1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Although much is known about the interaction of faulting and sedimentation within the basins of active segmented continental rift systems, little is known about these processes within the interaction zones of varying geometries that separate the young interacting segments. We address this problem by exploring the non‐volcanic rift interaction zones (RIZ) along the humid, magma‐poor juvenile western branch of the East African Rift System (WB‐EARS). We examine the large‐scale ‘cross‐over’ relief profiles (basin‐to‐basin through‐going profiles extending across RIZs), the spatial patterns of rift‐linking faults (breaching faults), and axial stream morphology. Our results show that: (1) the RIZs are at different stages of their evolution; (2) distinct long‐wavelength 2‐D cross‐over topographic relief shapes, directionality of axial stream flow (sediment routing patterns), and breaching fault patterns characterise RIZs at the various stages of the linkage of interacting rift basins; (3) these stages include unbreached, partially‐breached, recently‐breached, and breached RIZs; (4) deforming RIZs exhibit different styles of directionality of breaching, including a unidirectional (distinct propagator and receiver segments), bi‐directional propagation (both segments act as propagators and receivers), and nucleation and outward propagation of a narrow intra‐RIZ subsidiary rift basin; (5) RIZ breaching is facilitated by overlap rift‐flank deformation, and/or rift tip propagation structures in the form of rift splaying, border fault rotation (rift‐tip rotation), and fault cluster networks and (6) the lateral propagation of breaching faults at the rift tips and flanks, facilitated by localized stress concentrations, is modulated by the extension direction and inherited basement structures. Our findings offer a broader insight into the geometries, structural, and morphological evolution of RIZs, and provide first‐order predictions of the large‐scale sedimentation patterns of humid early‐stage continental rift environments. Our models provide testable hypotheses for linking rift architecture and patterns of early stage sedimentation applicable to ancient rift basins.

,

During the early stages of continental extension, isolated rift segments propagate laterally and interact to link‐up at RIZs. In this study, we investigate RIZs in East Africa to decipher the stages of their evolution and gain insights relevant for understanding the evolution of rift systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12592
2021-11-11
2024-04-20
Loading full text...

Full text loading...

References

  1. Aanyu, K., & Koehn, D. (2011). Influence of pre‐existing fabrics on fault kinematics and rift geometry of interacting segments: Analogue models based on the Albertine Rift (Uganda), Western Branch‐East African Rift System. Journal of African Earth Sciences, 59(2–3), 168–184. https://doi.org/10.1016/j.jafrearsci.2010.10.003
    [Google Scholar]
  2. Acocella, V., Faccenna, C., Funiciello, R., & Rossetti, F. (1999). Sand‐box modelling of basement‐controlled transfer zones in extensional domains. Terra Nova‐Oxford, 11(4), 149–156. https://doi.org/10.1046/j.1365‐3121.1999.00238.x
    [Google Scholar]
  3. Aldrich, M. J. (1986). Tectonics of the Jemez Lineament in the Jemez Mountains and Rio Grande Rift. Journal of Geophysical Research, 91, 1753–1762. https://doi.org/10.1029/JB091iB02p01753
    [Google Scholar]
  4. Allen, P. A. (2008). From landscapes into geological history. Nature, 451(7176), 274–276.
    [Google Scholar]
  5. Allken, V., Huismans, R. S., & Thieulot, C. (2011). Three‐dimensional numerical modeling of upper crustal extensional systems. Journal of Geophysical Research: Solid Earth, 116(B10), 1–15. https://doi.org/10.1029/2011JB008319
    [Google Scholar]
  6. Allken, V., Huismans, R. S., & Thieulot, C. (2012). Factors controlling the mode of rift interaction in brittle‐ductile coupled systems: A 3D numerical study. Geochemistry, Geophysics, Geosystems, 13(5), 1–18. https://doi.org/10.1029/2012GC004077
    [Google Scholar]
  7. Annandale, G. W. (1995). Erodibility. Journal of Hydraulic Research, 33(4), 471–494. https://doi.org/10.1080/00221689509498656
    [Google Scholar]
  8. Arkani‐Hamed, J. (1988). Differential reduction‐to‐the‐pole of regional magnetic anomalies. Geophysics, 53(12), 1592–1600. https://doi.org/10.1190/1.1442441
    [Google Scholar]
  9. Barnes, J. B., Densmore, A. L., Mukul, M., Sinha, R., Jain, V., & Tandon, S. K. (2011). Interplay between faulting and base level in the development of Himalayan frontal fold topography. Journal of Geophysical Research: Earth Surface, 116(F3), 1–19. https://doi.org/10.1029/2010JF001841
    [Google Scholar]
  10. Behn, M. D., & Lin, J. (2000). Segmentation in gravity and magnetic anomalies along the U.S. east coast passive margin; implications for incipient structure of the oceanic lithosphere. Journal of Geophysical Research, 105(11), 25769–25790. https://doi.org/10.1029/2000JB900292
    [Google Scholar]
  11. Bloomfield, K. (1965). The geology of the Middle Shire Hydro‐Electric Power Sites in Records of the Geological Survey of Malawi VII, 29–44, Government Printer, Zomba, Malawi.
