1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Evidence of hydrothermal activity is reported for the Mesozoic pre‐ and syn‐rift successions of the western Adriatic palaeomargin of the Alpine Tethys, preserved in the Western Southalpine Domain (NW Italy). The products of hydrothermal processes are represented by vein and breccia cements, as well as dolomitization and silicification of the host rocks. In the eastern part of the study area, interpreted as part of the necking zone of the continental margin, Middle Triassic dolostones and Lower Jurassic sediments are crossed by veins and hydrofracturing breccias cemented by saddle dolomite. The precipitation of dolomite cements occurred within the stratigraphic succession close to the sediment–water interface. Despite the shallow burial depth, fluid inclusion microthermometry and clumped isotopes show that hydrothermal fluids were relatively hot (80–150°C). In the western part of the study area, interpreted as part of the hyperextended distal zone, a polyphase history of host‐rock fracturing is recorded, with at least two generations of veins cemented by calcite, dolomite and quartz. Vein opening and cementation occurred at shallow burial depth around the time of deposition of the syn‐rift clastic succession. Fluid inclusion microthermometry on both quartz and dolomite cements indicates a fluid temperature of 90–130°C, again pointing to hydrothermal fluids. Both in Fenera‐Sostegno and Montalto Dora areas, O, C and Sr isotope values, coupled with fluid inclusion and clumped isotope data, indicate that hydrothermal fluids derived from seawater interacted with crustal rocks during hydrothermal circulation. Stratigraphic and petrographic evidence, and U–Pb dating of dolomitized clasts within syn‐rift sediments, document that hydrothermal fluids circulated through sediments from the latest Triassic to the Toarcian, corresponding to the entire syn‐rift evolution of the western portion of the Adriatic palaeomargin. The documented hydrothermal processes are temporally correlated with regional‐scale thermal events that took place in the same time interval at deeper crustal levels.

,

Conceptual model of hydrothermal circulation. (a) Ideal cross section across the future Adriatic palaeomargin in the late Early Jurassic (partly modified from Beltrando et al., 2015; Ferrando et al., 2004), showing the position of the zoomed areas in (b) and (c). Schematic representation of the hypothetical origin and circulation pathways of hydrothermal fluids in the Montalto Dora (b) and Monte Fenera (c) areas; blue and red arrows represent cold descending and hot ascending fluids respectively.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12594
2021-11-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12594.html?itemId=/content/journals/10.1111/bre.12594&mimeType=html&fmt=ahah

References

  1. Ahrendt, H. (1972). Zur Stratigraphie, Petrographie und zum tektonischen Aufbau der Canavese‐Zone und ihrer Lage zum Insubrischen Linie zwischen Biella und Cuorgné (Norditalien). Göttinger Arbeiten Zur Geologie Und Paläontologie, 11, 1–89.
    [Google Scholar]
  2. Baggio, P. (1965). Caratteri stratigrafici e strutturali del Canavese s.s. nella zona di Montalto Dora. Mem. Ist. Geol. Mineral. Univ. Padova, 25, 1–25.
  3. Barale, L., Bertok, C., d’Atri, A., Piana, F., Bernasconi, S., Czuppon, G., Palcsu, L., Gerdes, A., Birgel, D., & Martire, L. (2021). U‐Pb dating and geochemical constraints to Early Cretaceous hydrothermal dolomitization in the Provençal Domain (Maritime Alps, NW Italy–SE France). Ofioliti, 46(2), 131–149.
    [Google Scholar]
  4. Barale, L., Bertok, C., Salih, T. N., d’Atri, A., Martire, L., Piana, F., & Préat, A. (2016). Very hot, very shallow hydrothermal dolomitization: An example from the Maritime Alps (NW Italy‐SE France). Sedimentology, 63, 2037–2065.
    [Google Scholar]
  5. Beltrando, M., Stockli, D. F., Decarlis, A., & Manatschal, G. (2015). A crustal‐scale view at rift localization along the fossil Adriatic margin of the Alpine Tethys preserved in NW Italy. Tectonics, 34(9), 1927–1951. https://doi.org/10.1002/2015TC003973
    [Google Scholar]
  6. Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., & Ziegler, M. (2018). Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate‐based standardization. Geochemistry, Geophysics, Geosystems, 19(9), 2895–2914. https://doi.org/10.1029/2017GC007385
    [Google Scholar]
  7. Bernoulli, D. (1964). Zur Geologie des Monte Generoso. Ein Beitrag zur Kenntnis der sudalpinen Sedimente. Beitr. Geol. Karte Schweiz., N.F., 118, 134.
