The applicability of BQART is most suitable for regional to continental scale source‐to‐sink systems that are based on robust paleogeographic and paleoclimatic models of cold (<2°C) or warm temperate (>8°C) climates. One further needs to consider the high amplitude discharge events that can dominate the stratigraphic record which are not captured by historical observations of sediment load over a 30‐year period. In addition, our limited understanding of bedload material transport and an unknown pristine environment in the Anthropocene reduce the reliability of modern sediment load estimates for the ancient. Mass budget estimates in deep time based on empirical relationships of modern river systems can thus provide first‐order estimates within an order of magnitude but need to consider the limitations imposed by extrapolating the modern to the ancient. Here, we present a framework to consider the suitability of the BQART method for ancient source‐to‐sink mass budget analyses.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12563
2021-07-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/4/bre12563.html?itemId=/content/journals/10.1111/bre.12563&mimeType=html&fmt=ahah

References

  1. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., Whitchurch, A. L., & Whittaker, A. C. (2013). The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130. https://doi.org/10.1111/sed.12015
    [Google Scholar]
  2. Amos, K. J., Alexander, J., Horn, A., Pocock, G. D., & Fielding, C. R. (2004). Supply limited sediment transport in a high‐discharge event of the tropical Burdekin River, North Queensland, Australia. Sedimentology, 51, 145–162. https://doi.org/10.1111/j.1365‐3091.2004.00616.x
    [Google Scholar]
  3. Antonelli, C., Eyrolle, F., Rolland, B., Provansal, M., & Sabatier, F. (2008). Suspended sediment and 137Cs fluxes during the exceptional December 2003 flood in the Rhone River, southeast France. Geomorphology, 95, 350–360. https://doi.org/10.1016/j.geomorph.2007.06.007
    [Google Scholar]
  4. Armstrong, H. A., Wagner, T., Herringshaw, L. G., Farnsworth, A. J., Lunt, D. J., Harland, M., & Atar, E. F. L. (2016). Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway. Paleoceanography, 31(8), 1041–1053. https://doi.org/10.1002/2015PA002911
    [Google Scholar]
  5. Babinski, Z. (2005). The relationship between suspended and bed load transport in river channels. Sediment budgets. Proceedings of symposium S1 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005. IAHS Publ. 291, 2005.
  6. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river paleo‐discharge, paleoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110. https://doi.org/10.1016/j.earscirev.2015.10.013
    [Google Scholar]
  7. Bidorn, B., Chanyotha, S., Kish, S. A., Donoghue, J. F., Bidorn, K., & Mama, R. (2015). The effects of Thailand’s Great Flood of 2011 on river sediment discharge in the upper Chao Phraya River basin, Thailand. International Journal of Sediment Research, 30, 328–337. https://doi.org/10.1016/j.ijsrc.2015.10.001
    [Google Scholar]
  8. Blum, M. D., & Hattier‐Womack, J. (2009). Climate change, sea‐level change, and fluvial sediment supply to deepwater depositional systems. In B.Kneller, O. J.Martinsen, & B.McCaffrey (Eds.), External controls on deep‐water depositional systems (pp. 15–39). SEPM, Special Publication. https://doi.org/10.2110/sepmsp.092.015
    [Google Scholar]
  9. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13(6), 2169–2205. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  10. Braun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180–181, 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008
    [Google Scholar]
  11. Brewer, C. J., Hampson, G. J., Whittaker, A. C., Roberts, G. G., & Watkins, S. E. (2020). Comparison of methods to estimate sediment flux in ancient sediment routing systems. Earth‐Science Reviews, 207, 103217. https://doi.org/10.1016/j.earscirev.2020.103217
    [Google Scholar]
  12. Cantalice, J. R. B., Cunha Filho, M., Stosic, B. D., Piscoya, V. C., Guerra, S. M. S., & Singh, V. P. (2013). Relationship between bedload and suspended sediment in the sand‐bed Exu River, in the semi‐arid region of Brazil. Hydrological Sciences Journal, 58, 1789–1802. https://doi.org/10.1080/02626667.2013.839875
    [Google Scholar]
  13. Cohen, S., Kettner, A. J., Syvitski, J. P. M., & Fekete, B. M. (2013). WBMsed, a distributed global‐scale riverine sediment flux model: Model description and validation. Computers and Geosciences, 53, 80–93. https://doi.org/10.1016/j.cageo.2011.08.011
    [Google Scholar]
  14. Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G., & Waller, R. I. (2020). The empirical basis for modelling glacial erosion rates. Nature Communications, 11(1), 1–7. https://doi.org/10.1038/s41467‐020‐14583‐8
    [Google Scholar]
  15. Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., & Gosai, M. (2013). Spatial and temporal variations in landscape evolution: Historic and longer‐term sediment flux through global catchments. The Journal of Geology, 121, 35–56. https://doi.org/10.1086/668680
    [Google Scholar]
  16. Curtis, W. F., Culbertson, J. K., & Chase, E. B. (1973). Fluvial‐sediment discharge to the oceans from the conterminous United States. US Geological Survey, 670, 17.