  12. Bloomfield, K., & Garson, M. S. (1965). The geology of the kirk range – Lisungwe valley area. Bulletin of the Geological Survey of Malawi 17. Government Printer.
    [Google Scholar]
  13. Boone, S. C., Kohn, B. P., Gleadow, A. J., Morley, C. K., Seiler, C., & Foster, D. A. (2019). Birth of the East African Rift System: Nucleation of magmatism and strain in the Turkana Depression. Geology, 47(9), 886–890. https://doi.org/10.1130/G46468.1
    [Google Scholar]
  14. Bosworth, W. (1985). Geometry of propagating continental rifts. Nature, 316(6029), 625–627.
    [Google Scholar]
  15. Chorowicz, J. (2005). The East African rift system. Journal of African Earth Sciences, 43(1–3), 379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019
    [Google Scholar]
  16. Choubert, G., Faure‐Muret, A., Chanteux, P., Roche, G., Simpson, E. S. W., Shackleton, L., Ségoufin, J., Seguin, C., & Sougy, J. (1988). International geological map of Africa. Scale 1: 5 000 000, Commission for the Geological Map of the World (CGMW). UNESCO.
    [Google Scholar]
  17. Cochran, J. R., & Martinez, F. (1988). Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics, 153(1–4), 25–53. https://doi.org/10.1016/0040‐1951(88)90006‐6
    [Google Scholar]
  18. Cohen, A. S., Van Bocxlaer, B., Todd, J. A., McGlue, M., Michel, E., Nkotagu, H. H., Grove, A. T., & Delvaux, D. (2013). Quaternary ostracodes and molluscs from the Rukwa Basin (Tanzania) and their evolutionary and paleobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 79–97. https://doi.org/10.1016/j.palaeo.2013.09.007
    [Google Scholar]
  19. Collanega, L., Corti, G., Breda, A., Massironi, M., & Keir, D. (2020). 3D extension at plate boundaries accommodated by interacting fault systems. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598‐020‐65599‐5
    [Google Scholar]
  20. Corti, G. (2004). Centrifuge modelling of the influence of crustal fabrics on the development of transfer zones: Insights into the mechanics of continental rifting architecture. Tectonophysics, 384(1–4), 191–208. https://doi.org/10.1016/j.tecto.2004.03.014
    [Google Scholar]
  21. Corti, G. (2012). Evolution and characteristics of continental rifting: Analog modeling‐inspired view and comparison with examples from the East African Rift System. Tectonophysics, 522, 1–33. https://doi.org/10.1016/j.tecto.2011.06.010
    [Google Scholar]
  22. Corti, G., Cioni, R., Franceschini, Z., Sani, F., Scaillet, S., Molin, P., Isola, I., Mazzarini, F., Brune, S., Keir, D., Erbello, A., Muluneh, A., Illsley‐Kemp, F., & Glerum, A. (2019). Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467‐019‐09335‐2
    [Google Scholar]
  23. Corti, G., van Wijk, J., Cloetingh, S., & Morley, C. K. (2007). Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonics, 26(6). https://doi.org/10.1029/2006TC002086
    [Google Scholar]
  24. Cowie, P. A., Underhill, J. R., Behn, M. D., Lin, J., & Gill, C. E. (2005). Spatio‐temporal evolution of strain accumulation derived from multi‐scale observations of Late Jurassic rifting in the northern North Sea: A critical test of models for lithospheric extension. Earth and Planetary Science Letters, 234(3–4), 401–419. https://doi.org/10.1016/j.epsl.2005.01.039
    [Google Scholar]
  25. Daly, M. C., Chorowicz, J., & Fairhead, J. D. (1989). Rift basin evolution in Africa: The influence of reactivated steep basement shear zones. Geological Society, London, Special Publications, 44(1), 309–334. https://doi.org/10.1144/GSL.SP.1989.044.01.17
    [Google Scholar]
  26. Daly, M. C., Green, P., Watts, A. B., Davies, O., Chibesakunda, F., & Walker, R. (2020). Tectonics and Landscape of the Central African Plateau, and their implications for a propagating Southwestern Rift in Africa. Geochemistry, Geophysics, Geosystems, 21, e2019GC008746. https://doi.org/10.1029/2019GC008746
    [Google Scholar]
  27. Delvaux, D. (1989). The Karoo to Recent rifting in the western branch of the East‐African Rift System: A bibliographical synthesis. Royal Museum for Central Africa – Department of Geology and Mineralogy, Tervuren (Belgium), Annual Report. 1990 (1991), 63–83.
