1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[

Stratigraphic forward models can reproduce distributive fluvial systems at spatial and temporal scale. The model allows full parameter control and sampling coverage with computer capacity as the only limiting factor. Key finding was that lateral variability is greatest at the transition between the proximal and distal zone.

, Abstract

To better understand the stratigraphic development of sedimentary systems, it is necessary to link the controls on sedimentary processes to the resulting deposits, which in turn allows predictions of stratigraphic architectures at a range of scales. We use a stratigraphic forward model to link the governing parameters to the distribution of deposits within a distributive fluvial system (DFS). The numerical model has been validated against outcrop observations to establish how the depositional processes needed to form the specific sedimentary system have been reproduced. We chose the previously studied Oligocene to Miocene Huesca DFS in northern Spain to investigate and calibrate the model. Additionally, downstream profiles from modern DFS in northern India, and hydrological measurements from the High Island Creek, Minnesota, USA, were used as input parameters for the model in addition to the outcrop data from the Huesca DFS. The resulting model adequately reproduced the real‐world system. Once validated, the analysis of the modelled DFS led to key findings, which expand our understanding of DFS stratigraphic architecture. Reservoir characteristics in radial DFS are dependent on the angle away from the meridian (straight line from the source through the apex to the distal zone of the DFS). The greater the angle is, the coarser the average grain size in the proximal zone is but the finer the average grain size in the medial and distal zones. Lateral variability of net to gross, sandbody thickness and number, and amalgamation ratio is greatest at the transition between the proximal and medial zone and is still significant in the distal part of the DFS. Stratigraphic forward modelling enhanced our understanding of DFS, which leads to reducing risk associated with exploration, production and storage of fluids in subsurface DFS.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12597
2021-11-11
2021-12-04
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12597.html?itemId=/content/journals/10.1111/bre.12597&mimeType=html&fmt=ahah