  8. Berra, F., Galli, M. T., Reghellin, F., Torricelli, S., & Fantoni, R. (2009). Stratigraphic evolution of the Triassic‐Jurassic succession in the Western Southern Alps (Italy): The record of the two‐stage rifting on the distal passive margin of Adria. Basin Research, 21, 335–353. https://doi.org/10.1111/j.1365‐2117.2008.00384.x
    [Google Scholar]
  9. Bertotti, G., Picotti, V., Bernoulli, D., & Castellarin, A. (1993). From rifting to drifting: Tectonic evolution of the South‐Alpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology, 86(1–2), 53–76. https://doi.org/10.1016/0037‐0738(93)90133‐P
    [Google Scholar]
  10. Biino, G., & Compagnoni, R. (1989). The Canavese Zone between the Serra d’Ivrea and the Dora Baltea River (Western Alps). Eclogae Geologicae Helvetiae, 82(2), 413–427.
    [Google Scholar]
  11. Bjørlykke, K. (1993). Fluid flow in sedimentary basins. Sedimentary Geology, 86(1–2), 137–158. https://doi.org/10.1016/0037‐0738(93)90137‐T
    [Google Scholar]
  12. Bjørlykke, K. (2010). Petroleum geoscience (p. 508). Springer‐Verlag.
    [Google Scholar]
  13. Bons, P. D., Fusswinkel, T., Gomez‐Rivas, E., Markl, G., Wagner, T., & Walter, B. (2014). Fluid mixing from below in unconformity‐related hydrothermal ore deposits. Geology, 42(12), 1035–1038. https://doi.org/10.1130/G35708.1
    [Google Scholar]
  14. Breitenbach, S. F. M., & Bernasconi, S. M. (2011). Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 µg) with a GasBench II preparation device. Rapid Communications in Mass Spectrometry, 25, 1910–1914.
    [Google Scholar]
  15. Brigaud, B., Bonifacie, M., Pagel, M., Blaise, T., Calmels, D., Haurine, F., & Landrein, P. (2020). Past hot fluid flows in limestones detected by Δ47–(U‐Pb) and not recorded by other geothermometers. Geology, 48, 851–856. https://doi.org/10.1130/G47358.1
    [Google Scholar]
  16. Clayton, R. N., Friedman, I., Graf, D. L., Mayeda, T. K., Meents, W. F., & Shimp, N. F. (1966). The origin of saline formation waters: I. Isotopic composition. Journal of Geophysical Research, 71, 3869–3882.
    [Google Scholar]
  17. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). The ICS international chronostratigraphic chart. Episodes, 36, 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
    [Google Scholar]
  18. Davies, G. R., & Smith, L. B.Jr (2006). Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90, 1641–1690. https://doi.org/10.1306/05220605164
    [Google Scholar]
  19. Debure, M., Lassin, A., Marty, N. C., Claret, F., Virgone, A., Calassou, S., & Gaucher, E. C. (2019). Thermodynamic evidence of giant salt deposit formation by serpentinization: An alternative mechanism to solar evaporation. Scientific Reports, 9, 11720. https://doi.org/10.1038/s41598‐019‐48138‐9
    [Google Scholar]
  20. Decarlis, A., Beltrando, M., Manatschal, G., Ferrando, S., & Carosi, R. (2017). Architecture of the distal Piedmont‐Ligurian rifted margin in NW Italy: Hints for a flip of the rift system polarity. Tectonics, 36, 2388–2406. https://doi.org/10.1002/2017TC004561
    [Google Scholar]
  21. Diamond, L. W., Wanner, C., & Waber, H. N. (2018). Penetration depth of meteoric water in orogenic geothermal systems. Geology, 46(12), 1063–1066. https://doi.org/10.1130/G45394.1
    [Google Scholar]
  22. Elisha, B., Nuriel, P., Kylander‐Clark, A., & Weinberger, R. (2020). Towards in‐situ U–Pb dating of dolomites. Geochronology Discuss. [preprint], https://doi.org/10.5194/gchron‐2020‐19, in review, 2020.