  28. Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1–4), 105–128. https://doi.org/10.1016/j.tecto.2009.05.009
    [Google Scholar]
  29. Delvaux, D., Kervyn, F., Macheyeki, A. S., & Temu, E. B. (2011, January 8–14). Active faulting in W‐Tanzania: Coupling between tectonics, volcanism & climate?23rd Colloquium of African Geology, Johannesburg, South Africa. Abstract Volume, p.112.
    [Google Scholar]
  30. Delvaux, D., Kervyn, F., Macheyeki, A. S., & Temu, E. B. (2012). Geodynamic significance of the TRM segment in the East African Rift (W‐Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin. Journal of Structural Geology, 37, 161–180. https://doi.org/10.1016/j.jsg.2012.01.008
    [Google Scholar]
  31. Delvaux, D., Kervyn, F., Vittori, E., Kajara, R. S. A., & Kilembe, E. (1998). Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin. Journal of African Earth Sciences, 26(3), 397–421. https://doi.org/10.1016/S0899‐5362(98)00023‐2
    [Google Scholar]
  32. Dèzes, P., Schmid, S. M., & Ziegler, P. A. (2004). Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389(1–2), 1–33. https://doi.org/10.1016/j.tecto.2004.06.011
    [Google Scholar]
  33. Drury, S. A. (2001). Image interpretation in geology (3rd ed.). Blackwell Science Inc.
    [Google Scholar]
  34. Dulanya, Z. (2017). A review of the geomorphotectonic evolution of the south Malawi rift. Journal of African Earth Sciences, 129, 728–738. https://doi.org/10.1016/j.jafrearsci.2017.02.016
    [Google Scholar]
  35. Ebinger, C. J. (1989). Tectonic development of the western branch of the East African rift system. Geological Society of America Bulletin, 101(7), 885–903. https://doi.org/10.1130/0016‐7606(1989)101<0885:TDOTWB>2.3.CO;2
    [Google Scholar]
  36. Faulds, J., Coolbaugh, M., Bouchot, V., Moek, I., & Oguz, K. (2010, April). Characterizing structural controls of geothermal reservoirs in the Great Basin, USA, and Western Turkey: Developing successful exploration strategies in extended terranes. In World Geothermal Congress (11 p.). World Geothermal Congress.
    [Google Scholar]
  37. Faulds, J. E., & Varga, R. J. (1998). The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. Geological Society of America Special Papers, 323, 1–45.
    [Google Scholar]
  38. Fernandez‐Alonso, M., Delvaux, D., Klerkx, J., & Theunissen, K. (2001). Structural link between Tanganyika‐and Rukwa‐rift basins at Karema‐Nkamba (Tanzania): Basement structural control and recent evolution. Royal Museum for Central Africa – Department of Geology and Mineralogy, Tervuren (Belgium), Annual Report, 91–100.
  39. Fossen, H., Schultz, R. A., Rundhovde, E., Rotevatn, A., & Buckley, S. J. (2010). Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation. AAPG Bulletin, 94(5), 597–613. https://doi.org/10.1306/10130909088
    [Google Scholar]
  40. Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., Kusky, T. M., Macey, P., Muhongo, S., Stern, R. J., & Viola, G. (2013). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65–106. https://doi.org/10.1016/j.jafrearsci.2013.06.004
    [Google Scholar]
  41. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  42. GTK Consortium . (2012). Explanation of the geology of sheets NA‐36‐1 and NA‐36‐5 (Arua and Pakwach) 1:250,000, Uganda. Department of Geological Survey and Mines (DGSM), Entebbe, 115 p.
