1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

[

The analysis of the luminescence sensitivity of optically stimulated luminescence and thermoluminescence signals of sandstone samples from the Parnaíba Basin allowed to identify stratigraphic units and provided new insights about basin evolution.

, Abstract

Luminescence characteristics of quartz and feldspar allow to discriminate sediments from different source areas. Particularly, sensitivity of optically stimulated luminescence (OSL) and thermoluminescence (TL) signals of quartz and infrared‐stimulated luminescence (IRSL) of feldspar from Quaternary sediments has been used for provenance analysis. These properties change due to source area denudation rates and sediment reworking, which drive the number of burial irradiation‐solar exposure cycles of sediment grains in surface systems. Here, we use for the first time a similar approach to interpret the geomorphic conditions of source areas of Silurian to Triassic siliciclastic sedimentary units of the intracratonic Parnaíba Basin in northeast Brazil. Luminescence measurements were performed on sand grains, and statistical tests were applied to evaluate differences in luminescence properties within and across stratigraphic units. We explored the position of well‐known “110°C” (TL) and “325°C” (TL) TL peaks of quartz as proxies to discriminate stratigraphic units with similar lithological assemblages. OSL and TL sensitivities as well as the dominance of the so‐called fast OSL component increase from Silurian to Triassic sedimentary units, while the IRSL sensitivity decreases towards younger stratigraphic units. These patterns point to source areas with decreasing denudation rate and higher sediment recycling over basin filling time, leading to decreasing feldspar concentration and quartz luminescence sensitisation. Major changes in luminescence properties coincide with regional unconformities. This is attributed to physical landscape changes leading to shifts in the relief of source areas and basin sediment recycling. The TL peak position is similar across stratigraphic units, but the TL peak position has significant variation, with values between 324°C and 334°C, allowing its use for stratigraphic discrimination. Changes in OSL and TL characteristics of quartz sediment grains are preserved during long‐term burial (108 Ma), representing a new tool for interpreting basin evolution and to perform stratigraphic analysis of ancient siliciclastic successions.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12590
2021-11-11
2024-03-29
Loading full text...

Full text loading...

References

  1. Abrantes, F. R.Jr, & Nogueira, A. C. R. (2013). Reconstituição paleoambiental das formações Motuca e Sambaíba, Permo‐Triássico da Bacia do Parnaíba no sudoeste do Estado do Maranhão, Brasil. Geologia USP Serie Cientifica, 13, 6–82. https://doi.org/10.5327/Z1519‐874X201300030007
    [Google Scholar]
  2. Abrantes, F. R.Jr, Nogueira, A. C. R., Andrade, L. S., Bandeira, J., Soares, J. L., & Medeiros, R. S. P. (2019). Register of increasing continentalization and palaeoenvironmental changes in the west‐central Pangaea during the Permian‐Triassic, Parnaíba Basin, Northern Brazil. Journal of South American Earth Sciences, 93, 294–312. https://doi.org/10.1016/j.james.2019.05.006
    [Google Scholar]
  3. Abrantes, F. R.Jr, Nogueira, A. C. R., & Soares, J. L. (2016). Permian paleogeography of west‐central Pangea: Reconstruction using sabkha‐type gypsum‐bearing deposits of Parnaíba Basin, Northern Brazil. Sedimentary Geology, 341, 175–188. https://doi.org/10.1016/j.sedgeo.2016.06.004
    [Google Scholar]
  4. Agência Nacional do Petróleo, Gás e Biocombustíveis . (2021). Boletim de Produção de Petróleo e Gás Natural. http://www.anp.gov.br/arquivos/publicacoes/boletins‐anp/producao/2020‐06‐boletim.pdf
    [Google Scholar]
  5. Aitken, M. J. (1985). Thermoluminescence dating (359 pp.). Academic Press.
    [Google Scholar]
  6. Aitken, M. J. (1998). An introduction to optical dating. Oxford University Press.
    [Google Scholar]
  7. Angelim, L. A. A., Vasconcelos, A. M., Gomes, J. R. C., Wanderley, A. A., Forgiarini, L. & Medeiros, M. F. (2004). Folha Jaguaribe SB.24. In C.Schobbenhaus, J. H.Gonçalves, J. O. S.Santos, M. B.Abram, R.Leão Neto, G. M. M.Matos, R. M.Vidotti, M. A. B.Ramos & J. D. A.de Jesus (Eds.), Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM, CD‐ROM.