    [Google Scholar]
  23. Elter, G., Elter, P., Sturani, C., & Weidmann, M. (1966). Sur la prolongation du Domaine Ligure de l’Apennin dans le Monferrat et les Alpes et sur l’origine de la nappe de la Simme s.l. des Préalpes Romandes et Chablaisiennes. Archives Des Sciences, 19(3), 279–377.
    [Google Scholar]
  24. Fantoni, R., Decarlis, A., & Fantoni, E. (2003). Mesozoic extension at the western margin of the Southern Alps (northern Piedmont, Italy). Atti Tic. Sci. Terra, 44, 97–110.
    [Google Scholar]
  25. Fantoni, R., & Scotti, P. (2003). Thermal record of the Mesozoic extensional tectonics in the Southern Alps. Atti Tic. Sci. Terra (serie speciale), 9, 96–101.
    [Google Scholar]
  26. Fernandez, A., Müller, I. A., Rodriguez‐Sanz, L., van Dijk, I., Looser, N., & Bernasconi, S. M. (2017). Reassessment of the precision of carbonate clumped isotope measurements: Implications for calibrations and paleoclimate reconstructions. Geochemistry, Geophysics, Geosystems, 18. 4375–4386. https://doi.org/10.1002/2017GC007106
    [Google Scholar]
  27. Ferrando, S., Bernoulli, D., & Compagnoni, R. (2004). The Canavese zone (internal Western Alps): A distal margin of Adria. Schweizerische Mineralogische Und Petrographische Mitteilungen, 84, 237–256.
    [Google Scholar]
  28. Festa, A., Balestro, G., Borghi, A., De Caroli, S., & Succo, A. (2020). The role of structural inheritance in continental break‐up and exhumation of Alpine Tethyan mantle (Canavese Zone, Western Alps). Geoscience Frontiers, 11(1), 167–188. https://doi.org/10.1016/j.gsf.2018.11.007
    [Google Scholar]
  29. Folk, R. L. (1962). Spectral subdivision of limestone types. In W. E.Ham (Ed.), Classification of carbonate rocks (pp. 62–84). AAPG.
    [Google Scholar]
  30. Gerdes, A., & Zeh, A. (2006). Combined U‐Pb and Hf isotope LA‐(MC‐) ICP‐MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters, 249, 47–62. https://doi.org/10.1016/j.epsl.2006.06.039
    [Google Scholar]
  31. Gerdes, A., & Zeh, A. (2009). Zircon formation versus zircon alteration – New insights from combined U‐Pb and Lu‐Hf in‐situ La‐ICP‐MS analyses of Archean zircons from the Limpopo Belt. Chemical Geology, 261(3–4), 230–243.
    [Google Scholar]
  32. Goldstein, R. H., & Reynolds, T. J. (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 31, Tulsa, 199 p.
  33. Govi, M. (1975). Carta geologica del distretto vulcanico ad Oriente della bassa Val Sesia, Scala 1:25000. CNR ‐ Centro di studi sui problemi dell'Orogeno delle Alpi Occidentali.
    [Google Scholar]
  34. Haeri‐Ardakani, O., Al‐Aasm, I., & Coniglio, M. (2013). Fracture mineralization and fluid flow evolution: An example from Ordovician‐Devonian carbonates, southwestern Ontario, Canada. Geofluids, 13, 1–20. https://doi.org/10.1111/gfl.12003
    [Google Scholar]
  35. Handy, M. R. (1987). The structure, age and kinematics of the Pogallo fault zone ‐ Southern Alps, Northwestern Italy. Eclogae Geologicae Helvetiae, 80(3), 593–632.
    [Google Scholar]
  36. Hirani, J., Bastesen, E., Boyce, A., Corlett, H., Eker, A., Gawthorpe, R., Hollis, C., Korneva, I., & Rotevatn, A. (2018). Structural controls on non fabric‐selective dolomitization within rift‐related basin‐bounding normal fault systems: Insights from the Hammam Faraun Fault, Gulf of Suez, Egypt. Basin Research, 30, 990–1014. https://doi.org/10.1111/bre.12290
    [Google Scholar]
  37. Hitchon, B., & Friedman, L. (1969). Geochemistry and origin of formation waters in the western Canadian sedimentary basin. I. Stable isotopes of hydrogen and oxygen. Geochimica Et Cosmochimica Acta, 33, 1321–1349.