  43. Grauch, V. J. S., & Hudson, M. R. (2007). Guides to understanding the aeromagnetic expression of faults in sedimentary basins: Lessons learned from the Central Rio Grande rift, New Mexico. Geosphere, 3(6), 596–623. https://doi.org/10.1130/GES00128.1
    [Google Scholar]
  44. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26(7), 595–598. https://doi.org/10.1130/0091‐7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  45. Hans Nelson, C., Karabanov, E. B., Colman, S. M., & Escutia, C. (1999). Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia. Geology, 27(2), 163–166. https://doi.org/10.1130/0091‐7613(1999)027<0163:TASSCO>2.3.CO;2
    [Google Scholar]
  46. Heilman, E., Kolawole, F., Atekwana, E. A., & Mayle, M. (2019). Controls of basement fabric on the linkage of rift segments. Tectonics, 38(4), 1337–1366. https://doi.org/10.1029/2018TC005362
    [Google Scholar]
  47. Heron, P. J., Peace, A. L., McCaffrey, K. J. W., Welford, J. K., Wilson, R., van Hunen, J., & Pysklywec, R. N. (2019). Segmentation of rifts through structural inheritance: Creation of the Davis Strait. Tectonics, 38(7), 2411–2430. https://doi.org/10.1029/2019TC005578
    [Google Scholar]
  48. Hodgson, I., Illsley‐Kemp, F., Gallacher, R. J., Keir, D., Ebinger, C. J., & Mtelela, K. (2017). Crustal structure at a young continental rift: A receiver function study from the Tanganyika Rift. Tectonics, 36, 2806–2822. https://doi.org/10.1002/2017TC004477
    [Google Scholar]
  49. Hovius, N. (1998). Controls on sediment supply by large rivers. In K. W.Shanley, & P. J.McCabe (Eds.), Relative role of eustasy, climate and tectonism in continental rocks: Tulsa, Oklahoma (Vol. 59, pp. 2–16). SEPM Special Publication.
    [Google Scholar]
  50. Jackson, C. A. L., Gawthorpe, R. L., Carr, I. D., & Sharp, I. R. (2005). Normal faulting as a control on the stratigraphic development of shallow marine syn‐rift sequences: The Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift, Egypt. Sedimentology, 52(2), 313–338. https://doi.org/10.1111/j.1365‐3091.2005.00699.x
    [Google Scholar]
  51. Katumwehe, A. B., Abdelsalam, M. G., & Atekwana, E. A. (2015). The role of pre‐existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda. Tectonophysics, 646, 117–129. https://doi.org/10.1016/j.tecto.2015.01.022
    [Google Scholar]
  52. Katumwehe, A. B., Abdelsalam, M. G., Atekwana, E. A., & Laó‐Dávila, D. A. (2016). Extent, kinematics and tectonic origin of the Precambrian Aswa Shear Zone in eastern Africa. Gondwana Research, 34, 241–253. https://doi.org/10.1016/j.gr.2015.03.007
    [Google Scholar]
  53. Kim, Y. S., Peacock, D. C., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
    [Google Scholar]
  54. Knappe, E., Bendick, R., Ebinger, C., Birhanu, Y., Lewi, E., Floyd, M., King, R., Kianji, G., Mariita, N., Temtime, T., & Waktola, B. (2020). Accommodation of east African Rifting across the Turkana depression. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018469.
    [Google Scholar]
  55. Koehn, D., Aanyu, K., Haines, S., & Sachau, T. (2008). Rift nucleation, rift propagation and the creation of basement micro‐plates within active rifts. Tectonophysics, 458(1–4), 105–116. https://doi.org/10.1016/j.tecto.2007.10.003
    [Google Scholar]
  56. Kolawole, F., Atekwana, E. A., Laó‐Dávila, D. A., Abdelsalam, M. G., Chindandali, P. R., Salima, J., & Kalindekafe, L. (2018). Active deformation of Malawi rift's north basin Hinge zone modulated by reactivation of preexisting Precambrian Shear zone fabric. Tectonics, 37(3), 683–704. https://doi.org/10.1002/2017TC004628
    [Google Scholar]
  57. Kranz, R. L. (1979). Crack‐crack and crack‐pore interactions in stressed granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(1), 37–47.