    [Google Scholar]
  8. Araújo, R. N., Nogueira, A. C. R., Bandeira, J., & Angélica, R. S. (2016). Shallow lacustrine system of the Permian Pedra de Fogo Formation, Western Gondwana, Parnaíba Basin, Brazil. Journal of South American Earth Sciences, 67, 57–70. https://doi.org/10.1016/j.jsames.2016.01.009
    [Google Scholar]
  9. Autzen, M., Murray, A. S., Guérin, G., Baly, L., Ankjaergaard, C., Bailey, M., Jain, M., & Buylaert, J. P. (2018). Luminescence dosimetry: Does charge imbalance matter?Radiation Measurements, 120, 16–32. https://doi.org/10.1016/j.radmeas.2018.08.001
    [Google Scholar]
  10. Bailey, R. M. (2001). Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements, 33(1), 17–45. https://doi.org/10.1016/S1350‐4487(00)00100‐1
    [Google Scholar]
  11. Blair, M. W., Yukihara, E. G., & McKeever, S. W. S. (2005). Experiences with single‐aliquot OSL procedures using coarse‐grain feldspars. Radiation Measurements, 39, 361–374. https://doi.org/10.1016/j.radmeas.2004.05.008
    [Google Scholar]
  12. Bøtter‐Jensen, L., Agersnap Larsen, N., Mejdahl, V., Poolton, N. R., Morris, M. F., & McKeever, S. W. S. (1995). Luminescence sensitivity changes in quartz as a result of annealing. Radiation Measurements, 24(4), 535–541. https://doi.org/10.1016/1350‐4487(95)00006‐Z
    [Google Scholar]
  13. Bøtter‐Jensen, L., McKeever, S. W., & Wintle, A. G. (2003). Optically stimulated luminescence dosimetry (1st ed.). Elsevier.
    [Google Scholar]
  14. Campanha, V., & Rocha Campos, A. C. (1979). Alguns microfósseis da Formação Piauí (Neocarbonífero), Bacia do Parnaíba. Boletim do Instituto de Geociências, 10, 57–67.
    [Google Scholar]
  15. Chen, G., & Li, S. H. (2000). Studies of quartz 110 °C thermoluminescence peak sensitivity change and its relevance to optically stimulated luminescence dating. Journal of Physics D: Applied Physics, 33(4), 437. https://doi.org/10.1088/0022‐3727/33/4/318
    [Google Scholar]
  16. Cisneros, J. C., Marsicano, C., Angielczyk, K. D., Smith, R. M. H., Richter, M., Fröbisch, J., Kammerer, C. F., & Sadleir, R. W. (2015). New Permian fauna from tropical Gondwana. Nature Communications, 6, 8676. https://doi.org/10.1038/ncomms9676
    [Google Scholar]
  17. Cordani, U. G., Brito Neves, B. B., Fuck, R. A., Porto, R., Thomaz Filho, A., & Cunha, F. M. B. (2009). Estudo preliminar de integração do Pré‐Cambriano com os eventos tectônicos das bacias sedimentares brasileiras (Republicação). Boletim de Geociências da Petrobras, Rio de Janeiro, 17(1), 133–204.
    [Google Scholar]
  18. Cunha, F. M. B. (1986). Evolução paleozoica da Bacia do Parnaíba e seu arcabouço tectônico [Master thesis, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro].
