1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Fluid systems in inverted rifted margins are challenging to interpret because fractures formed before compression were often reactivated acting as fluid pathways as new ones formed. Deciphering the fracture and fluid flow history in such complex settings has key implications for the prediction of the distribution of mineral resources. As an example, we reconstruct the fluid flow evolution of a portion of the inverted Pyrenean rift, the Upper Pedraforca thrust sheet, from the Mesozoic extension to the Alpine orogeny. We combine structural analysis and petrographic, geochemical and geochronological data obtained from 87 samples of fracture‐filling carbonate cements. During the Late Jurassic‐Early Cretaceous, low‐temperature seawater produced dolomitization of Jurassic and Lower Cretaceous limestones in an extensional setting. During the Early Cretaceous salt‐related extension, formation waters, probably evolved seawater or fluids that interacted with Triassic evaporites, at temperatures from 125 to 149°C migrated through fractures. The formation of breccias within post‐salt rocks in primary weld zones facilitated the upward migration of formation waters that interacted with pre‐salt rocks with high 87Sr/86Sr ratios. Formation waters at temperatures of 80°C migrated during the emplacement of the Upper Pedraforca thrust sheet in the Late Cretaceous‐Palaeocene. These fluids interacted with Upper Cretaceous Carbonates and/or Triassic evaporites. In contrast, the influence of meteoric fluids increased in shallower positions due to the exhumation of the SE Pyrenees during the Eocene‐Oligocene. Coevally, hot dolomitizing fluids migrated along diapir walls during the formation of secondary welds. Supergene ores documented in diapiric areas worldwide related to meteoric fluids, and the similar meteoric percolation occurred in the Upper Pedraforca thrust sheet, suggest that supergene mineralization could be found in the Pyrenees. Brecciation of rocks in primary weld zones and evaporite detachments, where mineralization accumulate in fractures from basement‐derived fluids, also suggests that similar ores could be found in the Pyrenees.

,

We reconstruct the fluid flow history of a portion of the inverted Pyrenean rift, the Upper Pedraforca thrust sheet, from the Mesozoic extension to the Alpine orogeny. The results reveal a heterogeneous fluid system, with increasing meteoric water influence during the Eocene‐Oligocene compression.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12596
2021-11-11
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12596.html?itemId=/content/journals/10.1111/bre.12596&mimeType=html&fmt=ahah

References

  1. Ábalos, B., Alonso, N., Berrocal, T., Furundarena, A., Gorospe, I., Martínez‐Escauriaza, G., Matxain, I., & Sánchez‐Lorda, M. E. (2003). Structural analysis of the Murguía diapir's peripheral troughs (Álava, Basque‐Cantabrian Basin). Geogaceta, 34, 7–10.
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2005). Basin analysis: Principles and applications. Blackwell.
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.). Wiley‐Blackwell.
    [Google Scholar]
  4. Arnal, I., Calvet, F., Márquez, L., Márquez‐Aliaga, A., & Porta, N. S. d. (2002). The epeiric carbonate platform (Imón and Isábena Formations) of the Upper Triassic from the Northeastern Iberian Peninsula. Acta Geologica Hispanica, 37, 299–328.
    [Google Scholar]
  5. Aurell, M., Meléndez, G., & Olóriz, F. (2002). Jurassic. In W.Gibbons & T.Moreno (Eds.), The geology of Spain (pp. 221–254). The Geological Society of London.
    [Google Scholar]
  6. Banks, D. A., Davies, G. R., Yardley, B. W. D., McCaig, A. M., & Grant, N. T. (1991). The chemistry of brines from an Alpine thrust system in the Central Pyrenees: An application of fluid inclusion analysis to the study of fluid behavior in orogenesis. Geochimia et Cosmochimica Acta, 55, 1021–1030.
    [Google Scholar]
  7. Bau, M., & Dulski, P. (1994). Evolution of the yttrium‐holmium systematics of seawater through time. Mineralogical Magazine, 58(A), 61–62.
    [Google Scholar]
  8. Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare‐earth elements in the Penge and Kuruman iron‐formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55. https://doi.org/10.1016/0301‐9268(95)00087‐9
    [Google Scholar]
  9. Beamud, E., Garcés, M., Cabrera, L., Muñoz, J. A., & Almar, Y. (2003). A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth and Planetary Science Letters, 216, 501–514. https://doi.org/10.1016/S0012‐821X(03)00539‐9
    [Google Scholar]
  10. Beaudoin, N., Huyghe, D., Bellahsen, N., Lacombe, O., Emmanuel, L., Mouthereau, F., & Ouanhnon, L. (2015). Fluid systems and fracture development during syn‐depositional fold growth: An example from the Pico del Aguila anticline, Sierras Exteriores, southern Pyrenees, Spain. Journal of Structural Geology, 70, 23–38. https://doi.org/10.1016/j.jsg.2014.11.003
    [Google Scholar]
  11. Bickle, M. J., Wickham, S. M., Chapman, H. J., & Taylor, H. P. (1988). A strontium, neodynium and oxygen study of hydrothermal metamorphism and crustal anatexis in the Trois Seignerus Massif, Pyrenees, France. Contributions to Mineralogy and Petrology, 100, 399–417.
    [Google Scholar]
  12. Bitzer, K., Travé, A., & Carmona, J. M. (2001). Fluid flow processes at basin scale. Acta Geologica Hispanica, 36(1–2), 1–20.
    [Google Scholar]
  13. Bons, P. D., Elburg, M. A., & Gomez‐Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33–62. https://doi.org/10.1016/j.jsg.2012.07.005
    [Google Scholar]
  14. Bons, P. D., Fusswinkel, T., Gomez‐Rivas, E., Markl, G., Wagner, T., & Walter, B. (2014). Fluid mixig from below in unconformity‐related hydrothermal ore deposits. Geology, 42(12), 1035–1038.
