1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Several salt basins globally have been subject to multiphase deformation. The geometry of structures formed within a salt sheet during an early phase of deformation can be concealed by overprinting during later deformation phases, impeding an informed investigation into the early drivers for salt flow. The layered Messinian Evaporites in the deep basins of the Eastern Mediterranean have undergone a Late Messinian phase of deformation, punctuated by truncation of the top of the deformation structures, followed by a Late Pliocene‐Recent phase of deformation. Seismic reflection data show that the Messinian Evaporites are internally dominated by contraction structures that verge basinward in the Late Pliocene‐Recent flow direction, with several apparent detachments. Planform linear trails of fluid escape pipes, documented in the North Levant Basin, that cross‐cut the Messinian Evaporites present natural passive markers for the internal flow kinematics of the salt sheet throughout the Late Pliocene‐Recent phase of deformation. Using the Couette (simple shear) strain profile implied by the fluid escape pipes, we remove the effects of the Late Pliocene‐Recent deformation through cross section and map restorations. The subsequent geometries are far simpler, with upright folds that are now vertically aligned. Once apparently detached structures are demonstrably connected through the Messinian Evaporites. The vergence of the present day intrasalt folds can be taken as an indicator for the Late Pliocene‐Recent flow direction and distinct deformation geometries that connect at various levels through the salt sequence once retro‐deformed can assist when interpreting the salt flow profile. The retro‐deformation is essential for how intra‐Messinian deformation and its drivers are interpreted going forward. Furthermore, simple shear deformation results in erroneous apparent percentage shortening calculations as line length is not conserved, obscuring the strain from the pre‐Pliocene deformational phase. The methodology employed here has important implications for all salt basins that have undergone multiphase deformation.

,

Recumbent folds in the Messinian Evaporites of the Eastern Mediterranean, formed by simple shear deformation of upright folds during multiphase salt tectonics.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12564
2021-07-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/4/bre12564.html?itemId=/content/journals/10.1111/bre.12564&mimeType=html&fmt=ahah

References

  1. Albertz, M., & Ings, S. J. (2012). Some consequences of mechanical stratification in basin‐scale numerical models of passive‐margin salt tectonics. Geological Society, London, Special Publications, 363, 303–330. https://doi.org/10.1144/SP363.14
    [Google Scholar]
  2. Allen, H., Jackson, C.‐A.‐L., & Fraser, A. J. (2016). Gravity‐driven deformation of a youthful saline giant: The interplay between gliding and spreading in the Messinian basins of the Eastern Mediterranean. Petroleum Geoscience, 22, 340–356. https://doi.org/10.1144/petgeo2016‐034
    [Google Scholar]
  3. Alsop, G., Weinberger, R., Marco, S., & Levi, T. (2020). Folding during soft‐sediment deformation. Geological Society, London, Special Publications, 487, 81–104. https://doi.org/10.1144/SP487.1
    [Google Scholar]
  4. Bar, O., Zilberman, E., Feinstein, S., Calvo, R., & Gvirtzman, Z. (2016). The uplift history of the Arabian Plateau as inferred from geomorphologic analysis of its northwestern edge. Tectonophysics, 671, 9–23.
    [Google Scholar]
  5. Ben Zeev, Y., & Gvirtzman, Z. (2020). When Two Salt Tectonics Systems Meet: Gliding downslope the levant margin and salt out‐squeezing from under the Nile delta. Tectonics, 39, e2019TC005715.
    [Google Scholar]
  6. Ben‐Avraham, Z. (1978). The structure and tectonic setting of the Levant continental margin, Eastern Mediterranean. Tectonophysics, 46, 313–331. https://doi.org/10.1016/0040‐1951(78)90210‐X
    [Google Scholar]
  7. Berkhout, A. J. (1984). Seismic resolution: A quantitative analysis of resolving power of acoustical echo techniques. Geophysical Press.
