1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

(a) Schematic portrayal of the subdivision of a land to ocean S2S system divided into a terrestrial to shallow‐water segment and a submarine segment. Submarine segment of the land to ocean S2S system is composed mainly of shelf‐edge deltas and resultant deep‐water fans on direct‐fed margins, fostering a more readily studied, secondary S2S system (i.e. delta‐to‐fan S2S coupling), in which shelf‐edge deltas are ‘sources’ and deep‐water fans are terminal depositional ‘sinks’, with canyons and/or slope channels working as delivery ‘conduits’ in between. (b) Schematic illustration of three types of delta‐to‐fan S2S coupling extracted from DionisosFlow forward numerical models and 3D seismic data. Note that the existence of delta‐to‐fan S2S linkages guarantees the delivery of coarse detritus to deep‐water areas, but that a lack of delta‐to‐fan S2S linkages prohibits the delivery of coarse detritus to deepwater.

, Abstract

We propose that a more readily studied, secondary source‐to‐sink (S2S) systems can be formed on direct‐fed margins, in which shelf‐edge deltas are ‘sources’ and deep‐water fans are terminal depositional ‘sinks’, with channels working as delivery ‘conduits’ in between. DionisosFlow stratigraphic‐forward model, coupled to seismic and borehole data from middle Miocene Pearl River margin, are used to explore physical and conceptual linkages of delta‐to‐fan S2S systems, with a focus on the predictability of when and how coarse clastics are delivered from the deltas down to the submarine fans. Middle Miocene Pearl River delta‐to‐fan S2S coupling was stratigraphically enacted in three main ways: (a) deltas that lack downdip fans: high sea level or low sediment supply caused coarse clastics to be stored mainly on inner to outer shelf areas; (b) deltas that are linked downdip to fans: coarse clastics were funneled to submarine fans through slope channels, via direct delta‐to‐fan S2S linkages created by delta overreach at shelf break or channels extending back to shelf‐margin prodeltas; (c) fans that lack updip, coeval deltas: coarse shelf clastics were carried laterally by longshore or other shelf currents, but eventually captured by canyon heads, and then delivered directly to the basin floor. Moreover, our DionisosFlow stratigraphic‐forward models suggest that an oscillation in sea‐level behaviour from slowly falling to rapidly falling would result in a within‐system tract surface occurring within the falling‐stage systems tract. This surface is identified as a significant lower‐order unconformity in its proximal reaches and as a correlative conformity distally. Within‐system tract surfaces are identified by a change in shelf‐edge trajectory regimes from flat to slight falling to moderately falling and in architecture from mixed progradation and degradation to dominant degradation. They are coeval with the onset of the deposition of submarine fans linked updip to deltas or lacking updip deltas, highlighting that sandy deposits can be compartmentalized even within a single systems tract.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12591
2021-11-11
2021-12-04
Loading full text...

Full text loading...

References

  1. Allen, P. (2008). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  2. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., Whitchurch, A. L., & Whittaker, A. C. (2013). The supply problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  3. Bernhardt, A., Hebbeln, D., Regenberg, M., Lückge, A., & Strecker, M. R. (2016). Shelfal sediment transport by an undercurrent forces turbidity current activity during high sea level along the Chile continental margin. Geology, 44, 295–298. https://doi.org/10.1130/G37594.1
    [Google Scholar]
  4. Burgess, P. M. (2016). RESEARCH FOCUS: The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension. Geology, 44, 335–336. https://doi.org/10.1130/focus042016.1
    [Google Scholar]
  5. Cao, L., Shao, L., Qiao, P., Zhao, Z., van Hinsbergen, D. J. J. (2018). Early Miocene birth of modern Pearl River recorded low‐relief, high‐elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496, 120–131. https://doi.org/10.1016/j.epsl.2018.05.039
    [Google Scholar]
  6. Carvajal, C., & Steel, R. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  7. Catuneanu, O. (2020). Sequence stratigraphy of deep‐water systems. Marine and Petroleum Geology, 114, 104238. https://doi.org/10.1016/j.marpetgeo.2020.104238
    [Google Scholar]
  8. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  9. Covault, J. A., Normark, W. R., Romans, B. W., & Graham, S. A. (2007). Highstand fans in the California borderland: The overlooked deepwater depositional systems. Geology, 35, 783–786. https://doi.org/10.1130/G23800A.1
    [Google Scholar]
  10. Covault, J. A., Romans, B. W., Fildani, A., McGann, M., & Graham, S. A. (2010). Rapid climatic signal propagation from source to sink in a southern California sediment‐routing system. The Journal of Geology, 118, 247–259. https://doi.org/10.1086/651539
    [Google Scholar]
  11. Deville, E., Mascle, A., Callec, Y., Huyghe, P., Lallemant, S., Lerat, O., Mathieu, X., Padron de Carillo, C., Patriat, M., Pichot, T., Loubrieux, B., & Granjeon, D. (2015). Tectonics and sedimentation interactions in the east Caribbean subduction zone: An overview from the Orinoco delta and the Barbados accretionary prism. Marine and Petroleum Geology, 64, 76–103. https://doi.org/10.1016/j.marpetgeo.2014.12.015
    [Google Scholar]
  12. Dixon, J. F., Steel, R. J., & Olariu, C. (2012). Shelf‐edge delta regime as a predictor of the deep‐water deposition. Journal of Sedimentary Research, 82, 681–687.