    [Google Scholar]
  19. Da Silva, P. H. M., de Sá, E. F. J., de Souza, Z. S., & Córdoba, V. C. (2020). Structural controls and stratigraphic setting of sills: Example of the Central Atlantic Magmatic Province in the Parnaíba Basin, Northeast Brazil. Journal of South American Earth Sciences, 101, 102606. https://doi.org/10.1016/j.jsames.2020.102606
    [Google Scholar]
  20. Duller, G. A. T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements, 37(2), 161–165. https://doi.org/10.1016/S1350‐4487(02)00170‐1
    [Google Scholar]
  21. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1), 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  22. Giblling, M. R., & Davies, N. S. (2012). Palaeozoic landscapes shaped by plant evolution. Nature Geoscience, 5, 99–105. https://doi.org/10.1038/ngeo1376
    [Google Scholar]
  23. Góes, A. M., Coimbra, A. M., & Nogueira, A. C. R. (1997). Depósitos influenciados por tempestades e marés da Formação Potí (Carbonífero Inferior) da Bacia do Parnaíba. In M. L.Costa & R.Angélica (Orgs.), Contribuições à geologia da Amazônia (Vol. 1, pp. 285–306). Sociedade Brasileira de Geologia‐Núcleo Norte.
    [Google Scholar]
  24. Góes, A. M., & Feijó, F. J. (1994). Bacia do Parnaíba. Boletim de Geociências da Petrobras, 8(1), 57–67.
    [Google Scholar]
  25. Góes, A. M., Rossetti, D. F., Nogueira, A. C. R., & Toledo, P. M. (1990). Modelo deposicional preliminar da Formação Pirabas no nordeste do Estado do Pará. Boletim do Museu Paraense Emilio Goeldi. Série Ciências da Terra, 2, 3–15.
    [Google Scholar]
  26. Góes, A. M. O., Travassos, W. A. S., & Nunes, K. C. (1993). Projeto Parnaíba: Reavaliação e perspectivas exploratórias, paper presented at Relatorio Petrobras, DEXNOR‐DINTER.
    [Google Scholar]
  27. Grahn, Y., & Caputo, M. V. (1992). Early Silurian glaciations in Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 99(1–2), 9–15. https://doi.org/10.1016/0031‐0182(92)90003‐N
    [Google Scholar]
  28. Grahn, Y., Melo, J. H. G., & Steemans, P. (2005). Integrated chitinozoan and miospore zonation of the Serra Grande Group (Silurian‐Lower Devonian), Parnaíba Basin, Northeast Brazil. Revista Española de Micropaleontología, 37(2), 183–204.
    [Google Scholar]
  29. Grahn, Y., Young, C., & Borghi, L. (2008). Middle Devonian chitinozoan biostratigraphy and sedimentology in the eastern outcrop belt of the Parnaíba Basin, Northeastern Brazil. Revista Brasileira de Paleontologia, 11(3), 137–146. https://doi.org/10.4072/rbp.2008.3.01
    [Google Scholar]
  30. Gray, H. J., Jain, M., Sawakuchi, A. O., Mahan, S. A., & Tucker, G. E. (2019). Luminescence as a sediment tracer and provenance tool. Reviews of Geophysics, 57, 987–1017. https://doi.org/10.1029/2019RG000646
    [Google Scholar]
  31. Gray, H. J., Keen‐Zebert, A., Furbish, D. J., Tucker, G. E., & Mahan, S. A. (2020). Depth‐dependent soil mixing persists across climate zones. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 8750–8756. https://doi.org/10.1073/pnas.1914140117
    [Google Scholar]
  32. Gray, H. J., Tucker, G. E., Mahan, S. A., McGuire, C., & Rhodes, R. (2017). On extracting sediment transport information from measurements of luminescence in river sediment. Journal of Geophysical Research: Earth Surface, 122, 654–677. https://doi.org/10.1002/2016JF003858
    [Google Scholar]
  33. Guralnik, B., Ankjaergaard, C., Jain, M., Murray, A. S., Müller, A., Wälle, M., Lowick, S. E., Preusser, F., Rhodes, E. J., Wu, T. S., Mathew, G., & Herman, F. (2015). OSL‐thermochronometry using bedrock quartz: A note of caution. Quaternary Geochronology, 25, 37–48. https://doi.org/10.1016/j.quageo.2014.09.001
    [Google Scholar]
  34. Hollanda, M. H. B. M., Góes, A. M., & Negri, F. A. (2018). Provenance of sandstones in the Parnaíba Basin through detrital zircon geochronology. Geological Society, London, Special Publications, 472, 181–197. https://doi.org/10.1144/SP472.16
    [Google Scholar]
  35. Hollanda, M. H. B. M., Góes, A. M., Silva, D. B., & Negri, F. A. (2014). Proveniência sedimentar dos arenitos da Bacia do Parnaíba (NE do Brasil). Boletim de Geociências da Petrobras, 22(2), 191–211.