    [Google Scholar]
  15. Bouhlel, S., Leach, D. L., Johnson, C. A., Marsh, E., Salmi‐Laouar, S., & Banks, D. A. (2016). A salt diapir‐related Mississippi Valley‐type deposit: The Bou Jaber Pb‐Zn‐Ba‐F deposit, Tunisia: fluid inclusion and isotope study. Mineralium Deposita, 51, 749–780.
    [Google Scholar]
  16. Boutoux, A., Verlaguet, A., Bellahsen, N., Lacombe, O., Villemant, B., Caron, B., Martin, E., Assayag, N., & Cartigny, P. (2014). Fluid systems above basement shear zones during inversion of pre‐orogenic sedimentary basins (External Crystalline Massifs, Western Alps). Lithos, 206–207, 435–453. https://doi.org/10.1016/j.lithos.2014.07.005
    [Google Scholar]
  17. Burbank, D. W., Puigdefàbregas, C., & Muñoz, J. A. (1992). The chronology of the Eocene tectonic and stratigraphic development of the Eastern Pyrenean Foreland Basin. NE Spain. Geological Society of America Bulletin, 104, 1101–1120.
    [Google Scholar]
  18. Burbank, D. W., Vergés, J., Muñoz, J. A., & Bentham, P. (1992). Coeval hinward‐ and forward‐imbricating thrusting in the south‐central Pyrenees, Spain: Timing and rates of shortening and deposition. Geological Society of America Bulletin, 104, 3–17.
    [Google Scholar]
  19. Burrel, L., & Teixell, A. (2021). Contractional salt tectonics and role of pre‐existing diapiric structures in the Southern Pyrenean foreland fold–thrust belt (Montsec and Serres Marginals). Journal of the Geological Society of London, 178(4), jgs2020‐085. https://doi.org/10.1144/jgs2020‐085
    [Google Scholar]
  20. Caja, M. A., Permanyer, A., Marfil, R., Al‐Asm, I. S., & Martín‐Crespo, T. (2006). Fluid flow record from fracture‐fill calcite in the Eocene limestones from the South‐Pyrenean Basin (NE Spain) and its relationship to oil shows. Journal of Geochemical Exploration, 89, 27–32. https://doi.org/10.1016/j.gexplo.2005.11.009
    [Google Scholar]
  21. Calvet, F., Porta, N. S. d., & Salvany, J. M. (1993). Cronoestratigrafía (Palinología) del Triásico Sudpirenaico y del Pirineo Vasco‐Cantábrico. Acta Geologica Hispanica, 28, 33–48.
    [Google Scholar]
  22. Canérot, J., Hudec, M. R., & Rockenbauch, K. (2005). Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bulletin, 89(2), 211–229. https://doi.org/10.1306/09170404007
    [Google Scholar]
  23. Cathelineau, M., Boiron, M. C., & Jakomulski, H. (2021). Triassic evaporites: A vast reservoir of brines mobilised successively during rifting and thrusting in the Pyrenees. Journal of the Geological Society, jgs2020‐2259. https://doi.org/10.1144/jgs2020‐259
    [Google Scholar]
  24. Cerling, T. E., & Quade, J. (1993). Stable carbon and oxygen isotopes in soil carbonates. In P. K.Swart, K. C.Lohman, J.Mckenzie, & S.Savin (Eds.), Climate change in continental isotopic records (pp. 217–231). American Geophysical Union.
    [Google Scholar]
  25. Choukroune, P., & ECORS Team . (1989). The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics, 8, 23–39. https://doi.org/10.1029/TC008i001p00023
    [Google Scholar]
  26. Clerc, C., & Lagabrielle, Y. (2014). Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics, 33(7), 1340–1359. https://doi.org/10.1002/2013TC003471
    [Google Scholar]
  27. Clerc, C., Lagabrielle, Y., Labaume, P., Ringenbach, J. C., Vauchez, A., Nalpas, T., Bousquet, R., Ballard, J. F., Lahfid, A., & Fourcade, S. (2016). Basement – Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics, 686, 82–97. https://doi.org/10.1016/j.tecto.2016.07.022
    [Google Scholar]
  28. Cobbold, P. R., Diraison, M., & Rossello, E. A. (1999). Bitumen veins and Eocene transpression, Neuquén Basin, Argentina. Tectonophysics, 314, 423–442. https://doi.org/10.1016/S0040‐1951(99)00222‐X
    [Google Scholar]
  29. Coleman, A. J., Jackson, C. A. L., Duffy, O. B., & Nikolinakou, M. A. (2018). How, where, and when do radial faults grow near salt diapirs?Geology, 46(7), 655–658. https://doi.org/10.1130/g40338.1
    [Google Scholar]
  30. Cooper, M., & Warren, M. J. (2010). The geometric characteristics, genesis and petroleum significance of inversion structures. In R. D.Law, R. W. H.Butler, R. E.Holdsworth, M.Krabbendam, & R. A.Strachan (Eds.), Continental tectonics and mountain building: The legacy of Peach and Horne (Vol. 335, pp. 827–846). Geological Society, London, Special Publications.
