1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The early exhumation history of the Tauern Window in the European Eastern Alps and its surface expression is poorly dated and quantified, partly because thermochronological and provenance information are sparse from the Upper Austrian Northern Alpine Foreland Basin. For the first time, we combine a single‐grain double‐dating approach (Apatite Fission Track and U‐Pb dating) with trace‐element geochemistry analysis on the same apatites to reconstruct the provenance and exhumation history of the late Oligocene/early Miocene Eastern Alps. The results from 22 samples from the Chattian to Burdigalian sedimentary infill of the Upper Austrian Northern Alpine Foreland Basin were integrated with a 3D seismic‐reflection data set and published stratigraphic reports. Our highly discriminative data set indicates an increasing proportion of apatites (from 6% to 23%) with Sr/Y values <0.1 up‐section and an increasing amount of apatites (from 24% to 38%) containing >1,000 ppm light rare‐earth elements from Chattian to Burdigalian time. The number of U‐Pb ages with acceptable uncertainties increases from 40% to 59% up‐section, with mostly late Variscan/Permian ages, while an increasing number of grains (10%–27%) have Eocene or younger apatite fission track cooling ages. The changes in the apatite trace‐element geochemistry and U‐Pb data mirror increased sediment input from an ≥upper amphibolite‐facies metamorphic source of late Variscan/Permian age – probably the Ötztal‐Bundschuh nappe system – accompanied by increasing exhumation rates indicated by decreasing apatite fission track lag times. We attribute these changes to the surface response to upright folding and doming in the Penninic units of the future Tauern Window starting at 29–27 Ma. This early period of exhumation (0.3–0.6 mm/a) is triggered by early Adriatic indentation along the Giudicarie Fault System.

,

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12593
2021-11-11
2021-12-04
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12593.html?itemId=/content/journals/10.1111/bre.12593&mimeType=html&fmt=ahah

References

  1. Behrmann, J. H. (1988). Crustal‐scale extension in a convergent orogen: The Sterzing‐Steinach mylomte zone in the Eastern Alps. Geodinamica Acta, 2(2), 63–73.
    [Google Scholar]
  2. Belousova, E., Griffin, W., O'Reilly, S., & Fisher, N. (2002). Apatite as an indicator mineral for mineral exploration: Trace‐element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1), 45–69.
    [Google Scholar]
  3. Belousova, E., Walters, S., Griffin, W., & O’Reilly, S. (2001). Trace‐element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48(4), 603–619.
    [Google Scholar]
  4. Bernet, M. (2019). Exhumation studies of mountain belts based on detrital fission‐track analysis on sand and sandstones. In M. G.Malusà, & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 269–277). Springer.
    [Google Scholar]
  5. Bernet, M., Brandon, M., Garver, J., Balestieri, M., Ventura, B., & Zattin, M. (2009). Exhuming the Alps through time: Clues from detrital zircon fission‐track thermochronology. Basin Research, 21(6), 781–798.
    [Google Scholar]
  6. Bernhardt, A., Stright, L., & Lowe, D. R. (2012). Channelized debris‐flow deposits and their impact on turbidity currents: The Puchkirchen axial channel belt in the Austrian Molasse Basin. Sedimentology, 59(7), 2042–2070.
    [Google Scholar]
  7. Bertrand, A., Rosenberg, C. L., Rabaute, A., Herman, F., & Fügenschuh, B. (2017). Exhumation mechanisms of the Tauern Window (Eastern Alps) inferred from apatite and zircon fission track thermochronology. Tectonics, 36(2), 207–228.
    [Google Scholar]
  8. Blanckenburg, F. V., Villa, I., Baur, H., Morteani, G., & Steiger, R. (1989). Time calibration of a PT‐path from the Western Tauern Window, Eastern Alps: The problem of closure temperatures. Contributions to Mineralogy and Petrology, 101(1), 1–11.
    [Google Scholar]
  9. Borsi, S. (1978). New geopetrologic and radiometric data on the Alpine history of the Austridic continental margin south of the Tauern Window (Eastern Alps). Società cooperativa tipografica.
    [Google Scholar]
  10. Borsi, S., Del Moro, A., Sassi, F., & Zirpoli, G. (1979). On the age of the Vedrette di Ries (Rieserferner) massif and its geodynamic significance. Geologische Rundschau, 68(1), 41–60.
    [Google Scholar]
  11. Bousquet, R., Oberhansli, R., Schmid, S., Berger, A., Wiederkeher, M., Robert, C., Moller, A., Rosenberg, C. L., Zeilinger, G., & Molli, G. (2012). Metamorphic framework of the Alps‐Carte metamorphique des Alpes CCGM/CGMW. CCGM/CGMW.