    [Google Scholar]
  36. Höppner, N., Lucassen, F., Chiessi, C. M., Sawakuchi, A. O., & Kasemann, S. A. (2018). Holocene provenance shift of suspended particulate matter in the Amazon River basin. Quaternary Science Reviews, 190, 66–80. https://doi.org/10.1016/j.quascirev.2018.04.021
    [Google Scholar]
  37. Huntley, D. J., & Lian, O. B. (2006). Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews, 25(19–20), 2503–2512. https://doi.org/10.1016/j.quascirev.2005.05.011
    [Google Scholar]
  38. Jain, M., & Ankjaergaard, C. (2011). Towards a non‐fading signal in feldspar: Insight into charge transport and tunnelling from time‐resolved optically stimulated luminescence. Radiation Measurements, 46(3), 292–309. https://doi.org/10.1016/j.radmeas.2010.12.004
    [Google Scholar]
  39. Jain, M., Murray, A. S., & Bøtter‐Jensen, L. (2003). Characterization of blue‐light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiation Measurements, 37(4–5), 441–449. https://doi.org/10.1016/S1350‐4487(03)00052‐0
    [Google Scholar]
  40. Jaju, M. M., Mort, H. P., Nader, F. H., Filho, M. L., & Macdonald, D. I. M. (2018). Palaeogeographical and palaeoclimatic evolution of the intracratonic Parnaíba Basin, NE Brazil using GPlates plate tectonic reconstructions and chemostratigraphic tools. Geological Society, London, Special Publications, 472, 199–222. https://doi.org/10.1144/SP472.12
    [Google Scholar]
  41. Janikian, L., de Almeida, R. P., Galeazzi, C. P., Tamura, L. N., Ardito, J. C., & Chamani, M. A. C. (2020). Variability of fluvial architecture in a poorly vegetated Earth: Silurian sheet‐braided and meandering ancestor river deposits recorded in northeastern Brazil. Terra Nova, 32, 187–197. https://doi.org/10.1111/ter.12446
    [Google Scholar]
  42. Kars, R. H., Wallinga, J., & Cohen, K. M. (2008). A new approach towards anomalous fading correction for feldspar IRSL dating—Tests on samples in field saturation. Radiation Measurements, 43(2–6), 786–790. https://doi.org/10.1016/j.radmeas.2008.01.021
    [Google Scholar]
  43. Kitis, G., Kiyak, N., Polymeris, G. S., & Tsirliganis, N. C. (2010). The correlation of fast OSL component with the TL peak at 325 °C in quartz of various origins. Journal of Luminescence, 130(2), 298–303. https://doi.org/10.1016/j.jlumin.2009.09.006
    [Google Scholar]
  44. Kreutzer, S., Burow, C., Dietze, M., Fuchs, M., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Riedesel, S., Autzen, M., Mittelstrass, D., & Gray, H. (2021). Luminescence: Comprehensive luminescence dating data analysis. R package version 0.9.11. https://CRAN.R‐project.org/package=Luminescence
    [Google Scholar]
  45. Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., Fischer, M., & Fuchs, M. (2012). Introducing an R package for luminescence dating analysis. Ancient TL, 30(1), 1–8.
    [Google Scholar]
  46. Loboziak, S., Steel, M., Caputo, M. V., & De Melo, J. H. G. (1992). Middle Devonian to lower Carboniferous miospore stratigraphy in the central Parnaíba Basin (Brazil). Annales de la Société Géologique de Belgique, 115, 215–226.
    [Google Scholar]
  47. Lü, T., & Sun, J. (2011). Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance. Quaternary Research, 76, 181–189. https://doi.org/10.1016/j.yqres.2011.06.015
    [Google Scholar]
  48. Medeiros, R. S. P. (2020). O Pensilvaniano da Bacia do Parnaíba, Norte do Brasil: Implicações paleoambientais, paleoceanograficas e evolutivas para o Gondwana ocidental (PhD thesis), Federal University of Pará.