    [Google Scholar]
  31. Costa, E., Garcés, M., López‐Blanco, M., Beamud, E., Gómez‐Paccard, M., & Larrasoaña, J. C. (2010). Closing and continentalization of the South Pyrenean foreland basin (NE Spain): Magnetochronological constraints. Basin Research, 22(6), 904–917. https://doi.org/10.1111/j.1365‐2117.2009.00452.x
    [Google Scholar]
  32. Crognier, N., Hoareau, G., Aubourg, C., Dubois, M., Lacroix, B., Branellec, M., Callot, J. P., & Vennemann, T. (2018). Syn‐orogenic fluid flow in the Jaca basin (south Pyrenean fold and thrust belt) from fracture and vein analyses. Basin Research, 30(2), 187–216. https://doi.org/10.1111/bre.12249
    [Google Scholar]
  33. Cruset, D., Cantarero, I., Benedicto, A., John, C. M., Vergés, J., Albert, R., Gerdes, A., & Travé, A. (2020). From hydroplastic to brittle deformation: Controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees). Marine and Petroleum Geology, 120, 104517. https://doi.org/10.1016/j.marpetgeo.2020.104517
    [Google Scholar]
  34. Cruset, D., Cantarero, I., Travé, A., Vergés, J., & John, C. M. (2016). Crestal graben fluid evolution during growth of the Puig‐reig anticline (South Pyrenean fold and thrust belt). Journal of Geodynamics, 101, 30–50. https://doi.org/10.1016/j.jog.2016.05.004
    [Google Scholar]
  35. Cruset, D., Cantarero, I., Vergés, J., John, C. M., Muñoz‐López, D., & Travé, A. (2018). Changes in fluid regime in syn‐orogenic sediments during the growth of the south Pyrenean fold and thrust belt. Global and Planetary Change, 171, 207–224. https://doi.org/10.1016/j.gloplacha.2017.11.001
    [Google Scholar]
  36. Cruset, D., Vergés, J., Albert, R., Gerdes, A., Benedicto, A., Cantarero, I., & Travé, A. (2020). Quantifying deformation processes in the SE Pyrenees using U‐Pb dating of fracture‐filling calcites. Journal of the Geological Society, 177, 1186–1196. https://doi.org/10.1144/jgs2020‐014
    [Google Scholar]
  37. Cruset, D., Vergés, J., Rodrigues, N., Belenguer, J., Pascual‐Cebrian, E., Almar, Y., Pérez‐Cáceres, I., Macchiavelli, C., Travé, A., Beranoaguirre, A., Albert, R., Gerdes, A., & Messager, G. (2021). U–Pb dating of carbonate veins constraining timing of beef growth and oil generation within Vaca Muerta Formation and compression history in the Neuquén Basin along the Andean fold and thrust belt. Marine and Petroleum Geology, 132, 105204. https://doi.org/10.1016/j.marpetgeo.2021.105204
    [Google Scholar]
  38. Davison, I., Alsop, G. I., Evans, N. G., & Safaricz, M. (2000). Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea. Marine and Petroleum Geology, 17, 601–618. https://doi.org/10.1016/S0264‐8172(00)00011‐8
    [Google Scholar]
  39. Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the TENSOR program. In D. A.Nieuwland (Ed.), New insights into structural interpretation and modelling (Vol. 212, pp. 75–100). Geological Society, London, Special Publications.
    [Google Scholar]
  40. Deng, Y., Ren, J., Guo, Q., Cao, J., Wang, H., & Liu, C. (2017). Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Scientific Reports, 7, 16539. https://doi.org/10.1038/s41598‐017‐16379‐1
    [Google Scholar]
  41. Emery, D. (1987). Trace‐element source and mobility during limestone burial diagenesis – An example from the Middle Jurassic of eastern England. Geological Society, London, Special Publications, 36(1), 201–217. https://doi.org/10.1144/gsl.sp.1987.036.01.16
    [Google Scholar]
  42. Fernàndez, M., Marzán, I., Correia, A., & Ramalho, E. (1998). Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics, 291, 29–53. https://doi.org/10.1016/S0040‐1951(98)00029‐8
    [Google Scholar]
  43. Ferrer, O., Jackson, M. P. A., Roca, E., & Rubinat, M. (2012). Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay). In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt tectonics, sediments and prospectivity (Vol. 363, pp. 361–379). Geological Society, London, Special Publications.
    [Google Scholar]
  44. Fillon, C., Huismans, R. S., van der Beek, P., & Muñoz, J. A. (2013). Syntectonic sedimentation controls on the evolution of the southern Pyrenean fold‐and‐thrust belt: Inferences from coupled tectonic‐surface processes models. Journal of Geophysical Research, 118, 5665–5680. https://doi.org/10.1002/jgrb.50368
    [Google Scholar]
  45. Fischer, M. P., Higuera‐Díaz, I. C., Evans, M. A., Perry, E. C., & Lefticariu, L. (2009). Fracture‐controlled paleohydrology in a map‐scale detachment fold: Insights from the analysis of fluid inclusions in calcite and quartz veins. Journal of Structural Geology, 31(12), 1490–1510. https://doi.org/10.1016/j.jsg.2009.09.004
    [Google Scholar]
  46. Fischer, M. P., Kenroy, P. R., & Smith, A. P. (2013, May 19–22). Fluid systems around salt diapirs. Paper presented at the AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania.
  47. Fontana, S., Nader, F. H., Morad, S., Ceriani, A., Al‐Aasm, I. S., Daniel, J.‐M., & Mengus, J.‐M. (2014). Fluid–rock interactions associated with regional tectonics and basin evolution. Sedimentology, 61(3), 660–690. https://doi.org/10.1111/sed.12073
    [Google Scholar]
  48. Ford, M., & Vergés, J. (2021). Evolution of a salt‐rich transtensional rifted margin, eastern North Pyrenees, France. Journal of the Geological Society, 178(1), jgs2019‐2157. https://doi.org/10.1144/jgs2019‐157
    [Google Scholar]
  49. García‐Senz. (2002). Cuencas extensivas del Cretácico Inferior en los Pirineos centrales. Formación y subsecuente inversión [PhD thesis]. Universitat de Barcelona, Spain.
    [Google Scholar]
  50. Garnit, H., Boni, M., Buongiovanni, G., Arfè, G., Mondillo, N., Joachimski, M., Bouhlel, S., & Balassone, G. (2018). C‐O stable isotopes geochemistry of Tunisian Nonsulfide Zinc deposits: A first look. Minerals, 8, 13.