    [Google Scholar]
  38. Hoefs, J. (2018). Stable isotope geochemistry (8th ed., p. 437). Springer‐Verlag.
    [Google Scholar]
  39. Hollis, C., Bastesen, E., Boyce, A., Corlett, H., Gawthorpe, R., Hirani, J., Rotevatn, A., & Whitaker, F. (2017). Fault‐controlled dolomitization in a rift basin. Geology, 45, 219–222. https://doi.org/10.1130/G38s394.1
    [Google Scholar]
  40. Incerpi, N., Manatschal, G., Martire, L., Bernasconi, S. M., Gerdes, A., & Bertok, C. (2020). Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: New constraints from the Chaînons Béarnais (W Pyrenees). International Journal of Earth Sciences, 109, 1071–1093. https://doi.org/10.1007/s00531‐020‐01852‐6
    [Google Scholar]
  41. Incerpi, N., Martire, L., Bernasconi, S. M., Manatschal, G., & Gerdes, A. (2018). Silica‐rich septarian concretions in biogenic silica‐poor sediments: A marker of hydrothermal activity at fossil hyperextended rifted margins (Err nappe, Switzerland). Sedimentary Geology, 378, 19–33. https://doi.org/10.1016/j.sedgeo.2018.10.005
    [Google Scholar]
  42. Incerpi, N., Martire, L., Manatschal, G., & Bernasconi, S. M. (2017). Evidence of hydrothermal fluid flow in a hyperextended rifted margin: The case study of the Err nappe (SE Switzerland). Swiss Journal of Geosciences, 110(2), 439–456. https://doi.org/10.1007/s00015‐016‐0235‐2
    [Google Scholar]
  43. Incerpi, N., Martire, L., Manatschal, G., Bernasconi, S. M., Gerdes, A., Czuppon, G., Palcsu, L., Karner, G. D., Johnson, C. A., & Figueredo, P. H. (2020). Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre‐ to post‐rift sedimentary sequence (SE Switzerland, N ITALY). Basin Research, 32, 91–115. https://doi.org/10.1111/bre.12370
    [Google Scholar]
  44. John, C. M., & Bowen, D. (2016). Community software for challenging isotope analysis: First applications of “Easotope” to clumped isotopes. Rapid Communications in Mass Spectrometry, 30, 2285–2300.
    [Google Scholar]
  45. Koeashidayatullah, A., Corlett, H., Stacey, J., Swart, P. K., Boyce, A., Robertson, H., Whitaker, F., & Hollis, C. (2020). Evaluating new fault‐controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology, 67, 2945–2973. https://doi.org/10.1111/sed.12729
    [Google Scholar]
  46. Lagabrielle, Y., Asti, R., Fourcade, S., Corre, B., Poujol, M., Uzel, J., Labaume, P., Clerc, C., Lafay, R., Picazo, S., & Maury, R. (2019). Mantle exhumation at magma‐poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north‐western Pyrenees, France). Bulletin De La Société Géologique De France, 190, 8.
    [Google Scholar]
  47. Land, L. S., & Prezbindowski, D. R. (1981). The origin and evolution of saline formation waters, Lower Cretaceous carbonates, south–central Texas and southern New Mexico. Journal of Hydrogeology, 54, 51–74.
    [Google Scholar]
  48. Lapponi, F., Bechstädt, T., Boni, M., Banks, D. A., & Schneider, J. (2014). Hydrothermal dolomitization in a complex geodynamic setting (Lower Palaeozoic, northern Spain). Sedimentology, 61, 411–443. https://doi.org/10.1111/sed.12060
    [Google Scholar]
  49. Lavoie, D., Jackson, S., & Girard, I. (2014). Magnesium isotopes in high‐temperature saddle dolomite cements in the lower Paleozoic of Canada. Sedimentary geology, 305, 58–68. https://doi.org/10.1016/j.sedgeo.2014.03.002
    [Google Scholar]
  50. Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D., & Gardoll, S. J. (2010). Sediment‐hosted lead‐zinc deposits in earth history. Economic Geology, 105(3), 593–625. https://doi.org/10.2113/gsecongeo.105.3.593
    [Google Scholar]
  51. López‐Horgue, M. A., Iriarte, E., Schröeder, S., Fernández‐Mendiola, P. A., Caline, B., Corneyllie, H., Frémont, J., Sudrie, M., & Zerti, S. (2010). Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain. Marine and Petroleum Geology, 27, 1069–1092.