References

  1. Allen, J. R. L. (1983). Studies in fluviatile sedimentation: Bars, bar‐complexes and sandstone sheets (low‐sinuosity braided streams) in the brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, 33(4), 237–293. https://doi.org/10.1016/0037‐0738(83)90076‐3
    [Google Scholar]
  2. Alonso‐Zarza, A. M., & Calvo, J. P. (2000). Palustrine sedimentation in an episodically subsiding basin: The Miocene of the northern Teruel Graben (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1–2), 1–21. https://doi.org/10.1016/S0031‐0182(00)00041‐9
    [Google Scholar]
  3. Álvarez‐Sierra, Á., Daams, R., Lacomba, I., López‐Martínez, N., Meulen, A., Sesé, C., & Visser, J. (1990). Paleontology and biostratigraphy (Micromammals) of the continental Oligocene Miocene deposits of the North Central Ebro basin (Huesca, Spain). Scripta Geologica, 94, 1–75.
    [Google Scholar]
  4. Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (2015). Handbook of mineralogy. Mineralogical Society of America. http://www.handbookofmineralogy.org/
    [Google Scholar]
  5. Beaty, C. B. (1963). Origin of alluvial fans, white mountains, California and Nevada. Annals of the Association of American Geographers, 53(4), 516–535. https://doi.org/10.1111/j.1467‐8306.1963.tb00464.x
    [Google Scholar]
  6. Best, J. I. M., & Fielding, C. R. (2019). Describing fluvial systems: Linking processes to deposits and stratigraphy. Geological Society Special Publication, 488(1), 151–166. https://doi.org/10.1144/SP488‐2019‐056
    [Google Scholar]
  7. Bridge, J. S., & Leeder, M. R. (1979). A simulation model of alluvial stratigraphy. Sedimentology, 26(5), 617–644. https://doi.org/10.1111/j.1365‐3091.1979.tb00935.x
    [Google Scholar]
  8. Burnham, B. S. (2016). Quantitative characterisation and analysis of siliciclastic fluvial depositional systems using 3D digital outcrop models (PhD thesis). The University of Manchester.
    [Google Scholar]
  9. Cain, S. A., & Mountney, N. P. (2009). Spatial and temporal evolution of a terminal fluvial fan system: The Permian Organ Rock Formation, South‐east Utah, USA. Sedimentology, 56(6), 1774–1800. https://doi.org/10.1111/j.1365‐3091.2009.01057.x
    [Google Scholar]
  10. Cámara, P., & Klimowitz, J. (1985). Interpretación geodinámica de la vertiente centro‐occidental surpirenaica (cuencas de Jaca‐Tremp). Estudios Geológicos, 41(5–6), 391. https://doi.org/10.3989/egeol.85415‐6720
    [Google Scholar]
  11. Cavagnetto, C., & Anadón, P. (1996). Preliminary palynological data on floristic and climatic changes during the Middle Eocene‐Early Oligocene of the eastern Ebro Basin, northeast Spain. Review of Palaeobotany and Palynology, 92(3–4), 281–305. https://doi.org/10.1016/0034‐6667(95)00096‐8
    [Google Scholar]
  12. Chakraborty, T., Kar, R., Ghosh, P., & Basu, S. (2010). Kosi megafan: Historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227(2), 143–160. https://doi.org/10.1016/j.quaint.2009.12.002
    [Google Scholar]
  13. Clevis, Q., de Boer, P., & Wachter, M. (2003). Numerical modelling of drainage basin evolution and three‐dimensional alluvial fan stratigraphy. Sedimentary Geology, 163(1–2), 85–110. https://doi.org/10.1016/S0037‐0738(03)00174‐X
    [Google Scholar]
  14. Connell, S. D., Kim, W., Smith, G. A., & Paola, C. (2012). Stratigraphic architecture of an experimental basin with interacting drainages. Journal of Sedimentary Research, 82(5), 326–344. https://doi.org/10.2110/jsr.2012.28
    [Google Scholar]
  15. Coronel, M. D., Isla, M. F., Veiga, G. D., Mountney, N. P., & Colombera, L. (2020). Anatomy and facies distribution of terminal lobes in ephemeral fluvial successions: Jurassic Tordillo Formation, Neuquén Basin,. Argentina. Sedimentology, 67(5), 2596–2624. https://doi.org/10.1111/sed.12712
    [Google Scholar]
  16. Costa, E., Garcés, M., López‐Blanco, M., Beamud, E., Gómez‐Paccard, M., & Larrasoaña, J. C. (2010). Closing and continentalization of the South Pyrenean foreland basin (NE Spain): Magnetochronological constraints. Basin Research, 22(6), 904–917. https://doi.org/10.1111/j.1365‐2117.2009.00452.x
    [Google Scholar]
  17. Dade, W. B., & Friend, P. F. (1998). Grain‐size, sediment‐transport regime, and channel slope in alluvial rivers. The Journal of Geology, 106(6), 661–676. https://doi.org/10.1086/516052
    [Google Scholar]