    [Google Scholar]
  58. La Rosa, A., Pagli, C., Keir, D., Sani, F., Corti, G., Wang, H., & Possee, D. (2019). Observing oblique slip during rift linkage in Northern Afar. Geophysical Research Letters, 46(19), 10782–10790. https://doi.org/10.1029/2019GL084801
    [Google Scholar]
  59. Lambiase, J. J., & Bosworth, W. (1995). Structural controls on sedimentation in continental rifts. Geological Society, London, Special Publications, 80(1), 117–144. https://doi.org/10.1144/GSL.SP.1995.080.01.06
    [Google Scholar]
  60. Lavayssière, A. J., Drooff, C. J., Ebinger, C. J., Gallacher, R. J., Illsley‐Kemp, F. J., Oliva, S. J., & Keir, D. J. (2019). Depth extent and kinematics of faulting in the Southern Tanganyika Rift, Africa. Tectonics, 38(3), 842–862. https://doi.org/10.1029/2018tc005379
    [Google Scholar]
  61. Lazarus, E. D., & Constantine, J. A. (2013). Generic theory for channel sinuosity. Proceedings of the National Academy of Sciences, 110(21), 8447–8452. https://doi.org/10.1073/pnas.1214074110
    [Google Scholar]
  62. Lemna, O. S., Stephenson, R., & Cornwell, D. G. (2019). The role of pre‐existing Precambrian structures in the development of Rukwa Rift Basin, southwest Tanzania. Journal of African Earth Sciences, 150, 607–625. https://doi.org/10.1016/j.jafrearsci.2018.09.015
    [Google Scholar]
  63. Lyons, R. P., Scholz, C. A., Cohen, A. S., King, J. W., Brown, E. T., Ivory, S. J., Johnson, T. C., Deino, A. L., Reinthal, P. N., McGlue, M. M., & Blome, M. W. (2015). Continuous1.3‐million‐year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15568–15573.
    [Google Scholar]
  64. Ma, G. Q., Du, X. J., Li, L. L., & Meng, L. S. (2012). Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal. Applied Geophysics, 9(4), 468–474. https://doi.org/10.1007/s11770‐012‐0350‐4
    [Google Scholar]
  65. Mack, G. H., Seager, W. R., Leeder, M. R., Perez‐Arlucea, M., & Salyards, S. L. (2006). Pliocene and Quaternary history of the Rio Grande, the axial river of the southern Rio Grande rift, New Mexico, USA. Earth‐Science Reviews, 79(1–2), 141–162. https://doi.org/10.1016/j.earscirev.2006.07.002
    [Google Scholar]
  66. Mardia, K. V., & Jupp, P. E. (2009). Directional statistics (Vol. 494). John Wiley & Sons.
    [Google Scholar]
  67. Molnar, N. E., Cruden, A. R., & Betts, P. G. (2018). Unzipping continents and the birth of microcontinents. Geology, 46(5), 451–454. https://doi.org/10.1130/G40021.1
    [Google Scholar]
  68. Molnar, N. E., Cruden, A. R., & Betts, P. G. (2019). Interactions between propagating rifts and linear weaknesses in the lower crust. Geosphere, 15(5), 1617–1640. https://doi.org/10.1130/GES02119.1
    [Google Scholar]
  69. Mondy, L. S., Rey, P. F., Duclaux, G., & Moresi, L. (2018). The role of asthenospheric flow during rift propagation and breakup. Geology, 46(2), 103–106. https://doi.org/10.1130/G39674.1
    [Google Scholar]
  70. Morel, S. W. (1958). The geology of the Middle Shire Area. Bulletin of the Geological Survey of Malawi No. 10, Government Printer, Zomba, Malawi.
  71. Morley, C. K., Wescott, W. A., Harper, R. M., & Cunningham, S. M. (1999). Geology and geophysics of the Rukwa rift. In C. K.Morley (Ed.), Geoscience of rift systems—Evolution of East Africa: AAPG Studies in Geology No. 44 (pp. 91–110). American Association of Petroleum Geologists.
    [Google Scholar]
  72. Morley, C. K. (2010). Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments?Earth and Planetary Science Letters, 297(3), 667–673. https://doi.org/10.1016/j.epsl.2010.07.022
    [Google Scholar]
  73. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74(8), 1234–1253.
    [Google Scholar]
  74. Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371–385.