    [Google Scholar]
  52. Ludwig, K. R. (2009) Isoplot/Ex Ver 3.71: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication.
    [Google Scholar]
  53. Machel, H. G. (2004) Concepts and models of dolomitization: A critical reappraisal. In C. J. R.Braithwaite, G.Rizzi, & G.Darke (Eds.), The geometry and petrogenesis of dolomite hydrocarbon reservoirs (Vol. 235, pp. 7–63). Geol. Soc. London, Sp. Pub.
    [Google Scholar]
  54. Machel, H. G., & Lonnee, J. (2002). Hydrothermal dolomite – A product of poor definition and imagination. Sedimentary Geology, 152, 163–171. https://doi.org/10.1016/S0037‐0738(02)00259‐2
    [Google Scholar]
  55. Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., & Rouchon, V. (2018). An emerging thermochronometer for carbonate‐bearing rocks: ∆47 /(U‐Pb). Geology, 46(12), 1067–1070. https://doi.org/10.1130/G45196.1
    [Google Scholar]
  56. Martín‐Martín, J. D., Travé, A., Gomez‐Rivas, E., Salas, R., Sizun, J.‐P., Vergés, J., Corbella, M., Stafford, S. L., & Alfonso, P. (2015). Fault‐controlled and stratabound dolostones in the Late Aptian–earliest Albian Benassal Formation (Maestrat Basin, E Spain): Petrology and geochemistry constrains. Marine and Petroleum Geology, 65, 83–102. https://doi.org/10.1016/j.marpetgeo.2015.03.019
    [Google Scholar]
  57. Martire, L., Bertok, C., d’Atri, A., Perotti, E., & Piana, F. (2014). Selective dolomitization by syntaxial overgrowth around detrital dolomite nuclei: A case from the Jurassic of the Ligurian Briançonnais (Ligurian Alps). Journal of Sedimentary Research, 84, 40–50.
    [Google Scholar]
  58. Masini, E., Manatschal, G., & Mohn, G. (2013). The Alpine Tethys rifted margin: Reconciling old and new ideas to understand the stratigraphic architecture of magma‐poor rifted margins. Sedimentology, 60, 174–196.
    [Google Scholar]
  59. Mazzucchelli, M., Zanetti, A., Rivalenti, G., Vannucci, R., Correia, C. T., & Tassinari, C. C. G. (2010). Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body: Insights into the Paleozoic‐Mesozoic evolution of the Southern Alps. Lithos, 119, 485–500. https://doi.org/10.1016/j.lithos.2010.08.002
    [Google Scholar]
  60. McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium isotope stratigraphy. In F. M.Gradstein, J. G.Ogg, M.Schmitz, & G.Ogg (Eds.), The geologic time scale 2012 (pp. 127–144). Elsevier.
    [Google Scholar]
  61. Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. M., & Bernasconi, S. M. (2014). Long‐term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28, 1705–1715. https://doi.org/10.1002/rcm.6949
    [Google Scholar]
  62. Mohn, G., Manatschal, G., Müntener, O., Beltrando, M., & Masini, E. (2010). Unravelling the interaction between tectonic and sedimentary processes during lithosphere thinning in the Alpine Tethys margins. International Journal of Earth Sciences, 99, 75–101.
    [Google Scholar]
  63. Motte, G., Hoareau, G., Callot, J. P., Révillon, S., Piccoli, F., Calassou, S., & Gaucher, E. C. (2021). Rift and salt‐related multi‐phase dolomitization: Example from the northwestern Pyrenees. Marine and Petroleum Geology, 126, 104932. https://doi.org/10.1016/j.marpetgeo.2021.104932
    [Google Scholar]
  64. Müller, I. A., Fernandez, A., Radke, J., Dijk, J. V., Bowen, D., Schwieters, J., & Bernasconi, S. M. (2017). Carbonate clumped isotope analyses with the long‐integration dual‐inlet (LIDI) workflow: Scratching at the lower sample weight boundaries. Rapid Communications in Mass Spectrometry, 2, 1057–1066. https://doi.org/10.1002/rcm.7878
    [Google Scholar]
  65. Müller, I. A., Rodriguez‐Blanco, J. D., Storck, J.‐C., do Nascimento, G. S., Bontognali, T. R. R., Vasconcelos, C., Benning, L. G., & Bernasconi, S. M. (2019). Calibration of the oxygen and clumped isotope thermometers for (proto‐)dolomite based on synthetic and natural carbonates. Chemical Geology, 525, 1–17. https://doi.org/10.1016/j.chemgeo.2019.07.014
    [Google Scholar]
  66. Nunn, E. V., & Price, G. D. (2010). Late Jurassic (Kimmeridgian–Tithonian) stable isotopes (δ18O, δ13C) and Mg/Ca ratios: New palaeoclimate data from Helmsdale, northeast Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 325–335.