    [Google Scholar]
  17. Dada, O. A., Li, G., Qiao, L., Asiwaju‐Bello, Y. A., & Anifowose, A. Y. B. (2018). Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans. Journal of African Earth Sciences, 139, 222–231. https://doi.org/10.1016/j.jafrearsci.2017.12.023
    [Google Scholar]
  18. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G.Zuffa (Ed.), Provenance of arenites. NATO ASI Series (Series C: Mathematical and Physical Sciences) (pp. 148, 333–361). Dordrecht: Springer.
    [Google Scholar]
  19. Dickinson, W. R., & Gehrels, G. E. (2008). U‐Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest laurentia. Journal of Sedimentary Research, 78(12), 745–764. https://doi.org/10.2110/jsr.2008.088
    [Google Scholar]
  20. Dunne, T., Mertes, L. A. K., Meade, R. H., Richey, J. E., & Forsberg, B. R. (1998). Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Bulletin of the Geological Society of America, 110, 450–467.
    [Google Scholar]
  21. Dürr, H. H., Meybeck, M., & Dürr, S. H. (2005). Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochemical Cycles, 19(4). https://doi.org/10.1029/2005GB002515
    [Google Scholar]
  22. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2018). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. Bulletin of the Geological Society of America, 130, 263–283. https://doi.org/10.1130/B31639.1
    [Google Scholar]
  23. Eide, C. H., Müller, R., & Helland‐Hansen, W. (2018). Using climate to relate water discharge and area in modern and ancient catchments. Sedimentology, 65, 1378–1389. https://doi.org/10.1111/sed.12426
    [Google Scholar]
  24. Gibling, M. R., & Davies, N. S. (2012). Palaeozoic landscapes shaped by plant evolution. Nature Geoscience, 5, 99. https://doi.org/10.1038/ngeo1376
    [Google Scholar]
  25. Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., … Zarfl, C. (2019). Mapping the world’s free‐flowing rivers. Nature, 569(7755), 215–221. https://doi.org/10.1038/s41586‐019‐1111‐9
    [Google Scholar]
  26. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Carlier, L. E., de Veslud, C., & Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24, 3–30.
    [Google Scholar]
  27. Hack, J. T. (1957). Studies of longitudinal profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294‐B, 1.
    [Google Scholar]
  28. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering earth’s natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86, 1008–1033. https://doi.org/10.2110/jsr.2016.56
    [Google Scholar]
  29. Holbrook, J., & Wanas, H. (2014). A Fulcrum approach to assessing source‐to‐sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the cretaceous of Egypt. Journal of Sedimentary Research, 84(5), 349–372. https://doi.org/10.2110/jsr.2014.29
    [Google Scholar]
  30. Hovius, N. (1996). Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8, 29–44. https://doi.org/10.1111/j.1365‐2117.1996.tb00113.x
    [Google Scholar]
  31. Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285. https://doi.org/10.1029/94WR00757
    [Google Scholar]
  32. Ingersoll, R. V. (2011). Tectonics of sedimentary basins, with revised nomenclature. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (Firsted., pp. 1–43). Oxford: Blackwell Publishing Ltd. https://doi.org/10.1002/9781444347166.ch1
    [Google Scholar]
  33. Ingersoll, R. V., & Suczek, C. A. (1979). Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Research, 49(4), 1217–1228.