    [Google Scholar]
  75. Muirhead, J. D., Kattenhorn, S. A., & Le Corvec, N. (2015). Varying styles of magmatic strain accommodation across the East African Rift. Geochemistry, Geophysics, Geosystems, 16(8), 2775–2795. https://doi.org/10.1002/2015GC005918
    [Google Scholar]
  76. Muirhead, J. D., Wright, L. J., & Scholz, C. A. (2019). Rift evolution in regions of low magma input in East Africa. Earth and Planetary Science Letters, 506, 332–346. https://doi.org/10.1016/j.epsl.2018.11.004
    [Google Scholar]
  77. Musila, M., Ebinger, C. J., Mwangi, S., Kianji, G., Ayele, A., Mariita, N., Bastow, I. D., & Bendick, R. O. (2020). Kinematics of linkage between the main Ethiopian and Eastern rifts in the Turkana Depression. AGU Fall Meeting abstract #T024‐0004.
  78. Nelson, R. A., Patton, T. L., & Morley, C. K. (1992). Rift‐segment interaction and its relation to hydrocarbon exploration in continental rift systems (1). AAPG Bulletin, 76(8), 1153–1169. https://doi.org/10.1306/BDFF898E‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  79. Neuharth, D., Brune, S., Glerum, A., Heine, C., & Welford, J. K. (2021). Formation of continental microplates through rift linkage: Numerical modelling and its application to the Flemish Cap and Sao Paulo Plateau. Geochemistry, Geophysics, Geosystems, 22, 1–22.
    [Google Scholar]
  80. Ngalamo, J. F. G., Kolawole, F., Sobh, M., & Atekwana, E. A. (2020). Partitioning of extension at the propagating tips of continental rifts: Insights from the Central and East African Rift Systems. AGU Fall Meeting Abstract #T028‐06.
  81. Njinju, E. A., Atekwana, E. A., Stamps, D. S., Abdelsalam, M. G., Atekwana, E. A., Mickus, K. L., Fishwick, S., Kolawole, F., Rajaonarison, T. A., & Nyalugwe, V. N. (2019). Lithospheric structure of the Malawi rift: Implications for magma‐poor rifting processes. Tectonics, 38(11), 3835–3853. https://doi.org/10.1029/2019TC005549
    [Google Scholar]
  82. Njinju, E. A., Kolawole, F., Atekwana, E. A., Stamps, D. S., Atekwana, E. A., Abdelsalam, M. G., & Mickus, K. L. (2019). Terrestrial heat flow in the Malawi Rifted Zone, East Africa: Implications for tectono‐thermal inheritance in continental rift basins. Journal of Volcanology and Geothermal Research, 387, 106656. https://doi.org/10.1016/j.jvolgeores.2019.07.023
    [Google Scholar]
  83. Nyalugwe, V. N., Abdelsalam, M. G., Atekwana, E. A., Katumwehe, A., Mickus, K. L., Salima, J., Njinju, E. A., & Emishaw, L. (2019a). Lithospheric structure beneath the Cretaceous Chilwa Alkaline Province (CAP) in southern Malawi and northeastern Mozambique. Journal of Geophysical Research: Solid Earth, 124(11), 12224–12240. https://doi.org/10.1029/2019JB018430
    [Google Scholar]
  84. Nyalugwe, V. N., Abdelsalam, M. G., Atekwana, E. A., Katumwehe, A., Mickus, K. L., Salima, J., Njinju, E. A., & Emishaw, L. (2019b). 2013 Total Magnetic Intensity (TMI) gridded aeromagnetic data of southern Malawi 34 45 E – 36 00 E and 14 45 S and 16 15 S (investigator Mohamed Abdelsalam). Integrated Earth Data Applications (IEDA). https://doi.org/10.1594/IEDA/324860
    [Google Scholar]
  85. Nyalugwe, V. N., Abdelsalam, M. G., Katumwehe, A., Mickus, K. L., & Atekwana, E. A. (2020). Structure and tectonic setting of the Chingale Igneous Ring Complex, Malawi from aeromagnetic and satellite gravity data: Implication for Precambrian terranes collision and Neogene‐Quaternary rifting. Journal of African Earth Sciences, 163, 103760. https://doi.org/10.1016/j.jafrearsci.2020.103760
    [Google Scholar]
  86. Pagli, C., Yun, S. H., Ebinger, C., Keir, D., & Wang, H. (2019). Strike‐slip tectonics during rift linkage. Geology, 47(1), 31–34. https://doi.org/10.1130/G45345.1
    [Google Scholar]
  87. Perrin, C., Manighetti, I., & Gaudemer, Y. (2016). Off‐fault tip splay networks: A genetic and generic property of faults indicative of their long‐term propagation. Comptes Rendus Geoscience, 348(1), 52–60. https://doi.org/10.1016/j.crte.2015.05.002