    [Google Scholar]
  13. Fisher, W. L., Galloway, W. E., Steel, R. J., Olariu, C., Kerans, C., & Mohrig, D. (2021). Deep‐water depositional systems supplied by shelf‐incising submarine canyons: Recognition and significance in the geologic record. Earth‐Science Reviews, 214, 103531. https://doi.org/10.1016/j.earscirev.2021.103531
    [Google Scholar]
  14. Gong, C., Blum, M. D., Wang, Y., Lin, C., & Qiang, X. (2018). Can climatic signals be discerned in the deepwater sink? An answer from the Pearl River sediment‐routing system. GSA Bulletin, 130, 661–677.
    [Google Scholar]
  15. Gong, C., Qi, K., Ma, Y., Li, D., Feng, N., & Xu, H. (2019). Tight coupling between the cyclicity of deep‐water systems and rising‐then‐flat shelf‐edge pairs along the submarine segment of the Qiongdongnan sediment routing system. Journal of Sedimentary Research, 89, 956–975. https://doi.org/10.2110/jsr.2019.47
    [Google Scholar]
  16. Gong, C., Steel, R. J., Wang, Y., Lin, C., & Olariu, C. (2016). Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf‐edge sands to deepwater. Earth‐Science Reviews, 154, 72–101.
    [Google Scholar]
  17. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. In A. W.Martinius, R.Ravnås, J. A.Howell, R. J.Steel & J. P.Wonham (Eds.), From depositional systems to sedimentary successions on the Norwegian continental margin (1st ed., Vol. 46, pp. 453–472). Int. Assoc. Sedimentol. Spec. Publ.
    [Google Scholar]
  18. Harris, A. D., Baumgardner, S. E., Sun, T., & Granjeon, D. (2018). A poor relationship between sea level and deep‐water sand delivery. Sedimentary Geology, 370, 42–51. https://doi.org/10.1016/j.sedgeo.2018.04.002
    [Google Scholar]
  19. Harris, A. D., Covault, J. A., Baumgardner, S. E., Sun, T., & Granjeon, D. (2020). Numerical modeling of icehouse and greenhouse sea‐level changes on a continental margin: Sea‐level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111, 807–814. https://doi.org/10.1016/j.marpetgeo.2019.08.055
    [Google Scholar]
  20. Harris, A. D., Covault, J. A., Madof, A. S., Sun, T., Sylvester, Z., & Granjeon, D. (2016). Three‐dimensional numerical modeling of eustatic control on continental‐margin sand distribution. Journal of Sedimentary Research, 86, 1434–1443. https://doi.org/10.2110/jsr.2016.85
    [Google Scholar]
  21. Hawie, N., Covault, J. A., Dunlap, D., & Sylvester, Z. (2018). Slope‐fan depositional architecture from high‐resolution forward stratigraphic models. Marine and Petroleum Geology, 91, 576–585. https://doi.org/10.1016/j.marpetgeo.2017.12.033
    [Google Scholar]
  22. Hawie, N., Covault, J. A., & Sylvester, Z. (2019). Grain‐size and discharge controls on submarine fan depositional patterns from forward stratigraphic models. Frontiers in Earth Science, 7, 334. https://doi.org/10.3389/feart.2019.00334
    [Google Scholar]
  23. Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., & Andersen, N. (2014). Middle Miocene climate cooling linked to intensification of eastern equatorial pacific upwelling. Geology, 42, 19–22. https://doi.org/10.1130/G34890.1
    [Google Scholar]
  24. Hunt, D., & Tucker, M. E. (1992). Stranded parasequences and the forced regressive wedge systems tract: Deposition during base‐level fall. Sedimentary Geology, 81, 1–9. https://doi.org/10.1016/0037‐0738(92)90052‐S
    [Google Scholar]
  25. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2014). Lateral variability in clinoform trajectory, process regime, and sediment dispersal patterns beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Research, 27, 657–680. https://doi.org/10.1111/bre.12092
    [Google Scholar]