    [Google Scholar]
  51. Godeau, N., Deschamps, P., Guihou, A., Leonide, P., Tendill, A., Gerdes, A., Hamelin, B., & Girard, J. P. (2018). U‐Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France. Geology, 46, 247–250. https://doi.org/10.1130/G39905.1
    [Google Scholar]
  52. Gomez‐Rivas, E., Bons, P. D., Koehn, D., Urai, J. L., Arndt, M., Virgo, S., Laurich, B., Zeeb, C., Stark, L., & Blum, P. (2014). The Jabal Akhdar dome in the Oman mountains: Evolution of a dynamic fracture system. American Journal of Science, 314, 1104–1139. https://doi.org/10.2475/07.2014.02
    [Google Scholar]
  53. Gomez‐Rivas, E., Corbella, M., Martín‐Martín, J. D., Stafford, S. L., Teixell, A., Bons, P. D., Griera, A., & Cardellach, E. (2014). Reactivity of dolomitizing fluids and Mg source evaluation of fault‐controlled dolomitization at the Benicàssim outcrop analogue (Maestrat basin, E Spain). Marine and Petroleum Geology, 55, 26–42. https://doi.org/10.1016/j.marpetgeo.2013.12.015
    [Google Scholar]
  54. Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Petrology, 54, 908–931.
    [Google Scholar]
  55. Grool, A. R., Ford, M., Vergés, J., Huismans, R. S., Christophoul, F., & Dielforder, A. (2018). Insights into the crustal‐scale dynamics of a doubly Vergent Orogen from a quantitative analysis of its forelands: A case study of the Eastern Pyrenees. Tectonics, 37(2), 450–476. https://doi.org/10.1002/2017TC004731
    [Google Scholar]
  56. Hansman, R. J., Albert, R., Gerdes, A., & Ring, U. (2018). Absolute ages of multiple generations of brittle structures by U‐Pb dating of calcite. Geology, 46(3), 207–210. https://doi.org/10.1130/G39822.1
    [Google Scholar]
  57. Hassanlouei, B. T., & Rajabzadeh, M. A. (2019). Iron ore deposits associated with Hormuz evaporitic series in Hormuz and Pohl salt diapirs, Hormuzgan province, southern Iran. Journal of Asian Earth Sciences, 172, 30–55. https://doi.org/10.1016/j.jseaes.2018.08.024
    [Google Scholar]
  58. Hausegger, S., Kurz, W., Rabitsch, R., Kiechl, E., & Brosch, F.‐J. (2010). Analysis of the internal structure of a carbonate damage zone: Implications for the mechanisms of fault breccia formation and fluid flow. Journal of Structural Geology, 32(9), 1349–1362. https://doi.org/10.1016/j.jsg.2009.04.014
    [Google Scholar]
  59. Hoareau, G., Crognier, N., Lacroix, B., Aubourg, C., Roberts, N. M. W., Niemi, N., Branellec, M., Beaudoin, N., & Ruiz, I. S. (2021). Combination of 47 and U‐Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth and Planetary Science Letters, 553, 116636.
    [Google Scholar]
  60. Hudec, M. R., Dooley, T. P., Burrel, L., Teixell, A., & Fernandez, N. (2021). An alternative model for the role of salt depositional configuration and preexisting salt structures in the evolution of the Southern Pyrenees, Spain. Journal of Structural Geology, 146, 104325. https://doi.org/10.1016/j.jsg.2021.104325
    [Google Scholar]
  61. Immenhauser, A., Dublyansky, Y. V., Verwer, K., Fleitman, D., & Pashenko, S. E. (2007). Textural, elemental and isotopic characteristics of Pleistocene phreatic cave deposits (Jabal Madar, Oman). Journal of Sedimentary Research, 77(1–2), 68–88. https://doi.org/10.2110/jsr.2007.012
    [Google Scholar]
  62. Incerpi, N., Martire, L., Manatschal, G., & Bernasconi, S. M. (2017). Evidence of hydrothermal fluid flow in a hyperextended rifted margin: The case study of the Err nappe (SE Switzerland). Swiss Journal of Geosciences, 110, 439–456. https://doi.org/10.1007/s00015‐016‐0235‐2
    [Google Scholar]
  63. Incerpi, N., Martire, L., Manatschal, G., Bernasconi, S. M., Gerdes, A., Czuppon, G., Palcsu, L., Karner, G. D., Johnson, C. A., & Figueredo, F. (2020). Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre‐ to post‐rift sedimentary sequence (SE Switzerland, N ITALY). Basin Research, 32(1), 91–115. https://doi.org/10.1111/bre.12370
    [Google Scholar]
  64. Izquierdo‐Llavall, E., Menant, A., Aubourg, C., Callot, J. P., Hoareau, G., Camps, P., Péré, E., & Lahfid, A. (2020). Preorogenic folds and Syn‐Orogenic basement tilts in an inverted hyperextended margin: The Northern Pyrenees case study. Tectonics, 39, e2019TC005719. https://doi.org/10.1029/2019TC005719
    [Google Scholar]
  65. Jolivet, M., & Boulvais, P. (2021). Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous. Geoscience Frontiers, 12(4), 101132. https://doi.org/10.1016/j.gsf.2020.12.012
    [Google Scholar]
  66. Labaume, P., Meresse, F., Joliver, M., Teixell, A., & Lahfid, A. (2016). Tectonothermal history of an exhumed thrust‐sheet‐top basin: An example from the south Pyrenean thrust belt. Tectonics, 35, 1280–1313. https://doi.org/10.1002/2016TC004192
    [Google Scholar]
  67. Labaume, P., & Teixell, A. (2020). Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper‐extension to tectonic inversion. Tectonophysics, 785, 228451. https://doi.org/10.1016/j.tecto.2020.228451