    [Google Scholar]
  8. Bertoni, C., & Cartwright, J. A. (2006). Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sedimentary Geology, 188, 93–114. https://doi.org/10.1016/j.sedgeo.2006.03.019
    [Google Scholar]
  9. Bertoni, C., & Cartwright, J. (2007). Major erosion at the end of the Messinian Salinity Crisis: Evidence from the Levant Basin, Eastern Mediterranean. Basin Research, 19, 1–18. https://doi.org/10.1111/j.1365‐2117.2006.00309.x
    [Google Scholar]
  10. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data. Society of Exploration Geophysicists and American Association of Petroleum Geologists.
    [Google Scholar]
  11. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28, 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  12. Brun, J. P., & Merle, O. (1985). Strain patterns in models of spreading‐gliding Nappes. Tectonics, 4, 705–719. https://doi.org/10.1029/TC004i007p00705
    [Google Scholar]
  13. Carey, S. W. (1962). Folding. Bulletin of Canadian Petroleum Geology, 10, 95–144.
    [Google Scholar]
  14. Cartwright, J. A., & Jackson, M. (2008). Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120, 399–413. https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  15. Cartwright, J., Jackson, M., Dooley, T., & Higgins, S. (2012). Strain partitioning in gravity‐driven shortening of a thick, multilayered evaporite sequence. Geological Society, London, Special Publications, 363, 449–470. https://doi.org/10.1144/SP363.21
    [Google Scholar]
  16. Cartwright, J., Kirkham, C., Bertoni, C., Hodgson, N., & Rodriguez, K. (2018). Direct calibration of salt sheet kinematics during gravity‐driven deformation. Geology, 46, 623–626. https://doi.org/10.1130/G40219.1
    [Google Scholar]
  17. Elfassi, Y., Gvirtzman, Z., Katz, O., & Aharonov, E. (2019). Chronology of post‐Messinian faulting along the Levant continental margin and its implications for salt tectonics. Marine and Petroleum Geology, 109, 574–588. https://doi.org/10.1016/j.marpetgeo.2019.05.032
    [Google Scholar]
  18. Feng, Y. E., Steinberg, J., & Reshef, M. (2017). Intra‐salt deformation: Implications for the evolution of the Messinian evaporites in the Levant Basin, eastern Mediterranean. Marine and Petroleum Geology, 88, 251–267. https://doi.org/10.1016/j.marpetgeo.2017.08.027
    [Google Scholar]
  19. Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118–131. https://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  20. Fiduk, J. C., & Rowan, M. G. (2012). Analysis of folding and deformation within layered evaporites in Blocks BM‐S‐8 & ‐9, Santos Basin, Brazil. Geological Society, London, Special Publications, 363, 471–487. https://doi.org/10.1144/SP363.22
    [Google Scholar]
  21. Fossen, H. (2016). Structural geology. Cambridge University Press.
    [Google Scholar]
  22. Garcia‐Castellanos, D., Estrada, F., Jiménez‐Munt, I., Gorini, C., Fernández, M., Vergés, J., & de Vicente, R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–781. https://doi.org/10.1038/nature08555
    [Google Scholar]
  23. Gardosh, M. A., & Druckman, Y. (2006). Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. Geological Society, London, Special Publications, 260, 201–227. https://doi.org/10.1144/GSL.SP.2006.260.01.09
    [Google Scholar]
  24. Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment loading: Stability analysis and finite‐element experiments. Basin Research, 16, 199–218. https://doi.org/10.1111/j.1365‐2117.2004.00229.x
    [Google Scholar]
  25. Ghalayini, R., Homberg, C., Daniel, J., & Nader, F. (2017). Growth of layer‐bound normal faults under a regional anisotropic stress field. Geological Society, London, Special Publications, 439, 57–78. https://doi.org/10.1144/SP439.13
    [Google Scholar]