    [Google Scholar]
  34. Jacob, R., Schafer, C., Foster, I., Tobis, M., & Anderson, J. (2001). Computational design and performance of the Fast Ocean Atmosphere Model, version one. Computational Science—ICCS 2001. In V. N. Alexandrov et al (Eds.), Lecture Notes in Computer Science Series, 2073, 175–184.
    [Google Scholar]
  35. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, Article L19401.
    [Google Scholar]
  36. Kesel, R. H., Yodis, E. G., & McCraw, D. J. (1992). An approximation of the sediment budget of the lower Mississippi River prior to major human modification. Earth Surface Processes and Landforms, 17, 711–722. https://doi.org/10.1002/esp.3290170707
    [Google Scholar]
  37. Lin, C., Liu, S., Zhuang, Q., & Steel, R. J. (2018). Sedimentation of Jurassic fan‐delta wedges in the Xiahuayuan basin reflecting thrust‐fault movements of the western Yanshan fold‐and‐thrust belt, China. Sedimentary Geology, 368, 24–43. https://doi.org/10.1016/j.sedgeo.2018.03.005
    [Google Scholar]
  38. Lisimenka, A., & Kubicki, A. (2019). Bedload transport in the Vistula River mouth derived from dune migration rates, southern Baltic Sea. Oceanologia, 61, 384–394. https://doi.org/10.1016/j.oceano.2019.02.003
    [Google Scholar]
  39. Liu, Q., Zhu, X., Zeng, H., & Li, S. (2019). Source‐to‐sink analysis in an Eocene rifted lacustrine basin margin of western Shaleitian Uplift area, offshore Bohai Bay Basin, eastern China. Marine and Petroleum Geology, 107, 41–58. https://doi.org/10.1016/j.marpetgeo.2019.05.013
    [Google Scholar]
  40. Lyster, S. J., Whittaker, A. C., Allison, P. A., Lunt, D. J., & Farnsworth, A. (2020). Predicting sediment discharges and erosion rates in deep time—Examples from the late Cretaceous North American continent. Basin Research, 32(6), 1547–1573. https://doi.org/10.1111/bre.12442
    [Google Scholar]
  41. Markwick, P. J., & Valdes, P. J. (2004). Palaeo‐digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: A Maastrichtian (late Cretaceous) example. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 37–63. https://doi.org/10.1016/j.palaeo.2004.06.015
    [Google Scholar]
  42. Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean: A global synthesis. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511781247
    [Google Scholar]
  43. Milliman, J. D., & Meade, R. H. (1983). World‐wide delivery of river sediment to the oceans. Journal of Geology, 91, 1–21. https://doi.org/10.1086/62874110.1086/628741
    [Google Scholar]
  44. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  45. Nyberg, B., Gawthorpe, R. L., & Helland‐hansen, W. (2018). Geomorphology The distribution of rivers to terrestrial sinks: Implications for sediment routing systems. Geomorphology, 316, 1–23. https://doi.org/10.1016/j.geomorph.2018.05.007
    [Google Scholar]
  46. Nyberg, B., Helland‐Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Sømme, T., & Leiknes, S. (2018). Revisiting morphological relationships of modern source‐to‐sink segments as a first‐order approach to scale ancient sedimentary systems. Sedimentary Geology, 373, 111–133. https://doi.org/10.1016/j.sedgeo.2018.06.007
    [Google Scholar]
  47. Nyberg, B., & Howell, J. A. (2015). Is the present the key to the past? A global characterization of modern sedimentary basins. Geology, 43(7), 643–646. https://doi.org/10.1130/G36669.1
    [Google Scholar]
  48. Petter, A. L., Steel, R. J., Mohrig, D., Kim, W., & Carvajal, C. (2013). Estimation of the paleoflux of terrestrial‐derived solids across ancient basin margins using the stratigraphic record. GSA Bulletin, 125(3–4), 578–593. https://doi.org/10.1130/B30603.1
    [Google Scholar]
  49. Reiners, P. W. (2007). Thermochronologic approaches to paleotopography. Reviews in Mineralogy and Geochemistry, 66(1), 243–267. https://doi.org/10.2138/rmg.2007.66.10
    [Google Scholar]
  50. Restrepo, J. D., Kettner, A. J., & Syvitski, J. P. M. (2015). Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene, 10, 13–28. https://doi.org/10.1016/j.ancene.2015.09.001