    [Google Scholar]
  68. Lacroix, B., Baumgartner, L. P., Bouvier, A. S., Kempton, P. D., & Vennemann, T. (2018). Multi fluid‐flow record during episodic mode I opening: Amicrostructural and SIMS study (Cotiella Thrust Fault, Pyrenees). Earth and Planetary Science Letters, 503, 37–46. https://doi.org/10.1016/j.epsl.2018.09.016
    [Google Scholar]
  69. Lacroix, B., Travé, A., Buatier, M., Labaume, P., Vennemann, T., & Dubois, M. (2014). Syntectonic fluid‐flow along thrust faults: Example of the South‐Pyrenean fold‐and‐thrust belt. Marine and Petroleum Geology, 49, 84–98. https://doi.org/10.1016/j.marpetgeo.2013.09.005
    [Google Scholar]
  70. Lagabrielle, Y., Labaume, P., & de Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29(4), TC4012. https://doi.org/10.1029/2009TC002588
    [Google Scholar]
  71. Lawrence, M. G., Creig, A., Collerson, K. D., & Kamber, B. S. (2006). Rare earth element and yttrium variability in south east Queensland Waterways. Aquatic Geochemistry, 12, 39–72. https://doi.org/10.1007/s10498‐005‐4471‐8
    [Google Scholar]
  72. Lécuyer, C., Reynard, B., & Grandjean, P. (2004). Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology, 204(1–2), 63–102. https://doi.org/10.1016/j.chemgeo.2003.11.003
    [Google Scholar]
  73. Lescoutre, R., Tugend, J., Brune, S., Masini, E., & Manatschal, G. (2019). Thermal evolution of asymmetric hyperextended magma‐poor rift systems: Results from numerical modeling and Pyrenean field observations. Geochemistry, Geophysics, Geosystems, 20, 4567–4587.
    [Google Scholar]
  74. López‐Mir, B., Muñoz, J. A., & García‐Senz, J. (2015). Extensional salt tectonics in the partially inverted Cotiella post‐rift basin (south‐central Pyrenees): Structure and evolution. International Journal of Earth Sciences, 104(2), 419–434. https://doi.org/10.1007/s00531‐014‐1091‐9
    [Google Scholar]
  75. Lynch, G., Keller, J. V. A., & Giles, P. S. (1998). Influence of the ainslie detachment on the stratigraphy of the Maritimes basin and mineralization in the Windsor Group of Northern Nova Scotia, Canada. Economic Geology, 93, 703–718.
    [Google Scholar]
  76. Machel, H. G. (2004). Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235(1), 7–63.
    [Google Scholar]
  77. Mangenot, X., Gasparrini, M., Rouchon, V., & Bonifacie, M. (2018). Basin‐scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47) – Middle Jurassic carbonates of the Paris Basin depocentre. Sedimentology, 65(1), 123–150. https://doi.org/10.1111/sed.12427
    [Google Scholar]
  78. Martín‐Chivelet, J. (2002). Cretaceous. In W.Gibbons & T.Moreno (Eds.), The geology of Spain (pp. 264–292). The Geological Society of London.
    [Google Scholar]
  79. Martínez, A., Berástegui, X., Losantos, M., & Schöllhorn, E. (2001). Estructura de los mantos superior e inferior del Pedraforca (Pirineos orientales). Geogaceta, 30, 183–186.
    [Google Scholar]
  80. Masoumi, S., Reuning, L., Back, S., Sandrin, A., & Kukla, P. A. (2014). Buried pockmarks on the Top Chalk surface of the Danish North Sea and their potential significance for interpreting palaeocirculation patterns. International Journal of Earth Sciences, 103, 563–578. https://doi.org/10.1007/s00531‐013‐0977‐2
    [Google Scholar]
  81. Mató, E., Saula, E., Martínez‐Rius, A., Muñoz, J. A., & Escuer, J. (1994). Memoria de la Hoja nº 293 (Berga). Mapa Geológico de España E. 1:50.000 (MAGNA), Segunda Serie, Primera Edición. IGME, 66.
  82. McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the Marine Sr‐Isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. Journal of Geology, 109, 155–170. https://doi.org/10.1086/319243
    [Google Scholar]
  83. McCaig, A. M., Wayne, D. M., Marshall, J. D., Banks, D., & Henderson, I. (1995). Isotopic and fluid inclusion studies of fluid movement along the Gavarnie Thrust, central Pyrenees: Reaction fronts in carbonate mylonites. American Journal of Science, 295, 309–343. https://doi.org/10.2475/ajs.295.3.309
    [Google Scholar]
  84. McLennan, S. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 277–290.
    [Google Scholar]
  85. Mencos, J., Carrera, N., & Muñoz, J. A. (2015). Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees). Tectonics, 34, 1452–1474. https://doi.org/10.1002/2014TC003692
    [Google Scholar]
  86. Metcalf, J. R., Fitzgerald, P. G., Baldwin, S. L., & Muñoz, J. A. (2009). Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters, 287, 488–503. https://doi.org/10.1016/j.epsl.2009.08.036
    [Google Scholar]
  87. Mey, P. H. W., Nagtegaal, P. J. C., Roberti, K. J., & Hartevelt, J. J. A. (1968). Lithostratigraphic subdivision of post‐Hercinian deposits in the south‐central Pyrenees, Spain. Leidse Geologische Mededelingen, 41, 21–228.