    [Google Scholar]
  67. O’Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemistry and Physics, 51, 5547–5558. https://doi.org/10.1063/1.1671982
    [Google Scholar]
  68. Paradis, S., Hannigan, P., & Dewing, K. (2007) Mississippi Valley‐type lead‐zinc deposits. In W. D.Goodfellow (Ed.), Mineral deposits of Canada: A synthesis of major deposit‐types, district metallogeny, the evolution of geological provinces, and exploration methods (Vol. 5, pp. 185–203). Geological Association of Canada, Mineral Deposits Division, Special Publication.
    [Google Scholar]
  69. Piana, F., Barale, L., Compagnoni, R., d’Atri, A., Fioraso, G., Irace, A., Mosca, P., Tallone, S., Monegato, G., & Morelli, M. (2017). Geological Map of Piemonte Region at 1:250,000 scale. Explanatory Notes. Acc. Sc. Torino. Memorie Sc. Fis., 41, 3–143.
    [Google Scholar]
  70. Piana, F., Fioraso, G., Irace, A., Mosca, P., d’Atri, A., Barale, L., Falletti, P., Monegato, G., Morelli, M., Tallone, S., & Vigna, G. B. (2017). Geology of Piemonte region (NW Italy, Alps‐Apennines interference zone). Journal of Maps, 13(2), 395–405. https://doi.org/10.1080/17445647.2017.1316218
    [Google Scholar]
  71. Pinto, V. H. G., Manatschal, G., Karpoff, A. M., Ulrich, M., & Viana, A. R. (2017). Seawater storage and element transfer associated with mantle serpentinization in magma‐poor rifted margins: A quantitative approach. Earth and Planetary Science Letters, 459, 227–237. https://doi.org/10.1016/j.epsl.2016.11.023
    [Google Scholar]
  72. Pinto, V. H. G., Manatschal, G., Karpoff, A. M., & Viana, A. R. (2015). Tracing mantle‐reacted fluids in magma‐poor rifted margins: The example of Alpine Tethyan rifted margins. Geochemistry, Geophysics, Geosystems, 16, 3271–3308.
    [Google Scholar]
  73. Pirajno, F. (2009). Hydrothermal processes and mineral systems (p. 1250). Springer‐Verlag.
    [Google Scholar]
  74. Podlaha, O. G., Mutterlose, J., & Veizer, J. (1998). Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of Science, 298, 324–347.
    [Google Scholar]
  75. Roberts, N. M. W., Rasbury, E., Troy, P., Randall, R., Smith, C. J., Horstwood, M. S. A., & Condon, D. J. (2017). A calcite reference material for LA‐ICP‐MS U‐Pb geochronology. Geochemistry Geophysics Geosystems, 18(7), 2807–2814. https://doi.org/10.1002/2016GC006784
    [Google Scholar]
  76. Rosenbaum, J., & Sheppard, S. M. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica Et Cosmochimica Acta, 50, 1147–1150.
    [Google Scholar]
  77. Salardon, R., Carpentier, C., Bellahsen, N., Pironon, J., & France‐ Lanord, C. (2017). Interactions between tectonics and fluid circulations in an inverted hyper‐extended basin: Example of Mesozoic carbonate rocks of the western North Pyrenean Zone (Chainons Béarnais, France). Marine and Petroleum Geology, 80, 563–586.