    [Google Scholar]
  12. Brügel, A. (1998). Provenances of Alluvial Conglomerates from the Eastalpine Foreland: Oligo‐Miocene Denudation History and Drainage Evolution of the Eastern Alps; 10 Tabellen.
  13. Brügel, A., Dunkl, I., Frisch, W., Kuhlemann, J., & Balogh, K. (2000). The record of Periadriatic volcanism in the Eastern Alpine Molasse zone and its palaeogeographic implications. Terra Nova, 12(1), 42–47.
    [Google Scholar]
  14. Brügel, A., Dunkl, I., Frisch, W., Kuhlemann, J., & Balogh, K. (2003). Geochemistry and geochronology of gneiss pebbles from foreland molasse conglomerates: Geodynamic and paleogeographic implications for the Oligo‐Miocene evolution of the Eastern Alps. The Journal of Geology, 111(5), 543–563.
    [Google Scholar]
  15. Carlson, W. D., Donelick, R. A., & Ketcham, R. A. (1999). Variability of apatite fission‐track annealing kinetics: I. Experimental results. American Mineralogist, 84(9), 1213–1223.
    [Google Scholar]
  16. Carter, A. (2019). Thermochronology on sand and sandstones for stratigraphic and provenance studies. In M. G.Malusà, & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 259–268). Springer.
    [Google Scholar]
  17. Chamberlain, K. R., & Bowring, S. A. (2001). Apatite–feldspar U‐Pb thermochronometer: A reliable, mid‐range (∼450° C), diffusion‐controlled system. Chemical Geology, 172(1–2), 173–200.
    [Google Scholar]
  18. Chew, D., O’Sullivan, G., Caracciolo, L., Mark, C., & Tyrrell, S. (2020). Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U‐Pb provenance analysis. Earth‐Science Reviews, 202, 103093.
    [Google Scholar]
  19. Chew, D., Petrus, J., & Kamber, B. (2014). U‐Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199.
    [Google Scholar]
  20. Chew, D., Sylvester, P. J., & Tubrett, M. N. (2011). U‐Pb and Th–Pb dating of apatite by LA‐ICPMS. Chemical Geology, 280(1–2), 200–216.
    [Google Scholar]
  21. Christensen, J. N., Selverstone, J., Rosenfeld, J. L., & DePaolo, D. J. (1994). Correlation by Rb‐Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps. Contributions to Mineralogy and Petrology, 118(1), 1–12.
    [Google Scholar]
  22. Cliff, R., Droop, G., & Rex, D. (1985). Alpine metamorphism in the south‐east Tauern Window, Austria: 2. Rates of heating, cooling and uplift. Journal of Metamorphic Geology, 3(4), 403–415.
    [Google Scholar]
  23. Covault, J. A., Hubbard, S. M., Graham, S. A., Hinsch, R., & Linzer, H.‐G. (2009). Turbidite‐reservoir architecture in complex foredeep‐margin and wedge‐top depocenters, Tertiary Molasse Foreland Basin System, Austria. Marine and Petroleum Geology, 26(3), 379–396.
    [Google Scholar]
  24. Cramer, B., Toggweiler, J., Wright, J., Katz, M., & Miller, K. (2009). Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24(4), 1–14.
    [Google Scholar]
  25. De Ruig, M. J., & Hubbard, S. M. (2006). Seismic facies and reservoir characteristics of a deep‐marine channel belt in the Molasse foreland basin, Puchkirchen Formation, Austria. AAPG Bulletin, 90(5), 735–752.
    [Google Scholar]
  26. Del Moro, A., Puxeddu, M., Di Brozolo, F. R., & Villa, I. (1982). Rb‐Sr and K‐Ar ages on minerals at temperatures of 300–400 C from deep wells in the Larderello geothermal field (Italy). Contributions to Mineralogy and Petrology, 81(4), 340–349.
    [Google Scholar]
  27. Dunkl, I., Frisch, W., & Grundmann, G. (2003). Zircon fission track thermochronology of the southeastern part of the Tauern Window and the adjacent Austroalpine margin, Eastern Alps. Eclogae Geologicae Helvetiae, 96(2), 209–218.
    [Google Scholar]
  28. Dunkl, I., Frisch, W., Kuhlemann, J., & Brügel, A. (2009). Pebble population dating as an additional tool for provenance studies‐examples from the Eastern Alps. Geological Society, London, Special Publications, 324(1), 125–140.
    [Google Scholar]
  29. Favaro, S., Handy, M. R., Scharf, A., & Schuster, R. (2017). Changing patterns of exhumation and denudation in front of an advancing crustal indenter, Tauern Window (Eastern Alps). Tectonics, 36(6), 1053–1071.