    [Google Scholar]
  88. Moragas, M., Baqués, V., Travé, A., Martín‐Martín, J. D., Saura, E., Messager, G., Hunt, D., & Vergés, J. (2020). Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco). Basin Research, 32(3), 546–566. https://doi.org/10.1111/bre.12382
    [Google Scholar]
  89. Motte, G., Hoareau, G., Callot, J. P., Révillon, S., Piccoli, F., Calassou, S., & Gaucher, E. C. (2021). Rift and salt‐related multi‐phase dolomitization: Example from the northwestern Pyrenees. Marine and Petroleum Geology, 126, 104932. https://doi.org/10.1016/j.marpetgeo.2021.104932
    [Google Scholar]
  90. Mouttaqi, A., Rjimati, E. C., Maacha, A., Michard, A., & Soulaimani, A. (2011). Les principales mines du Maroc. In A.Michard, O.Saddiqi, A.Chalouan, E. C.Rjimati, & A.Mouttaqi (Eds.), New geological and mining guidebooks of Morocco. Service geologique du Maroc.
    [Google Scholar]
  91. Muñoz, J. A. (1992). Evolution of a continental collision belt: ECORS–Pyrenees crustal balanced section. In K. R.McClay (Ed.), Thrust tectonics (pp. 235–246). Chapman & Hall.
    [Google Scholar]
  92. Muñoz, J. A. (2002). The Pyrenees. In W.Gibbons & T.Moreno (Eds.), The geology of Spain (pp. 370–385). Geological Society.
    [Google Scholar]
  93. Muñoz, J. A., Vergés, J., Martínez, A., Fleta, J., Cirés, J., Casas, J. M., & Sàbat, F. (1994). Mapa geológico de la Hoja nº 256 (Ripoll). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), Primera edición. IGME.
  94. Muñoz‐López, D., Alías, G., Cruset, D., Cantarero, I., Jonh, C. M., & Travé, A. (2020). Influence of basement rocks on fluid evolution during multiphase deformation: The example of the Estamariu thrust in the Pyrenean Axial Zone. Solid Earth Discuss, 2020, 1–39. https://doi.org/10.5194/se‐2020‐65
    [Google Scholar]
  95. Muñoz‐López, D., Cruset, D., Cantarero, I., Benedicto, A., John, C. M., & Travé, A. (2020). Fluid dynamics in a thrust fault inferred from petrology and geochemistry of calcite veins: An example from the Southern Pyrenees. Geofluids, 2020, 8815729. https://doi.org/10.1155/2020/8815729
    [Google Scholar]
  96. Nardini, N., Muñoz‐López, D., Cruset, D., Cantarero, I., Martín‐Martín, J. D., Benedicto, A., Gomez‐Rivas, E., John, C. M., & Travé, A. (2019). From early contraction to post‐folding fluid evolution in the frontal part of the Bóixols thrust sheet (southern Pyrenees) as revealed by the texture and geochemistry of calcite cements. Minerals, 9(2), 117. https://doi.org/10.3390/min9020117
    [Google Scholar]
  97. N'Diaye, I., Essaifi, A., Dubois, N., Lacroix, B., Goodenough, K. M., & Maacha, L. (2016). Fluid flow and polymetallic sulfide mineralization in the Kettara shear zone (Jebilet Massif, Variscan Belt, Morocco). Journal of African Earth Sciences, 119, 17–37. https://doi.org/10.1016/j.jafrearsci.2016.03.010
    [Google Scholar]
  98. Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B., Calmels, D., Cros, A., Saint‐Bezar, B., Landrein, P., Sutcliffe, C., Davis, D., & Chaduteau, C. (2018). Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18Owater and U‐Pb age. Chemical Geology, 481, 1–17. https://doi.org/10.1016/j.chemgeo.2017.12.026
    [Google Scholar]
  99. Perona, J., Canals, A., & Cardellach, E. (2018). Zn‐Pb mineralization associated with salt diapirs in the Basque‐Cantabrian Basin, Northern Spain: Geology, geochemistry, and genetic model. Economic Geology, 113(5), 1133–1159. https://doi.org/10.5382/econgeo.2018.4584
    [Google Scholar]
  100. Peybernès, B. (1976). Le Jurassique et le Crétacé inferieur des Pyrénées franco‐espagnoles entre la Garonne et le Mediterranée [PhD thesis], Université de Toulouse, Toulouse, France.
    [Google Scholar]
  101. Pi, M. E., Samsó‐Escola, J. M., Vilella, L., Arbués, P., Casanovas, J., & Berastegui, X. (2001). Mapa geológico de la Hoja nº 291 (Oliana). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), Primera edición. IGME.
  102. Puigdefàbregas, C., & Souquet, P. (1986). Tecto‐sedimentary cycles and deposition sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 129, 173–203.
    [Google Scholar]
  103. Rahl, J. M., Haines, S. H., & van der Pluijm, B. A. (2011). Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn‐tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, 307(1–2), 180–190. https://doi.org/10.1016/j.epsl.2011.04.036
    [Google Scholar]
  104. Reuning, L., Schoenherr, J., Heinmann, A., Urai, J. L., Littke, R., Kukla, P. A., & Rawahi, Z. (2009). Constraints on the diagenesis, stratigraphy and internal dynamics of the surface‐piercing salt domes in the Ghaba Salt Basin (Oman): A comparison to the Ara Group in the South Oman Salt Basin. GeoArabia, 14(3), 83–120.