  26. Kim, Y., Kim, W., Cheong, D., Muto, T., & Pyles, D. (2013). Piping coarse‐grained sediment to a deep‐water fan through a shelf‐edge delta bypass channel: Tank Experiments. Journal of Geophysical Research – Earth Surface, 118, 2279–2291. https://doi.org/10.1002/2013JF002813
    [Google Scholar]
  27. Koo, W., Olariu, C., Steel, R. J., Olariu, M. I., Carvajal, C. R., & Kim, W. (2016). Coupling between shelf‐edge architecture and submarine‐fan growth style in a supply‐dominated margin. Journal of Sedimentary Research, 86, 613–628. https://doi.org/10.2110/jsr.2016.42
    [Google Scholar]
  28. Li, C. F., Li, J. B., Ding, W. W., Franke, D., Yao, Y. J., Shi, H. S., Pang, X., Cao, Y., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Hernández‐Almeida, I., … Zhao, X. (2015). Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research‐Solid Earth, 120, 1–23. https://doi.org/10.1002/2014JB011686
    [Google Scholar]
  29. Lin, C., He, M., Steel, R. J., Zhang, Z., Lia, H., Zhang, B., Wu, W., Shu, L., Tian, H., Zhang, X., Xing, Z., Wang, S., & Zhang, M. (2018). Changes in inner‐ to outer‐shelf delta architecture, Oligocene to Quaternary Pearl River shelf‐margin prism, northern South China Sea. Marine Geology, 404, 187–204. https://doi.org/10.1016/j.margeo.2018.07.009
    [Google Scholar]
  30. Lin, C., Jiang, J., Shi, H., Zhang, Z., Liu, J., Qin, C., Li, H., Ran, H., Wei, A., Tian, H., Xing, Z., & Yao, Q. (2018). Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: Responses to tectonic processes and changes in sea level. Basin Research, 30, 568–595. https://doi.org/10.1111/bre.12238
    [Google Scholar]
  31. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44, 315–318. https://doi.org/10.1130/G37613.1
    [Google Scholar]
  32. Martin, J., Paola, C., Abreu, V., Neal, J., & Sheets, B. (2009). Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level. AAPG Bulletin, 93, 503–533. https://doi.org/10.1306/12110808057
    [Google Scholar]
  33. Martinsen, O. J., Sømme, T. O., Thurmond, J. B., Helland‐Hansen, W., & Lunt, I. (2010). Source‐to‐sink systems on passive margins: theory and practice with an example from the Norwegian continental margin. In B. A.Vining & S. C.Pickering (Eds.), From mature basins to new frontiers – Proceedings of the 7th petroleum geology conference (Vol. 7, pp. 913–920). Geological Society.
    [Google Scholar]
  34. Matenco, L., Andriessen, P.; the Source Sink Network . (2013). Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube basin‐Black Sea system. Global and Planetary Change, 103, 1–18. https://doi.org/10.1016/j.gloplacha.2013.01.003
    [Google Scholar]
  35. Mellere, D., Breda, A., & Steel, R. J. (2003). Fluvially incised shelf‐edge deltas and linkage to upper‐slope channels (Central Tertiary Basin in Spitsbergen). In H. H.Roberts, N. C.Rosen, R. H.Fillon, & J. B.Anderson (Eds.), Shelf margin deltas and linked down slope petroleum systems (CD‐ROM) (Vol. 23, pp. 231–266). SEPM Special Publication.
    [Google Scholar]
  36. Michael, N. A., Whittaker, A. C., Carter, A., & Allen, P. A. (2014). Volumetric budget and grain‐size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south‐central Pyrenees. GSA Bulletin, 126, 585–599. https://doi.org/10.1130/B30954.1
    [Google Scholar]
  37. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  38. Mitchum, R. M.Jr., & Van Wagoner, J. C. (1991). High‐frequency sequences and their stacking patterns; sequence‐stratigraphic evidence of high‐frequency eustatic cycles. In K. T.Biddle & W.Schlager (Eds.), The record of sea‐level fluctuations. Sedimentary Geology (Vol. 70, pp. 131–160).