    [Google Scholar]
  30. Favaro, S., Schuster, R., Handy, M. R., Scharf, A., & Pestal, G. (2015). Transition from orogen‐perpendicular to orogen‐parallel exhumation and cooling during crustal indentation—Key constraints from 147Sm/144Nd and 87Rb/87Sr geochronology (Tauern Window, Alps). Tectonophysics, 665, 1–16.
    [Google Scholar]
  31. Foeken, J. P., Persano, C., Stuart, F. M., & Ter Voorde, M. (2007). Role of topography in isotherm perturbation: Apatite (U‐Th)/He and fission track results from the Malta tunnel, Tauern Window, Austria. Tectonics, 26(3), 1–15.
    [Google Scholar]
  32. Frisch, W., Dunkl, I., & Kuhlemann, J. (2000). Post‐collisional orogen‐parallel large‐scale extension in the Eastern Alps. Tectonophysics, 327(3), 239–265.
    [Google Scholar]
  33. Frisch, W., Kuhlemann, J., Dunkl, I., & Brügel, A. (1998). Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics, 297(1), 1–15.
    [Google Scholar]
  34. Frisch, W., Kuhlemann, J., Dunkl, I., & Székely, B. (2001). The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps–A mosaic stone in the geomorphological evolution of the Eastern Alps. International Journal of Earth Sciences, 90(3), 500–518.
    [Google Scholar]
  35. Füchtbauer, H. (1964). Sedimentpetrographische Untersuchungen in der älteren Molasse nördlich der Alpen. Eclogae Geologicae Helvetiae, 57, 11–289.
    [Google Scholar]
  36. Fügenschuh, B., Mancktelow, N. S., & Schmid, S. S. (2012), Comment on Rosenberg and Garcia: estimating displacement along the Brenner Fault and orogen‐parallel extension in the Eastern Alps, Int J Earth Sci (Geol Rundsch) (2011) 100: 1129–1145. International Journal of Earth Sciences, 101(5), 1451–1455.
    [Google Scholar]
  37. Fügenschuh, B., Mancktelow, N. S., & Seward, D. (2000). Cretaceous to Neogene cooling and exhumation history of the Oetztal‐Stubai basement complex, eastern Alps: A structural and fission track study. Tectonics, 19(5), 905–918.
    [Google Scholar]
  38. Fügenschuh, B., Seward, D., & Mancktelow, N. (1997). Exhumation in a convergent orogen: The western Tauern window. Terra Nova, 9(5–6), 213–217.
    [Google Scholar]
  39. Garver, J. I., Brandon, M. T., Roden‐Tice, M., & Kamp, P. J. (1999). Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. Geological Society, London, Special Publications, 154(1), 283–304.
    [Google Scholar]
  40. Genser, J., & Neubauer, F. (1989). Low angle normal faults at the eastern margin of the Tauern window (Eastern Alps). Mitteilungen Der Österreichischen Geologischen Gesellschaft, 81(1988), 233–243.
    [Google Scholar]
  41. Gleadow, A. (1981). Fission‐track dating methods: What are the real alternatives?Nuclear Tracks, 5(1–2), 3–14.
    [Google Scholar]
  42. Glodny, J., Ring, U., Kühn, A., Gleissner, P., & Franz, G. (2005). Crystallization and very rapid exhumation of the youngest Alpine eclogites (Tauern Window, Eastern Alps) from Rb/Sr mineral assemblage analysis. Contributions to Mineralogy and Petrology, 149(6), 699–712.
    [Google Scholar]
  43. Groß, P., Pleuger, J., Handy, M. R., Germer, M., & John, T. (2021). Evolving temperature field in a fossil subduction channel during the transition from subduction to collision (Tauern Window, Eastern Alps). Journal of Metamorphic Geology, 39, 247–269.
    [Google Scholar]
  44. Grundmann, G., & Morteani, G. (1985). The young uplift and thermal history of the central Eastern Alps (Austria/Italy), evidence from apatite fission track ages. Jahrbuch Der Geologischen Bundesanstalt, 128, 197–216.
    [Google Scholar]
  45. Grunert, P., Auer, G., Harzhauser, M., & Piller, W. E. (2015). Stratigraphic constraints for the upper Oligocene to lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys). Newsletters on Stratigraphy, 48(1), 111–133.
    [Google Scholar]
  46. Grunert, P., Hinsch, R., Sachsenhofer, R. F., Bechtel, A., Ćorić, S., Harzhauser, M., Piller, W. E., & Sperl, H. (2013). Early Burdigalian infill of the Puchkirchen trough (North Alpine Foreland Basin, Central Paratethys): Facies development and sequence stratigraphy. Marine and Petroleum Geology, 39(1), 164–186.