    [Google Scholar]
  105. Rodrigues, N., Cobbold, P. R., Loseth, H., & Ruffet, G. (2009). Widespread bedding‐parallel veins of fibrous calcite (‘beef’) in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression. Journal of the Geological Society, 166, 695–709. https://doi.org/10.1144/0016‐76492008‐111
    [Google Scholar]
  106. Roure, F., Choukroune, P., Berastegui, J., Muñoz, J. A., Villien, A., Matheron, P., Bareyt, M., Seguret, M., Camara, P., & Deramond, J. (1989). Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics, 8(1), 41–50. https://doi.org/10.1029/TC008i001p00041
    [Google Scholar]
  107. Roure, F., Swennen, R., Schneider, F., Faure, J. L., Ferket, H., Guilhaumou, N., Osadetz, K., Robion, P., & Vandeginste, V. (2005). Incidence and importance of tectonics and natural fluid migration on reservoir evolution in foreland fold‐and‐thrust belts. Oil & Gas Science and Technology, 60(1), 67–106. https://doi.org/10.2516/ogst:2005006
    [Google Scholar]
  108. Rouvier, H., Perthuisot, V., & Mansouri, A. (1985). Pb‐Zn deposits and salt‐bearing diapirs in Southern Europe and North Africa. Economic Geology, 80, 666–687. https://doi.org/10.2113/gsecongeo.80.3.666
    [Google Scholar]
  109. Salardon, R., Carpentier, C., Bellahsen, N., Pironon, J., & France‐Lanord, C. (2017). Interactions between tectonics and fluid circulations in an inverted hyper‐extended basin: Example of mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Marine and Petroleum Geology, 80, 563–586. https://doi.org/10.1016/j.marpetgeo.2016.11.018
    [Google Scholar]
  110. Sans, M. (2003). From thrust tectonics to diapirism. The role of evaporites in the kinematic evolution of the eastern South Pyrenean front. Geologica Acta, 1(3), 239–259.
    [Google Scholar]
  111. Saura, E., Ardèvol, L. L., Teixell, A., & Vergés, J. (2016). Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics, 35(3), 638–662. https://doi.org/10.1002/2015TC004001
    [Google Scholar]
  112. Séguret, M. (1972). Étude tectonique des nappes et séries décollées de la partie centrale du vesant sud des Pyrénées: Pub. USTELA, sér, Geol. Struct. n.2, Montpellier.
  113. Serra‐Kiel, J., Mató, E., Saula, E., Travé, A., Ferràndez‐Cañadell, C., Àlvarez‐Pérez, G., Franquès, J., & Romero, J. (2003). An inventory of the marine and transitional middle/upper Eocene deposits of the Southeastern Pyrenean Foreland Basin (NE Spain). Geologica Acta, 1(2), 201–229.
    [Google Scholar]
  114. Serra‐Kiel, J., Travé, A., Mató, E., Saula, E., Ferràndez‐Cañadell, C., Busquets, P., Tosquella, J., & Vergés, J. (2003). Marine and transitional middle/upper Eocene units of the Southeastern Pyrenean Foreland Basin (NE Spain). Geologica Acta, 1(2), 177–200.
    [Google Scholar]
  115. Serrano, A., & Martínez del Olmo, W. (1990). Tectónica salina en el Dominio Cántabro‐Navarro: Evolución, edad y origen de las estructuras salinas. In F.Ortí & J. M.Salvany (Eds.), Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante (pp. 39–53). Enresa.
    [Google Scholar]
  116. Sharp, I., Gillespie, P., Morsalnezhad, D., Taberner, C., Karpuz, R., Vergés, J., Horbury, A., Pickard, N., Garland, J., & Hunt, D. (2010). Stratigraphic architecture and fracture‐controlled dolomitization of the Cretaceous Khami and Bangestan groups: An outcrop case study, Zagros Mountains, Iran. In F. S. P. V.Buchem, K. D.Gerdes, & M.Esteban (Eds.), Mesozoic and cenozoic carbonate systems of the mediterranean and the middle east: Stratigraphic and diagenetic reference models (Vol. 329, pp. 343–396). Geological Society, London, Special Publications.
    [Google Scholar]
  117. Sheppard, S. M. F., Charef, A., & Bouhlel, S. (1996). Diapirs and Zn‐Pb mineralization: A general model based on Tunisian (N. Africa) and Gulf Coast (U.S.A.) deposits. In D. F.Sangster (Ed.), Carbonate‐hosted lead‐zinc deposits: 75th anniversary volume (Vol. 4, pp. 230–243). Society of Economic Geology. https://doi.org/10.5382/SP.04
    [Google Scholar]
  118. Sibley, D. F., & Gregg, J. M. (1987). Classification of dolomite rock textures. Journal of sedimentary Petrology, 57, 967–975.
    [Google Scholar]
  119. Sijing, H., Keke, H., Jie, L., & Yefang, L. (2014). The relationship between dolomite textures and their formation temperature: A case study from the Permian‐Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin. Petroleum Science, 11, 39–51. https://doi.org/10.1007/s12182‐014‐0316‐7
    [Google Scholar]
  120. Skelton, P. W., Gili, E., Vicens, E., Obrador, A., & López, G. (2003). Revised lithostratigraphy of the Upper Cretaceous (Santonian) carbonate platform succession on the northern flank of Sant Corneli, southern Central Pyrenees. Journal of Iberian Geology, 29, 73–87.
    [Google Scholar]
  121. Smith, A. P., Fischer, M. P., & Evans, M. A. (2012). Fracture‐controlled palaeohydrology of a secondary salt weld, La Popa Basin, NE Mexico. Geological Society, London, Special Publications, 363(1), 107–130. https://doi.org/10.1144/sp363.6
    [Google Scholar]
  122. Stackelberg, U. (1960). Der diapir von Murgía (Nordspanien). Beiheft zum Geologischen Jahrbuch, 66, 63–94.
    [Google Scholar]
  123. Taylor, B. E. (1987). Stable isotope geochemistry of ore‐forming fluids. In T. K.Kyser (Ed.), Short course in stable isotope geochemistry of low temperature fluids (Vol. 13, pp. 337–418). Mineral Association of Canada.