    [Google Scholar]
  88. Phillips, T. B., & McCaffrey, K. J. (2019). Terrane boundary reactivation, barriers to lateral fault propagation and reactivated fabrics: Rifting across the Median Batholith Zone, Great South Basin. New Zealand. Tectonics, 38(11), 4027–4053. https://doi.org/10.1029/2019TC005772
    [Google Scholar]
  89. Ring, U. (1995). Tectonic and lithological constraints on the evolution of the Karoo graben of northern Malawi (East Africa). Geologische Rundschau, 84(3), 607–625. https://doi.org/10.1007/s005310050028
    [Google Scholar]
  90. Roberts, E. M., Stevens, N. J., O’Connor, P. M., Dirks, P. H. G. M., Gottfried, M. D., Clyde, W. C., Armstrong, R. A., Kemp, A. I. S., & Hemming, S. (2012). Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5(4), 289–294. https://doi.org/10.1038/ngeo1432
    [Google Scholar]
  91. Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East Africa. Annual Review of Earth and Planetary Sciences, 15, 445–503. https://doi.org/10.1146/annurev.ea.15.050187.002305
    [Google Scholar]
  92. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., Grundvåg, S. A., & Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37(6), 1858–1875. https://doi.org/10.1029/2018TC005018
    [Google Scholar]
  93. Ryan, W. B. F., Carbotte, S. M., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi‐Resolution Topography (GMRT) synthesis data set. Geochemistry, Geophysics, Geosystems, 10, Q03014.
    [Google Scholar]
  94. Saria, E., Calais, E., Stamps, D. S., Delvaux, D., & Hartnady, C. J. H. (2014). Present‐day kinematics of the East African Rift. Journal of Geophysical Research: Solid Earth, 119(4), 3584–3600. https://doi.org/10.1002/2013JB010901
    [Google Scholar]
  95. Scholz, C. A., Shillington, D. J., Wright, L. J., Accardo, N., Gaherty, J. B., & Chindandali, P. (2020). Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa. Geosphere, 16(5), 1293–1311. https://doi.org/10.1130/GES02228.1
    [Google Scholar]
  96. Simon, B., Guillocheau, F., Robin, C., Dauteuil, O., Nalpas, T., Pickford, M., Senut, B., Lays, P., Bourges, P., & Bez, M. (2017). Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African rift system). Marine and Petroleum Geology, 86, 17–37. https://doi.org/10.1016/j.marpetgeo.2017.05.006
    [Google Scholar]
  97. Soreghan, M. J., & Cohen, A. S. (1996). Textural and compositional variability across littoral segments of Lake Tanganyika: The effect of asymmetric basin structure on sedimentation in large rift lakes. AAPG Bulletin, 80(3), 382–408. https://doi.org/10.1306/64ED87F0‐1724‐11D7‐8645000102C1865D
    [Google Scholar]
  98. Soreghan, M. J., Scholz, C. A., & Wells, J. T. (1999). Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa; seismic stratigraphic analysis. Journal of Sedimentary Research, 69(4), 832–846. https://doi.org/10.2110/jsr.69.832
    [Google Scholar]
  99. Specht, T. D., & Rosendahl, B. R. (1989). Architecture of the Lake Malawi rift, east Africa. Journal of African Earth Sciences (and the Middle East), 8(2–4), 355–382. https://doi.org/10.1016/S0899‐5362(89)80032‐6
    [Google Scholar]
  100. Stamps, D. S., Calais, E., Saria, E., Hartnady, C., Nocquet, J. M., Ebinger, C. J., & Fernandes, R. M. (2008). A kinematic model for the East African Rift. Geophysical Research Letters, 35(5). https://doi.org/10.1029/2007GL032781
    [Google Scholar]
  101. Taylor, S. K., Bull, J. M., Lamarche, G., & Barnes, P. M. (2004). Normal fault growth and linkage in the Whakatane Graben, New Zealand, during the last 1.3 Myr. Journal of Geophysical Research: Solid Earth, 109(B2), 1–22. https://doi.org/10.1029/2003JB002412
    [Google Scholar]
  102. Tentler, T., & Acocella, V. (2010). How does the initial configuration of oceanic ridge segments affect their interaction? Insights from analogue models. Journal of Geophysical Research: Solid Earth, 115(B1).