    [Google Scholar]
  47. Grunert, P., Soliman, A., Ćorić, S., Roetzel, R., Harzhauser, M., & Piller, W. E. (2012). Facies development along the tide‐influenced shelf of the Burdigalian Seaway: An example from the Ottnangian stratotype (Early Miocene, middle Burdigalian). Marine Micropaleontology, 84, 14–36.
    [Google Scholar]
  48. Gusterhuber, J., Dunkl, I., Hinsch, R., Linzer, H. G., & Sachsenhofer, R. (2012). Neogene uplift and erosion in the Alpine foreland basin (upper Austria and Salzburg). Geologica Carpathica, 63(4), 295–305.
    [Google Scholar]
  49. Gusterhuber, J., Hinsch, R., & Sachsenhofer, R. (2014). Evaluation of hydrocarbon generation and migration in the Molasse fold and thrust belt (Central Eastern Alps, Austria) using structural and thermal basin models. AAPG Bulletin, 98(2), 253–277.
    [Google Scholar]
  50. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate‐tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth‐Science Reviews, 102(3–4), 121–158.
    [Google Scholar]
  51. Hawkesworth, C. (1976). Rb/Sr geochronology in the eastern Alps. Contributions to Mineralogy and Petrology, 54(3), 225–244.
    [Google Scholar]
  52. Hejl, E., & Grundmann, G. (1989). Apatit‐Spaltspurendaten zur thermischen Geschichte der Nördlichen Kalkalpen, der Flysch‐und Molassezone. Jahrbuch Der Geologischen Bundesanstalt, 132(1), 191–212.
    [Google Scholar]
  53. Henrichs, I. A., O'Sullivan, G., Chew, D., Mark, C., Babechuk, M. G., McKenna, C., & Emo, R. (2018). The trace element and U‐Pb systematics of metamorphic apatite. Chemical Geology, 483, 218–238.
    [Google Scholar]
  54. Hinsch, R. (2008). New insights into the Oligocene to Miocene geological evolution of the Molasse Basin of Austria. Oil Gas‐European Magazine, 34(3), 138–143.
    [Google Scholar]
  55. Hinsch, R. (2013). Laterally varying structure and kinematics of the Molasse fold and thrust belt of the Central Eastern Alps: Implications for exploration. AAPG Bulletin, 97(10), 1805–1831.
    [Google Scholar]
  56. Hodges, J. L. (1958). The significance probability of the Smirnov two‐sample test. Arkiv För Matematik, 3(5), 469–486.
    [Google Scholar]
  57. Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., & Cloetingh, S. (2006). Formation and deformation of the Pannonian Basin: Constraints from observational data. Geological Society, London, Memoirs, 32(1), 191–206.
    [Google Scholar]
  58. Hubbard, S. M., de Ruig, M. J., & Graham, S. A. (2009). Confined channel‐levee complex development in an elongate depo‐center: Deep‐water Tertiary strata of the Austrian Molasse basin. Marine and Petroleum Geology, 26(1), 85–112.
    [Google Scholar]
  59. Hülscher, J., Fischer, G., Grunert, P., Auer, G., & Bernhardt, A. (2019). Selective Recording of Tectonic Forcings in an Oligocene/Miocene Submarine Channel System: Insights From New Age Constraints and Sediment Volumes From the Austrian Northern Alpine Foreland Basin. Frontiers in Earth Science, 7(302), 1–25.
    [Google Scholar]
  60. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission‐track dating. Chemical Geology, 41, 285–317.
    [Google Scholar]
  61. Inger, S., & Cliff, R. (1994). Timing of metamorphism in the Tauern Window, Eastern Alps: Rb‐Sr ages and fabric formation. Journal of Metamorphic Geology, 12(5), 695–707.
    [Google Scholar]
  62. Jäger, E. (1967). Die Bedeutung der Biotit‐alterswerte. Rb–Sr Alterbestimmungen am Glimmern der Zentralalpen. In E.Jäger, E.Niggli, & E.Wenk (Eds.), Beiträge zur Geologischen Karte der Schweiz (Vol. 134, pp. 28–31).
    [Google Scholar]
  63. Jäger, E., Karl, F., & Schmidegg, O. (1969). Rubidium‐Strontium‐Altersbestimmungen an Biotit‐Muskowit‐Granitgneisen (Typus Augen‐und Flasergneise) aus dem nördlichen Großvenedigerbereich (Hohe Tauern). Tschermaks Mineralogische Und Petrographische Mitteilungen, 13(3–4), 251–272.
    [Google Scholar]
  64. Ji, W. Q., Malusà, M. G., Tiepolo, M., Langone, A., Zhao, L., & Wu, F. Y. (2019). Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova, 31(2), 120–128.