    [Google Scholar]
  49. Medeiros, R. S. P., Nogueira, A. C. R., Silva Junior, J. B. C., & Sial, A. N. (2019). Carbonate‐clastic sedimentation in the Parnaiba Basin, northern Brazil: Record of carboniferous epeiric sea in the Western Gondwana. Journal of American Earth Sciences, 91, 188–202. https://doi.org/10.1016/j.jsames.2019.01.018
    [Google Scholar]
  50. Melo, J. H. G., & Loboziak, S. (2000). Viséan miospore biostratigraphy and correlation of the Poti Formation (Parnaíba Basin, northern Brazil). Review of Palaeobotany and Palynology, 112, 147–165. https://doi.org/10.1016/S0034‐6667(00)00043‐9
    [Google Scholar]
  51. Mendes, V. R., Sawakuchi, A. O., Chiessi, C. M., Giannini, P. C. F., Rehfeld, K., & Mulitza, S. (2019). Thermoluminescence and optically stimulated luminescence measured in marine sediments indicate precipitation changes over Northeastern Brazil. Paleoceanography and Paleoclimatology, 34, 1476–1486. https://doi.org/10.1029/2019PA003691
    [Google Scholar]
  52. Menzies, L. A., Carter, A., & Macdonald, D. I. M. (2018). Evolution of a cratonic basin: Insights from the stratal architecture and provenance history of the Parnaíba Basin. Geological Society, London, Special Publications, 472, 157–179. https://doi.org/10.1144/SP472.18
    [Google Scholar]
  53. Mesner, J. C., & Wooldrige, L. C. (1964). Maranhão Paleozoic Basin and Cretaceous Coastal Basins, Northern Brazil. Bulletin of the American Association Petroleum Geologist, 48(9), 1475–1512.
    [Google Scholar]
  54. Mineli, T. D., Sawakuchi, A. O., Guralnik, B., Lambert, R., Jain, M., Pupim, F. N., del Rio, I., Guedes, C. C. F., & Nogueira, L. (2021). Variation of luminescence sensitivity, characteristic dose and trap parameters of quartz from rocks and sediments. Radiation Measurements, 144, 106583. https://doi.org/10.1016/j.radmeas.2021.106583
    [Google Scholar]
  55. Morais‐Neto, J. M., Hegarty, K. A., Karner, G. D., & Alkmin, F. F. (2009). Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema Province, northeastern Brazil. Marine and Petroleum Geology, 26(7), 1070–1086. https://doi.org/10.1016/j.marpetgeo.2008.07.002
    [Google Scholar]
  56. Morton, A., & Hallsworth, C. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1–4), 3–29. https://doi.org/10.1016/S0037‐0738(98)00118‐3
    [Google Scholar]
  57. Moska, P., & Murray, A. S. (2006). Stability of the quartz fast‐component in insensitive samples. Radiation Measurements, 41, 878–885. https://doi.org/10.1016/j.radmeas.2006.06.005
    [Google Scholar]
  58. Murray, A. S., & Wintle, A. G. (2000). Luminescence dating of quartz using an improved single‐aliquot regenerative‐dose protocol. Radiation Measurements, 32(1), 57–73. https://doi.org/10.1016/S1350‐4487(99)00253‐X
    [Google Scholar]
  59. Pietsch, T. J., Olley, J. M., & Nanson, G. C. (2008). Fluvial transport as a natural luminescence sensitizer of quartz. Quaternary Geochronology, 3(4), 365–376. https://doi.org/10.1016/j.quageo.2007.12.005
    [Google Scholar]
  60. Ponciano, L. C. M. O., & Fávera, J. C. D. (2009). Flood dominated fluvio‐deltaic system: A new depositional model for the Devonian Cabeças Formation, Parnaíba Basin, Piauí, Brazil. Anais da Academia Brasileira de Ciências, 81, 769–780. https://doi.org/10.1590/S0001‐37652009000400014
    [Google Scholar]
  61. Ponciano, L. C. M. O., Fonseca, V. M. M., & Machado, D. M. C. (2012). Taphofacies analysis of Late Early Givetian fossil assemblages of the Parnaíba Basin (State of Piauí, northeast Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328, 95–108. https://doi.org/10.1016/j.palaeo.2012.02.008