    [Google Scholar]
  124. Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarckson, M. O., & Wood, R. A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate‐dominated marine settings. Chemical Geology, 438, 146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027
    [Google Scholar]
  125. Travé, A., Labaume, P., Calvet, F., & Soler, A. (1997). Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain). Tectonophysics, 282(1–4), 375–398. https://doi.org/10.1016/S0040‐1951(97)00225‐4
    [Google Scholar]
  126. Travé, A., Labaume, P., & Vergés, J. (2007). Fluid systems in foreland fold and thrust belts: An overview from the Southern Pyrenees. In O.Lacombe, J.Lavé, F.Roure, & J.Vergés (Eds.), Thrust belts and foreland basins: From fold kinematics to hydrocarbon systems (pp. 93–115). Springer.
    [Google Scholar]
  127. Trincal, V., Buatier, M., Charpentier, D., Lacroix, B., Lanari, P., Labaume, P., Lahfid, A., & Venneman, T. (2017). Fluid–rock interactions related to metamorphic reducing fluid flow in meta‐sediments: Example of the Pic‐de‐Port‐Vieux thrust (Pyrenees, Spain). Contributions to Mineralogy and Petrology, 172, 78. https://doi.org/10.1007/s00410‐017‐1394‐5
    [Google Scholar]
  128. Ullastre, J., & Masriera, A. (2004). PEDRAFORCA: Estratigrafía y estructura (Pirineo catalán, España). Treballs del Museu de Geologia de Barcelona, 12, 11–52.
    [Google Scholar]
  129. Van Geet, M., Swennen, R., Durmishi, C., Roure, F., & Muchez, P. (2002). Paragenesis of Cretaceous to Eocene carbonate reservoirs in the Ionian fold and thrust belt (Albania): Relation between tectonism and fluid flow. Sedimentology, 49, 697–718.
    [Google Scholar]
  130. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., & Strauss, H. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
    [Google Scholar]
  131. Veizer, J., & Hoefs, J. (1976). Nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimia et Cosmochimica Acta, 40, 1387–1395.
    [Google Scholar]
  132. Vergés, J. (1993). Estudi geològic del vessant sud del Pirineu oriental i central. Evolució cinemàtica en 3D (pp. 1–199) [PhD thesis]. University of Barcelona.
    [Google Scholar]
  133. Vergés, J., Fernàndez, M., & Martínez, A. (2002). The Pyrenean orogen: pre‐, syn‐, and post‐collisional evolution. In G Rosenbaum & G. Lister (Eds.), Reconstruction of the evolution of the Alpine‐Himalayan Orogen. Journal of the Virtual Explorer, 8, 55–74.
    [Google Scholar]
  134. Vergés, J., & Garcia‐Senz, J. (2001). Mesozoic evolution and Cainozoic inversion of the Pyrenean Rift. In P. A.Ziegler, W.Cavazza, A. H. F.Robertson, & S.Crasquin‐Soleau (Eds.), Peri‐Tethys Memoir 6: Peri‐Tethyan Rift/Wrench Basins and Passive Margins (Vol. 186, pp. 187–212). Mémoires du Muséum National d'Histoire Naturelle, Paris.
    [Google Scholar]
  135. Vergés, J., Kullberg, J. C., Casas‐Sainz, A., de Vicente, G., Duarte, L. V., Fernàndez, M., Gómez, J. J., Gómez‐Pugnaire, M. T., Jabaloy‐Sánchez, A., López‐Gómez, J., Macchiavelli, C., Martín‐Algarra, A., Martín‐Chivelet, J., Muñoz, J. A., Quesada, C., Terrinha, P., Torné, M., & Vegas, R. (2019). An introduction to the Alpine Cycle in Iberia. In C.Quesada & J. T.Oliveira (Eds.), The geology of Iberia: A geodynamic approach: Volume 3: The Alpine cycle (pp. 1–14). Springer International.
    [Google Scholar]
  136. Vergés, J., Martínez, A., Domingo, F., Muñoz, J. A., Losantos, M., Fleta, J., & Gisbert, J. (1994). Mapa geológico de la Hoja nº 255 (La Pobla de Lillet). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), Primera edición. IGME.
  137. Vergés, J., Martínez, A., & Muñoz, J. A. (1992). South Pyrenean fold and thrust belt: The role of foreland evaporitic levels in thrust geometry. In K.McClay (Ed.), Thrust tectonics (pp. 255–264). Chapman & Hall.
    [Google Scholar]
  138. Vicente, A., Martín‐Closas, C., Arz, J. A., & Oms, O. (2015). Mastrichtian‐basal Paleocene charophyte biozonation and its calibration to the Global Polarity Time Scale in the southern Pyrenees (Catalonia, Spain). Cretaceous Research, 52, 268–285. https://doi.org/10.1016/j.cretres.2014.10.004
    [Google Scholar]
  139. Warren, J. (2000). Dolomite: Occurrence, evolution and economically important associations. Earth‐Science Reviews, 52(1–3), 1–81. https://doi.org/10.1016/S0012‐8252(00)00022‐2
    [Google Scholar]
  140. Webb, G. E., & Kamber, B. S. (2000). Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimia et Cosmochimica Acta, 64(9), 1557–1565. https://doi.org/10.1016/S0016‐7037(99)00400‐7
    [Google Scholar]
  141. Weger, R. J., Murray, S. T., McNeill, D. F., Swart, P. K., Eberli, G. P., Rodríguez‐Blanco, L., Tenaglia, M., & Rueda, L. E. (2019). Paleothermometry and distribution of calcite beef in the Vaca Muerta Formation, Neuqu´en Basin, Argentina. AAPG Bulletin, 103(4), 931–950. https://doi.org/10.1306/10021817384
    [Google Scholar]
  142. Zhao, L., Chen, Z. Q., Algeo, T. J., Chen, J., Chen, Y., Tong, J., Gao, S., Zhou, L., Hu, Z., & Liu, Y. (2013). Rare‐earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?Global and Planetary Change, 105, 135–151. https://doi.org/10.1016/j.gloplacha.2012.09.001
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12596
Loading
/content/journals/10.1111/bre.12596
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error