    [Google Scholar]
  65. Kohn, B., Chung, L., & Gleadow, A. (2019). Fission‐track analysis: Field collection, sample preparation and data acquisition. In Fission‐track thermochronology and its application to geology (pp. 25–48). Springer.
    [Google Scholar]
  66. Krenn, E., Schulz, B., & Finger, F. (2012). Three generations of monazite in Austroalpine basement rocks to the south of the Tauern Window: Evidence for Variscan, Permian and Eo‐Alpine Metamorphic Events. Swiss Journal of Geosciences, 105(3), 343–360.
    [Google Scholar]
  67. Kuhlemann, J. (2007). Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Global and Planetary Change, 58(1), 224–236.
    [Google Scholar]
  68. Kuhlemann, J., Dunkl, I., Brügel, A., Spiegel, C., & Frisch, W. (2006). From source terrains of the Eastern Alps to the Molasse Basin: Detrital record of non‐steady‐state exhumation. Tectonophysics, 413(3), 301–316.
    [Google Scholar]
  69. Kuhlemann, J., Frisch, W., Dunkl, I., & Székely, B. (2001). Quantifying tectonic versus erosive denudation by the sediment budget: The Miocene core complexes of the Alps. Tectonophysics, 330(1–2), 1–24.
    [Google Scholar]
  70. Kuhlemann, J., & Kempf, O. (2002). Post‐Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sedimentary Geology, 152(1), 45–78.
    [Google Scholar]
  71. Lambert, R. (1970). A potassium‐argons study of the margin of the Tauern widow at Dllach, Austria. Eclogae Geologicae Helveticae, 63, 197205.
    [Google Scholar]
  72. Linzer, H.‐G., Decker, K., Peresson, H., Dell'Mour, R., & Frisch, W. (2002). Balancing lateral orogenic float of the Eastern Alps. Tectonophysics, 354(3–4), 211–237.
    [Google Scholar]
  73. Linzer, H.‐G., Frisch, W., Zweigel, P., Girbacea, R., Hann, H.‐P., & Moser, F. (1998). Kinematic evolution of the Romanian Carpathians. Tectonophysics, 297(1–4), 133–156.
    [Google Scholar]
  74. Malusà, M. G., & Fitzgerald, P. G. (2019). Application of thermochronology to geologic problems: Bedrock and detrital approaches. In M. G.Malusà, & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 191–209). Springer.
    [Google Scholar]
  75. Malusà, M. G., Wang, J., Garzanti, E., Liu, Z.‐C., Villa, I. M., & Wittmann, H. (2017). Trace‐element and Nd‐isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag‐time approach to detrital thermochronology. Lithos, 290, 48–59.
    [Google Scholar]
  76. Martin, S., Prosser, G., & Morten, L. (1993). Tectono‐magmatic evolution of sheeted plutonic bodies along the north Giudicarie line (northern Italy). Geologische Rundschau, 82(1), 51–66.
    [Google Scholar]
  77. Masalimova, L. U., Lowe, D. R., Mchargue, T., & Derksen, R. (2015). Interplay between an axial channel belt, slope gullies and overbank deposition in the Puchkirchen Formation in the Molasse Basin, Austria. Sedimentology, 62(6), 1717–1748.
    [Google Scholar]
  78. McDowell, F. W., McIntosh, W. C., & Farley, K. A. (2005). A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission‐track dating standard. Chemical Geology, 214(3–4), 249–263.
    [Google Scholar]
  79. Miller, C., & Thöni, M. (1995). Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): Geochemistry and Sm‐Nd vs. Rb‐Sr isotope systematics. Chemical Geology, 122(1–4), 199–225.
    [Google Scholar]
  80. Mosbrugger, V., Utescher, T., & Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 14964–14969.
    [Google Scholar]
  81. Most, P. (2003). Late Alpine cooling histories of tectonic blocks along the central part of the Transalp‐Traverse (Inntal‐Gadertal): Constraints from geochronology [PhD]. Eberhardt‐Karls‐Universität Tübingen.
    [Google Scholar]
  82. Müller, W., Mancktelow, N. S., & Meier, M. (2000). Rb–Sr microchrons of synkinematic mica in mylonites: An example from the DAV fault of the Eastern Alps. Earth and Planetary Science Letters, 180(3–4), 385–397.
    [Google Scholar]
  83. Müller, W., Prosser, G., Mancktelow, N. S., Villa, I. M., Kelley, S. P., Viola, G., & Oberli, F. (2001). Geochronological constraints on the evolution of the Periadriatic Fault System (Alps). International Journal of Earth Sciences, 90(3), 623–653.
    [Google Scholar]
  84. Naeser, C. (1979). Fission‐track dating and geologic annealing of fission tracks. In E.Jäger, & J. C.Hunziker (Eds.), Lectures in isotope geology (pp. 154–169). Springer.