    [Google Scholar]
  62. Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ranseyer, K., Sendezera, E. J., Susino, G. J., & Wintle, A. G. (2009). Quartz as a natural luminescence dosimeter. Earth‐Science Reviews, 97, 184–214. https://doi.org/10.1016/j.earscirev.2009.09.006
    [Google Scholar]
  63. Reimann, T., Román‐Sánchez, A., Vanwalleghem, T., & Wallinga, J. (2017). Getting a grip on soil reworking – Single‐grain feldspar luminescence as a novel tool to quantify soil reworking rates. Quaternary Geochronology, 42, 1–14. https://doi.org/10.1016/j.quageo.2017.07.002
    [Google Scholar]
  64. Richetti, P. C., Schmitt, R. S., & Reeves, C. (2018). Dividing the South American continent to fit a Gondwana reconstruction: A model based on continental geology. Tectonophysics, 747–748, 79–98. https://doi.org/10.1016/j.tecto.2018.09.011
    [Google Scholar]
  65. Rink, W. J., Rendell, H., Marseglia, E. A., Luff, B. J., & Townsend, P. D. (1993). Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Physics and Chemistry of Minerals, 20, 353–361. https://doi.org/10.1007/BF00215106
    [Google Scholar]
  66. Rossetti, D. F., Paz, J. D. S., & Góes, A. M. (2004). Facies analysis of the Codó formation (late Aptian) in the Grajaú area, southern São Luís‐Grajaú Basin. Anais da Academia Brasileira de Ciências, 76, 791–806. https://doi.org/10.1590/S0001‐37652004000400012
    [Google Scholar]
  67. Sawakuchi, A. O., Blair, M. W., DeWitt, R., Faleiros, F. M., Hyppolito, T. N., & Guedes, C. C. F. (2011). Thermal history versus sedimentary history: OSL sensitivity of single quartz grains extracted from igneous and metamorphic rocks and sediments. Quaternary Geochronology, 6(2), 261–272. https://doi.org/10.1016/j.quageo.2010.11.002
    [Google Scholar]
  68. Sawakuchi, A. O., Jain, M., Mineli, T. D., Nogueira, L., Bertassoli, D. J.Jr, Häggi, C., Sawakuchi, H. O., Pupim, F. N., Grohmann, C. H., Chiessi, C. M., Zabel, M., Mulitza, S., Mazoca, C. E. M., & Cunha, D. F. (2018). Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin. Earth and Planetary Science Letters, 492, 152–162. https://doi.org/10.1016/J.EPSL.2018.04.006
    [Google Scholar]
  69. Sawakuchi, A. O., Rodrigues, F. C. G., Mineli, T. D., Mendes, V. R., Melo, D. B., Chiessi, C. M., & Giannini, P. C. F. (2020). Optically stimulated luminescence sensitivity of quartz for provenance analysis. Methods and Protocols, 3(1), 6. https://doi.org/10.3390/mps3010006
    [Google Scholar]
  70. Sawakuchi, G. O., & Okuno, E. (2004). Effects of high gamma ray doses in quartz. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 218, 217–222. https://doi.org/10.1016/j.nimb.2003.12.021
    [Google Scholar]
  71. Singarayer, J. S., & Bailey, R. M. (2003). Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements, 37(4–5), 451–458. https://doi.org/10.1016/S1350‐4487(03)00062‐3
    [Google Scholar]
  72. Singarayer, J. S., Bailey, R. M., Ward, S., & Stokes, S. (2005). Assessing the completeness of optical resetting of quartz OSL in the natural environment. Radiation Measurements, 40(1), 13–25. https://doi.org/10.1016/j.radmeas.2005.02.005
    [Google Scholar]
  73. Spooner, N. A., Prescott, J. R., & Hutton, J. T. (1988). The effect of illumination wavelength on the bleaching of the thermoluminescence (TL) of quartz. Quaternary Science Reviews, 7(3–4), 325–329. https://doi.org/10.1016/0277‐3791(88)90023‐6
    [Google Scholar]
  74. Spooner, N. A., & Questiaux, D. G. (2000). Kinetics of red, blue and UV thermoluminescence and optically‐stimulated luminescence from quartz. Radiation Measurements, 32(5–6), 659–666. https://doi.org/10.1016/S1350‐4487(00)00067‐6