    [Google Scholar]
  39. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  40. Paumard, V., Bourget, J., Payenberg, T., George, A. D., Ainsworth, R. B., & Lang, S. (2019). From quantitative 3D seismic stratigraphy to sequence stratigraphy: Insights into the vertical and lateral variability of shelf‐margin depositional systems at different stratigraphic orders. Marine and Petroleum Geology, 110, 797–831. https://doi.org/10.1016/j.marpetgeo.2019.07.007
    [Google Scholar]
  41. Paumard, V., Bourget, J., Payenberg, T., George, A. D., Ainsworth, R. B., Lang, S., & Posamentier, H. W. (2020). Controls on deep‐water sand delivery beyond the shelf edge: Accommodation, sediment supply, and deltaic process regime. Journal of Sedimentary Research, 90, 104–130. https://doi.org/10.2110/jsr.2020.2
    [Google Scholar]
  42. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., Maselli, V., Rovere, M., Gamberi, F., Valle, G. D., & Trincardi, F. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning. Marine and Petroleum Geology, 96, 16–50. https://doi.org/10.1016/j.marpetgeo.2018.03.002
    [Google Scholar]
  43. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K. M., Drexler, T. M., & Trincardi, F. (2017). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45, 327–330. https://doi.org/10.1130/G38848.1
    [Google Scholar]
  44. Pellegrini, C., Patruno, S., Helland‐Hansen, W., Steel, R. J., & Trincardi, F. (2020). Clinoforms and clinothems: Fundamental elements of basin infill. Basin Research, 32, 187–205. https://doi.org/10.1111/bre.12446
    [Google Scholar]
  45. Peng, Y., Steel, R. J., & Olariu, C. (2017). Transition from storm wave‐dominated outer shelf to gullied upper slope: The mid‐Pliocene Orinoco shelf margin, South Trinidad. Sedimentology, 64, 1511–1539. https://doi.org/10.1111/sed.12362
    [Google Scholar]
  46. Posamentier, H. W., Allen, G. P., James, D. P., & Tesson, M. (1992). Forced regressions in a sequence stratigraphic framework: Concepts, examples, and exploration significance. AAPG Bulletin, 76, 1687–1709.
    [Google Scholar]
  47. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastic deposition II — sequence and systems tract models. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.van Wagoner (Eds.), Sea‐level change: An integrated approach (Vol. 42, pp. 109–124). SEPM Special Publications.
    [Google Scholar]
  48. Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition II–Sequence and systems tract models. In C. K.Wilgus, B. S.Hastings, H. W.Posamentier, J.Van Wagoner, C. A.Ross, & G. G. S. C.Kendall (Eds.), Sea‐level changes: An integrated approach (Vol. 42, pp. 125–154). SEPM Special Publication.
    [Google Scholar]
  49. Prosser, I. P., & Rustomji, P. (2000). Sediment transport capacity relations for overland flow. Progress in Physical Geography, 24(2), 179–193.
    [Google Scholar]
  50. Ran, H., Lin, C., Dai, Y., Qin, C., Wu, W., Zhang, Y., & Qiao, Y. (2013). Sedimentary sequence and lithologic‐stratigraphic trap of the middle segment of Hanjiang formation in the shelf break zone in southeast Panyu natural gas areal, Pearl River Mouth Basin [in Chinese]. Acta Sedimentologica Sinica, 31, 1081–1019.
    [Google Scholar]
  51. Shao, L., Pang, X., Qiao, P., Chen, C., Li, Q., & Miao, W. (2008). Sedimentary filling of the Pear River Mouth Basin and its response to the evolution of the Pearl River [in Chinese]. Acta Sedimentologica Sinica, 26, 179–185.
    [Google Scholar]
  52. Sømme, T. O., Helland‐Hansen, W., & Granjeon, D. (2009). Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems. Geology, 37, 587–590. https://doi.org/10.1130/G25511A.1
    [Google Scholar]
  53. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387. https://doi.org/10.1111/j.1365‐2117.2009.00397.x
    [Google Scholar]
  54. Steel, R. J., Plink‐Bjorklund, P., Porębski, S. J., Mellere, D., & Schellpeper, M. (2003). Shelf‐edge delta types and their sequence‐stratigraphic relationships. In H.Roberts, N.Rose, R. H.Fillon, & J. B.Anderson (Eds.), Shelf margin deltas and linked down slope petroleum systems (Vol. 23, pp. 205–230). SEPM Foundation.