    [Google Scholar]
  78. Salih, N., Mansurbeg, H., Kolo, K., Gerdes, A., & Préat, A. (2019). In situ U‐Pb dating of hydrothermal diagenesis in tectonically controlled fracturing in the Upper Cretaceous Bekhme Formation, Kurdistan Region‐Iraq. International Geologiy Review, 62, 2261–2279. https://doi.org/10.1080/00206814.2019.1695151
    [Google Scholar]
  79. Salomon, E., Rotevatn, A., Kristensen, T. B., Grundvåg, S.‐A., Henstra, G. A., Meckler, A. N., Albert, R., & Gerdes, A. (2020). Fault‐controlled fluid circulation and diagenesis along basin‐bounding fault systems in rifts – Insights from the East Greenland rift system. Solid Earth, 11, 1987–2013. https://doi.org/10.5194/se‐11‐1987‐2020
    [Google Scholar]
  80. Schaltegger, U., Ulianov, A., Muntener, O., Ovtcharova, M., Peytcheva, I., Vonlanthen, P., Vennemann, T., Antognini, M., & Girlanda, F. (2015). Megacrystic zircon with planar fractures in miaskite‐type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, Southern Alps, Switzerland). American Mineralogist, 100, 83–94. https://doi.org/10.2138/am‐2015‐4773
    [Google Scholar]
  81. Shah, M. M., Nader, F. H., Garcia, D., Swennen, R., & Ellam, R. (2012). Hydrothermal dolomites in the early Albian (Cretaceous) platform carbonates (NW Spain): Nature and origin of dolomites and dolomitising fluids. Oil & Gas Science and Technology, 67(1), 97–122. https://doi.org/10.2516/ogst/2011174
    [Google Scholar]
  82. Shelton, K. I., Hendry, J. P., Gregg, J. M., Truesdale, J. P., & Somerville, I. D. (2019). Fluid circulation and fault‐ and fracture‐related diagenesis in Mississippian synrift carbonate rocks on the northeast margin of the metalliferous Dublin Basin, Ireland. Journal of Sedimentary Research, 89, 508–536.
    [Google Scholar]
  83. Sinigoi, S., Quick, J. E., Demarchi, G., & Klötzli, U. S. (2016). Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south‐western Alps, Italy). Lithos, 252–253, 109–122. https://doi.org/10.1016/j.lithos.2016.02.018
    [Google Scholar]
  84. Stolper, D. A., & Eiler, J. M. (2015). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes. A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411. https://doi.org/10.2475/05.2015.01
    [Google Scholar]
  85. Sturani, C. (1964). Prima segnalazione di Ammoniti nel Lias del Canavese. Rend. Accad. Lincei, 37, 482–483.
    [Google Scholar]
  86. Swennen, R., Dewit, J., Fierens, E., Muchez, P., Shah, M., Nader, F., & Hunt, D. (2012). Multiple dolomitization events along the Pozalagua Fault (Pozalagua Quarry, Basque‐Cantabrian Basin, Northern Spain). Sedimentology, 59, 1345–1374. https://doi.org/10.1111/j.1365‐3091.2011.01309.x
    [Google Scholar]
  87. Warren, J. (2000). Dolomite: Occurrence, evolution and economically important associations. Earth Science Reviews, 52, 1–81.
    [Google Scholar]
  88. Wozniak, J. (1977). Contribution à l’étude géologique des Alpes Occidentales internes: La région du Canavese (p. 146, PhD thesis). Pierre et Marie Curie University.
    [Google Scholar]
  89. Yardley, B. W. D. (2005). Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100, 613–632.
    [Google Scholar]
  90. Yardley, B. W. D., & Bodnar, R. J. (2014). Fluids in the continental crust. Geochemical Perspectives, 3(1), 1–127. https://doi.org/10.7185/geochempersp.3.1
    [Google Scholar]
  91. Zanetti, A., Mazzucchelli, M., Sinigoi, S., Giovanardi, T., Peressini, G., & Fanning, M. (2013). SHRIMP U‐Pb zircon Triassic intrusion age of the Finero mafic complex (Ivrea–Verbano Zone, Western Alps) and its geodynamic implications. Journal of Petrology, 54, 2235–2265. https://doi.org/10.1093/petrology/egt046
    [Google Scholar]
  92. Zingg, A., Hunziker, J. C., Frey, M., & Ahrendt, H. (1976). Age and degree of metamorphism of the Canavese Zone and of the sedimentary cover of the Sesia Zone. Schweizerische Mineralogische Und Petrographische Mitteilungen, 56, 361–375.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12594
Loading
/content/journals/10.1111/bre.12594
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error