    [Google Scholar]
  51. Rigon, R., Rodriguez‐Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack’s Law. Water Resources Research, 32(11), 3367–3374. https://doi.org/10.1029/96WR02397
    [Google Scholar]
  52. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  53. Rowley, D. B., & Garzione, C. N. (2007). Stable isotope‐based paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35(1), 463–508. https://doi.org/10.1146/annurev.earth.35.031306.140155
    [Google Scholar]
  54. Scotese, C. R., & Wright, N. (2018). PALEOMAP paleodigital elevation models (PaleoDEMS) for the phanerozoic. https://www.earthbyte.org/paleodem‐resource‐scotese‐and‐wright‐2018/
  55. Sellwood, B., & Valdes, P. (2008). Jurassic climates. Proceedings of the Geologists' Association, 119, 5–17. https://doi.org/10.1016/S0016‐7878(59)80068‐7
    [Google Scholar]
  56. Smith, D. G. (1986). Anastomosing river deposits, sedimentation rates and basin subsidence, Magdalena River, northwestern Colombia, South America. Sedimentary Geology, 46, 177–196. https://doi.org/10.1016/0037‐0738(86)90058‐8
    [Google Scholar]
  57. Sømme, T. O., Helland‐hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387. https://doi.org/10.1111/j.1365‐2117.2009.00397.x
    [Google Scholar]
  58. Sømme, T. O., Martinsen, O. J., & Lunt, I. (2013). Linking offshore stratigraphy to onshore paleotopography: The Late Jurassic‐Paleocene evolution of the south Norwegian margin. Bulletin of the Geological Society of America, 125, 1164–1186. https://doi.org/10.1130/B30747.1
    [Google Scholar]
  59. Somme, T. O., Piper, D. J. W., Deptuck, M. E., & Helland‐Hansen, W. (2011). Linking onshore‐offshore sediment dispersal in the golo source‐to‐sink system (Corsica, France) during the late quaternary. Journal of Sedimentary Research, 81(2), 118–137. https://doi.org/10.2110/jsr.2011.11
    [Google Scholar]
  60. Sømme, T. O., Skogseid, J., Embry, P., & Løseth, H. (2019). Manifestation of tectonic and climatic perturbations in deep‐time stratigraphy—An example from the paleocene succession offshore Western Norway. Frontiers in Earth Science, 7, 303. https://doi.org/10.3389/feart.2019.00303
    [Google Scholar]
  61. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  62. Turowski, J. M., Rickenmann, D., & Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57, 1126–1146. https://doi.org/10.1111/j.1365‐3091.2009.01140.x
    [Google Scholar]
  63. Vericat, D., & Batalla, R. J. (2006). Sediment transport in a large impounded river: The lower Ebro, NE Iberian Peninsula. Geomorphology, 79, 72–92. https://doi.org/10.1016/j.geomorph.2005.09.017
    [Google Scholar]
  64. von Blanckenburg, F. (2005). The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters, 237, 462–479. https://doi.org/10.1016/j.epsl.2005.06.030
    [Google Scholar]
  65. Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: Major global impact from registered river impoundments. Global and Planetary Change, 39(1), 169–190. https://doi.org/10.1016/S0921‐8181(03)00023‐
    [Google Scholar]
  66. Warrick, J. A., & Milliman, J. D. (2003). Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets. Geology, 31, 781–784. https://doi.org/10.1130/G19671.1
    [Google Scholar]
  67. Watkins, S. E., Whittaker, A. C., Bell, R. E., McNeill, L. C., Gawthorpe, R. L., Brooke, S. A. S., & Nixon, C. W. (2019). Are landscapes buffered to high‐frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y. GSA Bulletin, 131(3‐4), 372–388. https://doi.org/10.1130/B31953.1
    [Google Scholar]
  68. Zhang, J., Covault, J., Pyrcz, M., Sharman, G., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico. AAPG Bulletin, 102(9), 1685–1702. https://doi.org/10.1306/01081817308
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12563
Loading
/content/journals/10.1111/bre.12563
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): BQART; deep‐time; mass balance; RoBART; sediment load; source‐to‐sink

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error