    [Google Scholar]
  85. Ortner, H., Aichholzer, S., Zerlauth, M., Pilser, R., & Fügenschuh, B. (2015). Geometry, amount, and sequence of thrusting in the Subalpine Molasse of western Austria and southern Germany, European Alps. Tectonics, 34(1), 1–30.
    [Google Scholar]
  86. Ortner, H., Reiter, F., & Brandner, R. (2006). Kinematics of the Inntal shear zone–sub‐Tauern ramp fault system and the interpretation of the TRANSALP seismic section, Eastern Alps, Austria. Tectonophysics, 414(1–4), 241–258.
    [Google Scholar]
  87. Ortner, H., & Stingl, V. (2001). Facies and basin development of the Oligocene in the Lower Inn Valley, Tyrol/Bavaria, Wien. Österreichische Akademie der Wissenschaften, Schriftreihe der Erdwissenschaftlichen Kommision, Paleogene of the Eastern Alps (Vol. 14).
  88. O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., & Mulligan, D. (2020). The trace element composition of apatite and its application to detrital provenance studies. Earth‐Science Reviews, 201, 103044.
    [Google Scholar]
  89. O'Sullivan, G., Chew, D., Morton, A., Mark, C., & Henrichs, I. (2018). An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochemistry, Geophysics, Geosystems, 19(4), 1309–1326.
    [Google Scholar]
  90. Oxburgh, E., Lambert, R. S. J., Baadsgaard, H., & Simons, J. (1966). Potassium argon age studies across the south‐east margin of the Tauern Window, the Eastern Alps (Vol. 1966, pp. 17–33). Verhandlungen der Geologischen Bundesanstalt.
    [Google Scholar]
  91. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.
    [Google Scholar]
  92. Pomella, H., Klötzli, U., Scholger, R., Stipp, M., & Fügenschuh, B. (2011). The Northern Giudicarie and the Meran‐Mauls fault (Alps, Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo‐/Oligocene tonalites. International Journal of Earth Sciences, 100(8), 1827–1850.
    [Google Scholar]
  93. Pomella, H., Stipp, M., & Fügenschuh, B. (2012). Thermochronological record of thrusting and strike‐slip faulting along the Giudicarie fault system (Alps, Northern Italy). Tectonophysics, 579, 118–130.
    [Google Scholar]
  94. Prosser, G. (1998). Strike‐slip movements and thrusting along a transpressive fault zone: The North Giudicarie line (Insubric line, northern Italy). Tectonics, 17(6), 921–937.
    [Google Scholar]
  95. Prosser, G. (2000). The development of the North Giudicarie fault zone (Insubric line, Northern Italy). Journal of Geodynamics, 30(1–2), 229–250.
    [Google Scholar]
  96. Purdy, J., & Jäger, E. (1976). K‐Ar ages on rock‐forming minerals from the Central Alps (Vol. 30). Memorie degli Instituti di Geologia e Mineralogia dell’Universitá di Padova.
    [Google Scholar]
  97. Raith, M., Raase, P., Kreuzer, H., & Müller, P. (1978). The age of the Alpidic metamorphism in the western Tauern Window, Austrian Alps, according to radiometric dating. In H.Closs, D.Roeder, & K.Schmidt (Eds.), Alps, Apennines, Hellenides (Vol. 38, pp. 140–148). Inter‐Union Comm Geodynamics Sci Rep.
    [Google Scholar]
  98. Ratschbacher, L., Dingeldey, C., Miller, C., Hacker, B. R., & McWilliams, M. O. (2004). Formation, subduction, and exhumation of Penninic oceanic crust in the Eastern Alps: Time constraints from 40Ar/39Ar geochronology. Tectonophysics, 394(3–4), 155–170.
    [Google Scholar]
  99. Ratschbacher, L., Frisch, W., Linzer, H. G., & Merle, O. (1991). Lateral extrusion in the Eastern Alps, part 2: Structural analysis. Tectonics, 10(2), 257–271.
    [Google Scholar]
  100. Reddy, S., Cliff, R., & East, R. (1993). Thermal history of the Sonnblick Dome, south‐east Tauern Window, Austria: Implications for heterogeneous uplift within the Pennine basement. Geologische Rundschau, 82(4), 667–675.
    [Google Scholar]
  101. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419–466.
    [Google Scholar]
  102. Roddick, J., Cliff, R., & Rex, D. (1980). The evolution of excess argon in alpine biotites—A40Ar‐39Ar analysis. Earth and Planetary Science Letters, 48(1), 185–208.