    [Google Scholar]
  75. Stoneham, D., & Stokes, S. (1991). An investigation of the relationship between the 110 °C TL peak and optically stimulated luminescence in sedimentary quartz. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18(1–2), 119–123. https://doi.org/10.1016/1359‐0189(91)90102‐N
    [Google Scholar]
  76. Thomsen, K. J., Murray, A. S., & Bøtter‐Jensen, L. (2011). Stability of IRSL signals from sedimentary K‐feldspar samples. Geochronometria, 38(1), 1–13. https://doi.org/10.2478/s13386‐011‐0003‐z
    [Google Scholar]
  77. Thomsen, K. J., Murray, A. S., Jain, M., & Bøtter‐Jensen, L. (2008). Laboratory fading rates of various luminescence signals from feldspar‐rich sediment extracts. Radiation Measurements, 43(9–10), 1474–1486. https://doi.org/10.1016/j.radmeas.2008.06.002
    [Google Scholar]
  78. Tozer, B., Watts, A. B., & Daly, M. C. (2017). Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. Journal of Geophysical Research: Solid Earth, 122, 5591–5621. https://doi.org/10.1002/2017JB014348
    [Google Scholar]
  79. Valla, P. G., Lowick, S. E., Herman, F., Champagnac, J. D., Steer, P., & Guralnik, B. (2016). Exploring IRSL50 fading variability in bedrock feldspars and implications for OSL thermochronometry. Quaternary Geochronology, 36, 55–66. https://doi.org/10.1016/j.quageo.2016.08.004
    [Google Scholar]
  80. Vasconcelos, A. M., Ribeiro, J. A. P., Colares, J. Q. S., Gomes, I. P., & Forgiarini, L. L. (2004). Folha Teresina SB.23. In C.Schobbenhaus, J. H.Gonçalves, J. O. S.Santos, M. B.Abram, R.Leão Neto, G. M. M.Matos, R. M.Vidotti, M. A. B.Ramos, & J. D. A.de Jesus (Eds.), Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM, CD‐ROM.
    [Google Scholar]
  81. Vaz, P. T., Rezende, N. G. A. M., Wanderley Filho, J. R., & Travassos, W. A. S. (2007). Bacia do Parnaíba. Boletim de Geociências da Petrobras, 15, 253–263.
    [Google Scholar]
  82. Vieira, L. V., & Scherer, C. M. D. (2017). Facies architecture and high‐resolution sequence stratigraphy of an aeolian, fluvial and shallow marine system in the Pennsylvanian Piauí Formation, Parnaíba Basin, Brazil. Journal of South American Earth Sciences, 76, 238–256. https://doi.org/10.1016/j.jsames.2017.03.009
    [Google Scholar]
  83. Wintle, A. G., & Adamiec, G. (2017). Optically stimulated luminescence signals from quartz: A review. Radiation Measurements, 98, 10–33. https://doi.org/10.1016/j.radmeas.2017.02.003
    [Google Scholar]
  84. Wintle, A. G., & Murray, A. S. (1997). The relationship between quartz thermoluminescence, photo‐transferred thermoluminescence, and optically stimulated luminescence. Radiation Measurements, 27(4), 611–624. https://doi.org/10.1016/S1350‐4487(97)00018‐8
    [Google Scholar]
  85. Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, L., Filizola, N., & Kubik, P. W. (2011). Sediment production and delivery in the Amazon River basin quantified by in situ‐produced cosmogenic nuclides and recent river loads. Geological Society of America Bulletin, 123, 934–950. https://doi.org/10.1130/B30317.1
    [Google Scholar]
  86. Zular, A., Sawakuchi, A. O., Guedes, C. C. F., & Giannini, P. C. F. (2015). Attaining provenance proxies from OSL and TL sensitivities: Coupling with grain size and heavy minerals data from southern Brazilian coastal sediments. Radiation Measurements, 81, 39–45. https://doi.org/10.1016/j.radmeas.2015.04.010
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12590
Loading
/content/journals/10.1111/bre.12590
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error