  26. Ghalayini, R., Nader, F. H., Bou Daher, S., Hawie, N., & Chbat, W. E. (2018). Petroleum systems of Lebanon: An update and review. Journal of Petroleum Geology, 41, 189–214. https://doi.org/10.1111/jpg.12700
    [Google Scholar]
  27. Gradmann, S., Hübscher, C., Ben‐Avraham, Z., Gajewski, D., & Netzeband, G. (2005). Salt tectonics off northern Israel. Marine and Petroleum Geology, 22, 597–611. https://doi.org/10.1016/j.marpetgeo.2005.02.001
    [Google Scholar]
  28. Gvirtzman, Z., Manzi, V., Calvo, R., Gavrieli, I., Gennari, R., Lugli, S., Reghizzi, M., & Roveri, M. (2017). Intra‐Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology, 45, 915–918. https://doi.org/10.1130/G39113.1
    [Google Scholar]
  29. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., & Ben‐Avraham, Z. (2013). Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth and Planetary Science Letters, 379, 108–119. https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  30. Hall, J., Calon, T., Aksu, A., & Meade, S. (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, eastern Mediterranean Sea. Marine Geology, 221, 261–297. https://doi.org/10.1016/j.margeo.2005.03.007
    [Google Scholar]
  31. Hübscher, C., Cartwright, J., Cypionka, H., Delange, G. J., Robertson, A., Suc, J. P., & Urai, J. L. (2007). Global look at salt giants. Eos, Transactions American Geophysical Union, 88, 177–179. https://doi.org/10.1029/2007EO160002
    [Google Scholar]
  32. Hudleston, P. J. (2015). Structures and fabrics in glacial ice: A review. Journal of Structural Geology, 81, 1–27. https://doi.org/10.1016/j.jsg.2015.09.003
    [Google Scholar]
  33. Jackson, C.‐A.‐L., Jackson, M. P., Hudec, M. R., & Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basin—Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162. https://doi.org/10.1016/j.jsg.2015.01.010
    [Google Scholar]
  34. Kartveit, K. H., Omosanya, K. O., Johansen, S. E., Eruteya, O., Reshef, M., & Waldmann, N. D. (2018). Multiphase structural evolution and geodynamic implications of Messinian salt‐related structures, Levant Basin, Offshore Israel. Tectonics, 37(5), 1210–1230. https://doi.org/10.1029/2017TC004794
    [Google Scholar]
  35. Kirkham, C., Bertoni, C., Cartwright, J., Lensky, N. G., Sirota, I., Rodriguez, K., & Hodgson, N. (2020). The demise of a ‘salt giant’driven by uplift and thermal dissolution. Earth and Planetary Science Letters, 531, https://doi.org/10.1016/j.epsl.2019.115933
    [Google Scholar]
  36. Kirkham, C., Cartwright, J., Bertoni, C., Rodriguez, K., & Hodgson, N. (2019). 3D kinematics of a thick salt layer during gravity‐driven deformation. Marine and Petroleum Geology, 110, 434–449. https://doi.org/10.1016/j.marpetgeo.2019.07.036
    [Google Scholar]
  37. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2018). The genesis of mud volcano conduits through thick evaporite sequences. Basin Research, 30, 217–236. https://doi.org/10.1111/bre.12250
    [Google Scholar]
  38. Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F. J., & Wilson, D. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652. https://doi.org/10.1038/23231
    [Google Scholar]
  39. Lofi, J. (2018). Seismic Atlas of the Messinian Salinity Crisis markers in the Mediterranean Sea (Vol. 2). Société Géologique de France.
    [Google Scholar]
  40. Lofi, J., Sage, F., Déverchère, J., Loncke, L., Maillard, A., Gaullier, V., Thinon, I., Gillet, H., Guennoc, P., & Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi‐site seismic analysis. Bulletin De La Société Géologique De France, 182, 163–180. https://doi.org/10.2113/gssgfbull.182.2.163
    [Google Scholar]
  41. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.‐M., Basire, C., & Graue, K. (2011). 1000 m long gas blow‐out pipes. Marine and Petroleum Geology, 28, 1047–1060.