    [Google Scholar]
  55. Steventon, M. J., Jackson, C.‐A.‐L., Hodgson, D. M., & Johnson, H. D. (2020). Lateral variability of shelf‐edge and basin‐floor deposits, Santos Basin, offshore Brazil. Journal of Sedimentary Research, 90, 1198–1221. https://doi.org/10.2110/jsr.2020.14
    [Google Scholar]
  56. Sweet, M. L., & Blum, M. D. (2016). Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deep water. Journal of Sedimentary Research, 86, 1147–1162. https://doi.org/10.2110/jsr.2016.64
    [Google Scholar]
  57. Sweet, M. L., Gaillot, G. T., Jouet, G., Rittenour, T. M., Toucanne, S., Marsset, T., & Blum, M. D. (2020). Sediment routing from shelf to basin floor in the Quaternary Golo System of Eastern Corsica, France, western Mediterranean Sea. GSA Bulletin, 132, 1217–1234. https://doi.org/10.1130/B35181.1
    [Google Scholar]
  58. Talling, P. J., Allin, J., Armitage, D. A., Arnott, R. W., Cartigny, M. J. B., Clare, M. A., Felletti, F., Covault, J. A., Girardclos, S., Hansen, E., Hill, P. R., Hiscott, R. N., Hogg, A. J., Hughes Clarke, J., Jobe, Z. R., Malgesini, G., Mozzato, A., Naruse, H., Parkinson, S., … Xu, J. (2015). Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research, 85, 153–169. https://doi.org/10.2110/jsr.2015.03
    [Google Scholar]
  59. Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Researh. Solid Earth, 99, 12229–12243.
    [Google Scholar]
  60. Uroza, C. A., & Steel, R. J. (2008). A highstand shelf‐margin delta system from the Eocene of West Spitsbergen, Norway. Sedimentary Geology, 203, 229–245. https://doi.org/10.1016/j.sedgeo.2007.12.003
    [Google Scholar]
  61. Vail, P. R., Mitchum, R. M.Jr., & Thompson, S. I. I. I. (1977). Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level. In C. W.Payton (Ed.), Seismic stratigraphy–Applications to hydrocarbon exploration (Vol. 26, pp. 83–97). AAPG Memoir.
    [Google Scholar]
  62. Walsh, J., & Nittrouer, C. A. (2003). Contrasting styles of off‐shelf sediment accumulation in New Guinea. Marine Geology, 196, 105–125. https://doi.org/10.1016/S0025‐3227(03)00069‐0
    [Google Scholar]
  63. Wei, X., & Wu, C. (2011). Holocene delta evolution and sequence stratigraphy of the Pearl River Delta in South China. Science China‐Earth Sciences, 54, 1523–1541. https://doi.org/10.1007/s11430‐011‐4238‐6
    [Google Scholar]
  64. Xie, L., Zhang, B., Qin, C., Wang, Y., Chen, S., & Gao, P. (2009). Forced regression and normal regression deposition of basin with continental shelf slope‐break: A case study on Zhujiang and Hanjiang Formations of Pearl River Mouth Basin [in Chinese]. Acta Sedimentologica Sinica, 27, 1093–1100.
    [Google Scholar]
  65. Xu, S., Han, J., Wang, Y., He, M., Pang, X., Chen, W., Gong, C., Qin, C., Li, X., & Xu, S. (2020). How much systems‐tract scale, three‐dimensional stratigraphic variability is present in sequence stratigraphy? An answer from the middle Miocene Pearl River Mouth Basin. AAPG Bulletin, 104, 1261–1285. https://doi.org/10.1306/0122201607417001
    [Google Scholar]
  66. Xu, S., Yang, S., & Huang, L. (1995). The application of sequence stratigraphy to stratigraphic correlation [in Chinese]. Earth Science Frontier, 2, 115–123.
    [Google Scholar]
  67. Zhang, J., Burgess, P. M., Granjeon, D., & Steel, R. (2019). Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31, 274–289. https://doi.org/10.1111/bre.12320
    [Google Scholar]
  68. Zhang, J., Kim, W., Olariu, C., & Steel, R. (2019). Accommodation‐ vs. supply‐dominated systems for sediment partitioning to deep water. Geology, 47, 419–422.
    [Google Scholar]
  69. Zhang, J., Steel, R., & Olariu, C. (2017). What conditions are required for deltas to reach the shelf edge during rising sea level?Geology, 45, 1107–1110. https://doi.org/10.1130/G39676.1
    [Google Scholar]
  70. Zhang, M., Lin, C., He, M., Zhang, Z., Li, H., Feng, X., Tian, H., & Liu, H. (2019). Stratigraphic architecture, shelf‐edge delta and constraints on the development of the Late Oligocene to Early Miocene continental margin prism, the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 416, 105982. https://doi.org/10.1016/j.margeo.2019.105982
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12591
Loading
/content/journals/10.1111/bre.12591
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error