    [Google Scholar]
  103. Rode, S., Rösel, D., & Schulz, B. (2012). Constraints on the Variscan PT evolution by EMP Th‐U‐Pb monazite dating in the polymetamorphic Austroalpine Oetztal‐Stubai basement (Eastern Alps). Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften, 163(1), 43–67.
    [Google Scholar]
  104. Rögl, F., Hochuli, P., & Muller, C. (1979). Oligocene–early Miocene stratigraphic correlations in the Molasse Basin of Austria. Annales Geologiques des Pays Helleniques. Tome Hors Series, 30, 1045–1050.
  105. Rosenberg, C. L., & Berger, A. (2009). On the causes and modes of exhumation and lateral growth of the Alps. Tectonics, 28(6), 1–16.
    [Google Scholar]
  106. Rosenberg, C. L., Brun, J. P., Cagnard, F., & Gapais, D. (2007). Oblique indentation in the Eastern Alps: Insights from laboratory experiments. Tectonics, 26(2).
    [Google Scholar]
  107. Rosenberg, C. L., & Garcia, S. (2011). Estimating displacement along the Brenner Fault and orogen‐parallel extension in the Eastern Alps. International Journal of Earth Sciences, 100(5), 1129–1145.
    [Google Scholar]
  108. Rosenberg, C. L., & Kissling, E. (2013). Three‐dimensional insight into Central‐Alpine collision: Lower‐plate or upper‐plate indentation?Geology, 41(12), 1219–1222.
    [Google Scholar]
  109. Rosenberg, C. L., & Schneider, S. (2008). The western termination of the SEMP Fault (eastern Alps) and its bearing on the exhumation of the Tauern Window. Geological Society, London, Special Publications, 298(1), 197–218.
    [Google Scholar]
  110. Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt, K., Rabaute, A., & Brun, J.‐P. (2018). Relating collisional kinematics to exhumation processes in the Eastern Alps. Earth‐Science Reviews, 176, 311–344.
    [Google Scholar]
  111. Royden, L. H. (1988). Late Cenozoic Tectonics of the Pannonian Basin System: Chapter 3.
  112. Satir, M. (1976). Rb‐Sr‐und K‐Ar‐Altersbestimmungen an Gesteinen und Mineralien des südlichen Ötztalkristallins und der westlichen Hohen Tauern. Geologische Rundschau, 65(1), 394–410.
    [Google Scholar]
  113. Satir, M., & Morteani, G. (1982). Petrological study and radiometric age determination of the migmatites in the Penninic rocks of the Zillertaler Alpen (Tyrol/Austria). Tschermaks Mineralogische Und Petrographische Mitteilungen, 30(1), 59–75.
    [Google Scholar]
  114. Scharf, A., Handy, M. R., Favaro, S., Schmid, S. M., & Bertrand, A. (2013). Modes of orogen‐parallel stretching and extensional exhumation in response to microplate indentation and roll‐back subduction (Tauern Window, Eastern Alps). International Journal of Earth Sciences, 102(6), 1627–1654.
    [Google Scholar]
  115. Scharf, A., Handy, M. R., Ziemann, M. A., & Schmid, S. M. (2013). Peak‐temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps)–A study with Raman microspectroscopy on carbonaceous material (RSCM). Journal of Metamorphic Geology, 31(8), 863–880.
    [Google Scholar]
  116. Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1), 93–117.
    [Google Scholar]
  117. Schmid, S. M., Scharf, A., Handy, M. R., & Rosenberg, C. L. (2013). The Tauern Window (Eastern Alps, Austria): A new tectonic map, with cross‐sections and a tectonometamorphic synthesis. Swiss Journal of Geosciences, 106(1), 1–32.
    [Google Scholar]
  118. Schneider, S., Hammerschmidt, K., & Rosenberg, C. L. (2013). Dating the longevity of ductile shear zones: Insight from 40Ar/39Ar in situ analyses. Earth and Planetary Science Letters, 369, 43–58.
    [Google Scholar]
  119. Schneider, S., Hammerschmidt, K., Rosenberg, C. L., Gerdes, A., Frei, D., & Bertrand, A. (2015). U‐Pb ages of apatite in the western Tauern Window (Eastern Alps): Tracing the onset of collision‐related exhumation in the European plate. Earth and Planetary Science Letters, 418, 53–65.
    [Google Scholar]
  120. Schoene, B., & Bowring, S. A. (2006). U‐Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40 Ar/39 Ar standard MMhb. Contributions to Mineralogy and Petrology, 151(5), 615.
    [Google Scholar]
  121. Schulz, B., Krause, J., & Zimmermann, R. (2019). Electron microprobe petrochronology of monazite‐bearing garnet micaschists in the Oetztal‐Stubai Complex (Alpeiner Valley, Stubai). Swiss Journal of Geosciences, 112(2–3), 597–617.