    [Google Scholar]
  42. Madof, A. S., Bertoni, C., & Lofi, J. (2019). Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology, 47, 171–174. https://doi.org/10.1130/G45873.1
    [Google Scholar]
  43. Maillard, A., Hübscher, C., Benkhelil, J., & Tahchi, E. (2011). Deformed Messinian markers in the Cyprus Arc: Tectonic and/or Messinian Salinity Crisis indicators?Basin Research, 23, 146–170. https://doi.org/10.1111/j.1365‐2117.2010.00464.x
    [Google Scholar]
  44. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. J. (2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322. https://doi.org/10.1111/ter.12038
    [Google Scholar]
  45. Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., Waldmann, N. D., Spaulding, S. A., Bialik, O. M., Boudinot, F. G., Illner, P., & Makovsky, Y. (2019). Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long‐lasting halite deposition during Atlantic connectivity. Earth‐Science Reviews, 194, 374–398. https://doi.org/10.1016/j.earscirev.2019.05.011
    [Google Scholar]
  46. Nader, F. H. (2011). The petroleum prospectivity of Lebanon: An overview. Journal of Petroleum Geology, 34, 135–156. https://doi.org/10.1111/j.1747‐5457.2011.00498.x
    [Google Scholar]
  47. Netzeband, G., Hübscher, C., & Gajewski, D. (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230, 249–273. https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  48. Oppo, D., Evans, S., Iacopini, D., Kabir, S. M., Maselli, V., & Jackson, C.‐A.‐L. (2020). Leaky salt: Pipe trails record the history of cross‐evaporite fluid escape in the northern Levant Basin, Eastern Mediterranean. Basin Research. https://doi.org/10.1111/bre.12536
    [Google Scholar]
  49. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81, 1023–1041. https://doi.org/10.1306/522B49C9‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  50. Peel, F. J. (2014). The engines of gravity‐driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142. https://doi.org/10.1016/j.tecto.2014.06.023
    [Google Scholar]
  51. Reiche, S., Hübscher, C., & Beitz, M. (2014). Fault‐controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Marine Geology, 354, 53–68. https://doi.org/10.1016/j.margeo.2014.05.002
    [Google Scholar]
  52. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins. In K. R.McClay (Ed.), Thrust and hydrocarbon systems: AAPG Memoir (Vol. 82, pp. 157–182). American Association of Petroleum Geologists.
    [Google Scholar]
  53. Rowan, M. G., Urai, J. L., Fiduk, J. C., & Kukla, P. A. (2019). Deformation of intrasalt competent layers in different modes of salt tectonics. Solid Earth, 10(987–1013), 2019. https://doi.org/10.5194/se‐10‐987‐2019
    [Google Scholar]
  54. Ryan, W. B., & Cita, M. B. (1978). The nature and distribution of Messinian erosional surfaces—Indicators of a several‐kilometer‐deep Mediterranean in the Miocene. Marine Geology, 27, 193–230. https://doi.org/10.1016/0025‐3227(78)90032‐4
    [Google Scholar]
  55. Ryan, W., Cita, M., & Hsü, H. (1973). The origin of the Mediterranean evaporates. Initial Reports of the Deep Sea Drilling Project, 13, 1203–1231.
  56. Sanderson, D. J. (1979). The transition from upright to recumbent folding in the Variscan fold belt of southwest England: A model based on the kinematics of simple shear. Journal of Structural Geology, 1, 171–180. https://doi.org/10.1016/0191‐8141(79)90037‐3
    [Google Scholar]
  57. Talbot, C. J. (1979). Fold trains in a glacier of salt in southern Iran. Journal of Structural Geology, 1, 5–18. https://doi.org/10.1016/0191‐8141(79)90017‐8
    [Google Scholar]
  58. Van Gent, H., Urai, J. L., & de Keijzer, M. (2011). The internal geometry of salt structures–a first look using 3D seismic data from the Zechstein of the Netherlands. Journal of Structural Geology, 33, 292–311. https://doi.org/10.1016/j.jsg.2010.07.005
    [Google Scholar]
  59. Wynne‐Edwards, H. (1963). Flow folding. American Journal of Science, 261, 793–814.
    [Google Scholar]
  60. Zucker, E., Gvirtzman, Z., Steinberg, J., & Enzel, Y. (2020). Salt tectonics in the Eastern Mediterranean Sea: Where a giant delta meets a salt giant. Geology, 48, 134–138. https://doi.org/10.1130/G47031.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12564
Loading
/content/journals/10.1111/bre.12564
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error