    [Google Scholar]
  103. Thomas, D. S. G., Bailey, R., Shaw, P. A., Durcan, J. A., & Singarayer, J. S. (2009). Late Quaternary highstands at Lake Chilwa, Malawi: Frequency, timing and possible forcing mechanisms in the last 44 ka. Quaternary Science Reviews, 28, 526–539. https://doi.org/10.1016/j.quascirev.2008.10.023
    [Google Scholar]
  104. Tiercelin, J. J., Soreghan, M., Cohen, A. S., Lezzar, K. E., & Bouroullec, J. L. (1992). Sedimentation in large rift lakes: Example from the Middle Pleistocene – Modern deposits of the Tanganyika Trough, East African Rift System. Bulletin des Centres de Recherches Exploration – Production Elf‐Aquitaine, 16, 83–111.
    [Google Scholar]
  105. Vittori, E., Delvaux, D., & Kervyn, F. (1997). Kanda fault: A major seismogenic element west of the Rukwa Rift (Tanzania, East Africa). Journal of Geodynamics, 24(1–4), 139–153. https://doi.org/10.1016/S0264‐3707(96)00038‐5
    [Google Scholar]
  106. Wang, L., Maestrelli, D., Corti, G., Zou, Y., & Shen, C. (2021). Normal fault reactivation during multiphase extension: Analogue models and application to the Turkana Depression, East Africa. Tectonophysics, 811, 228870.
    [Google Scholar]
  107. Wedmore, L., Biggs, J., Williams, J., Fagereng, A., Dulanya, Z., Mphepo, F., & Mdala, H. (2020). Active fault scarps in southern Malawi and their implications for the distribution of strain in incipient continental rifts. Tectonics, 39, e2019TC005834. https://doi.org/10.1029/2019TC005834
    [Google Scholar]
  108. Westerhof, A. B., Härmä, P., Isabirye, E., Katto, E., Koistinen, T., Kuosmanen, E., Lehto, T., Lehtonen, M. I., Mäkitie, H., Manninen, T., & Mänttäri, I. (2014). Geology and geodynamic development of Uganda with explanation of the 1:1,000,000 scale geological map. Geological Survey of Finland, Special Paper, 55, 1–365.
    [Google Scholar]
  109. Williams, J. N., Fagereng, Å., Wedmore, L. N., Biggs, J., Mphepo, F., Dulanya, Z., Mdala, H., & Blenkinsop, T. (2019). How do variably striking faults reactivate during rifting? Insights from southern Malawi. Geochemistry, Geophysics, Geosystems, 20(7), 3588–3607. https://doi.org/10.1029/2019GC008219
    [Google Scholar]
  110. Wilson, T. J. (1999). Cenozoic structural segmentation of the Transantarctic Mountains rift flank in southern Victoria Land. Global and Planetary Change, 23(1–4), 105–127. https://doi.org/10.1016/S0921‐8181(99)00053‐3
    [Google Scholar]
  111. Wright, L. J., Muirhead, J. D., & Scholz, C. A. (2020). Spatio‐temporal variations in upper crustal extension across the different basement terranes of the Lake Tanganyika Rift, East Africa. Tectonics, 39, 1–24. https://doi.org/10.1029/2019TC006019
    [Google Scholar]
  112. Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., & Mather, A. E. (2020). Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt. Earth and Planetary Science Letters, 538, 116221. https://doi.org/10.1016/j.epsl.2020.116221
    [Google Scholar]
  113. Zwaan, F., & Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation, 5(1), SD119–SD138. https://doi.org/10.1190/INT‐2016‐0063.1
    [Google Scholar]
  114. Zwaan, F., & Schreurs, G. (2020). Rift segment interaction in orthogonal and rotational extension experiments: Implications for the large‐scale development of rift systems. Journal of Structural Geology, 140, 104119. https://doi.org/10.1016/j.jsg.2020.104119
    [Google Scholar]
  115. Zwaan, F., Schreurs, G., Naliboff, J., & Buiter, S. J. (2016). Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics, 693, 239–260. https://doi.org/10.1016/j.tecto.2016.02.036
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12592
Loading
/content/journals/10.1111/bre.12592
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): continental rifting; normal faults; rift interaction; rift linkage; sedimentation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error