    [Google Scholar]
  122. Schuster, R., Scharbert, S., Abart, R., & Frank, W. (2001). Permo‐Triassic extension and related HT/LP metamorphism in the Austroalpine‐Southalpine realm. Mitteilungen der Gesellschaft der Geologie‐ und Bergbaustudenten in Österreich, 45, 111–141.
  123. Schuster, R., Tropper, P., Krenn, E., Finger, F., Frank, W., & Philippitsch, R. (2015). Prograde Permo‐Triassic metamorphic HT/LP assemblages from the Austroalpine Jenig Complex (Carinthia, Austria). Austrian Journal of Earth Sciences, 108(1), 73–90.
    [Google Scholar]
  124. Selverstone, J. (1988). Evidence for east‐west crustal extension in the Eastern Alps: Implications for the unroofing history of the Tauern Window. Tectonics, 7(1), 87–105.
    [Google Scholar]
  125. Sharman, G. R., Hubbard, S. M., Covault, J. A., Hinsch, R., Linzer, H.‐G., & Graham, S. A. (2018). Sediment Routing Evolution in the Northern Alpine Foreland Basin, Austria: Interplay of transverse and longitudinal sediment dispersal. Basin Research, 30(3), 426–447.
    [Google Scholar]
  126. Skeries, W., & Troll, G. (1991). Der Geröllbestand in Molassekonglomeraten des Chiemgaus (Bayern) und seine paläogeographischen Beziehungen zum alpinen Liefergebiet. Zeitschrift Der Deutschen Geologischen Gesellschaft, 142, 43–66.
    [Google Scholar]
  127. Spiegel, C., Kuhlemann, J., Dunkl, I., & Frisch, W. (2001). Paleogeography and catchment evolution in a mobile orogenic belt: The Central Alps in Oligo‐Miocene times. Tectonophysics, 341(1–4), 33–47.
    [Google Scholar]
  128. Stacey, J. T., & Kramers, J. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26(2), 207–221.
    [Google Scholar]
  129. Staufenberg, H. (1987). Apatite fission‐track evidence for postmetamorphic uplift and cooling history of the Eastern Tauern Window and the surrounding Austroalpine (Central Eastern Alps, Austria). Jahrbuch Der Geologischen Bundesanstalt, 130, 571–586.
    [Google Scholar]
  130. Stefani, C., Fellin, M. G., Zattin, M., Zuffa, G. G., Dalmonte, C., Mancin, N., & Zanferrari, A. (2007). Provenance and paleogeographic evolution in a multi‐source foreland: The Cenozoic Venetian‐Friulian Basin (NE Italy). Journal of Sedimentary Research, 77(11), 867–887.
    [Google Scholar]
  131. Thomson, S. N., Gehrels, G. E., Ruiz, J., & Buchwaldt, R. (2012). Routine low‐damage apatite U‐Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems, 13(2), 1–23.
    [Google Scholar]
  132. Thöni, M., & Miller, C. (2000). Permo‐Triassic pegmatites in the eo‐Alpine eclogite‐facies Koralpe complex, Austria: Age and magma source constraints from mineral chemical. Rb‐Sr and Sm‐Nd isotope data. Schweizerische Mineralogische Und Petrographische Mitteilungen, 80(2), 169–186.
    [Google Scholar]
  133. Vermeesch, P. (2009). RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44(4), 409–410.
    [Google Scholar]
  134. Verwater, V. F., Le Breton, E., Handy, M. R., Picotti, V., Jozi Najafabadi, A., & Haberland, C. (2021). Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy). Solid Earth, 12(6), 1309–1334.
    [Google Scholar]
  135. Wolff, R., Hetzel, R., Dunkl, I., Anczkiewicz, A. A., & Pomella, H. (2020). Fast cooling of normal‐fault footwalls: Rapid fault slip or thermal relaxation?Geology, 48, 333–337.
    [Google Scholar]
  136. Zattin, M., Stefani, C., & Martin, S. (2003). Detrital fission‐track analysis and sedimentary petrofacies as keys of alpine exhumation: The example of the Venetian Foreland (European Southern Alps, Italy). Journal of Sedimentary Research, 73(6), 1051–1061.
    [Google Scholar]
  137. Zimmermann, R., Hammerschmidt, K., & Franz, G. (1994). Eocene high pressure metamorphism in the Penninic units of the Tauern Window (Eastern Alps): Evidence from 40 Ar− 39 Ar dating and petrological investigations. Contributions to Mineralogy and Petrology, 117(2), 175–186.
    [Google Scholar]
  138. Zweigel, J. (1998). Eustatic versus tectonic control on foreland basin fill. Contributions to Sedimentary Geology, 20, 1–140.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12593
Loading
/content/journals/10.1111/bre.12593
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error