  18. Dal’ Bó, P. F., Soares, M. V. T., Basilici, G., Rodrigues, A. G., & Menezes, M. N. (2019). Spatial variations in distributive fluvial system architecture of the Upper Cretaceous Marília Formation, SE Brazil. Geological Society Special Publication, 488(1), 97–118. https://doi.org/10.1144/SP488.6
    [Google Scholar]
  19. Davidson, S. K., Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Scuderi, L. A. (2013). Geomorphic elements on modern distributive fluvial systems. Geomorphology, 180–181, 82–95. https://doi.org/10.1016/j.geomorph.2012.09.008
    [Google Scholar]
  20. Davis, W. M. (1806). The Seine, the Meuse, and the Moselle. National Geographic Society. https://books.google.at/books?id=2HctAAAAYAAJ
    [Google Scholar]
  21. Garcés, M., López‐Blanco, M., Valero, L., Beamud, E., Muñoz, J. A., Oliva‐Urcia, B., Vinyoles, A., Arbués, P., Cabello, P., & Cabrera, L. (2020). Paleogeographic and sedimentary evolution of the South Pyrenean foreland basin. Marine and Petroleum Geology, 113, 104105. https://doi.org/10.1016/j.marpetgeo.2019.104105
    [Google Scholar]
  22. Gaspar‐Escribano, J. M., van Wees, J. D., ter Voorde, M., Cloetingh, S., Roca, E., Cabrera, L., Muñoz, J. A., Ziegler, P. A., & Garcia‐Castellanos, D. (2001). Three‐dimensional flexural modelling of the Ebro Basin (NE Iberia). Geophysical Journal International, 145(2), 349–367. https://doi.org/10.1046/j.1365‐246x.2001.01379.x
    [Google Scholar]
  23. Gilbert, G. K. (1877). Report on the geology of the Henry Mountains. United States Geological Service. https://doi.org/10.3133/70039916
    [Google Scholar]
  24. Griffiths, C. M., Seyedmehdi, Z., Salles, T., & Dyt, C. (2012). Stratigraphic forward modelling for South West Collie Hub: Phase One ‐ Static Model.
    [Google Scholar]
  25. Groten, J. T., Ellison, C. A., & Hendrickson, J. S. (2016). Suspended‐Sediment Concentrations, Bedload, Particle Sizes, Surrogate Measurements, and Annual Sediment Loads for Selected Sites in the Lower Minnesota River Basin, Water Years 2011 through 2016. In U.S. Geological Survey Scientific Investigations Report 2016‐5174, Reston, VA. https://doi.org/10.3133/sir20165174
    [Google Scholar]
  26. Gumbricht, T., McCarthy, J., & McCarthy, T. S. (2004). Channels, wetlands and islands in the Okavango Delta, Botswana, and their relation to hydrological and sedimentological processes. Earth Surface Processes and Landforms, 29(1), 15–29. https://doi.org/10.1002/esp.1008
    [Google Scholar]
  27. Hamer, J. M. M., Sheldon, N. D., Nichols, G. J., & Collinson, M. E. (2007). Late Oligocene‐Early Miocene paleosols of distal fluvial systems, Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3–4), 220–235. https://doi.org/10.1016/J.PALAEO.2006.10.016
    [Google Scholar]
  28. Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80(2), 167–183. https://doi.org/10.2110/jsr.2010.016
    [Google Scholar]
  29. Heward, A. (1978). Alluvial fan sequence and megasequence models: With examples from Westphalian D ‐Stephanian B coalfields, Northern Spain. In Alluvial Fan sequence and megasequence models with examples from Westphalian D‐Stephanian B‐Coalfields, Northern Spain, 5.
    [Google Scholar]
  30. Hirst, J. P. P. (1991). Variations in Alluvial Architecture across the Oligo‐Miocene Huesca Fluvial System, Ebro Basin, Spain. In A. D.Miall & N.Tyler (Eds.), Concepts in sedimentology and paleontology. The three‐dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery (3rd ed., pp. 111–121). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/csp.91.03.0111
    [Google Scholar]
  31. Hirst, J. P. P., & Nichols, G. J. (1986). Thrust tectonic controls on Miocene alluvial distribution patterns, southern Pyrenees. In P. A.Allen, & P.Homewood (Eds.), Foreland basins (pp. 247–258). Blackwell Publishing Ltd.https://doi.org/10.1002/9781444303810.ch13
    [Google Scholar]
  32. Huang, X., Griffiths, C. M., & Liu, J. (2015). Recent development in stratigraphic forward modelling and its application in petroleum exploration. Australian Journal of Earth Sciences, 62(8), 903–919. https://doi.org/10.1080/08120099.2015.1125389
    [Google Scholar]
  33. Karssenberg, D., & Bridge, J. S. (2008). A three‐dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts, floodplain and hill slope: Extrinsic and intrinsic controls on floodplain dynamics and alluvial architecture. Sedimentology, 55(6), 1717–1745. https://doi.org/10.1111/j.1365‐3091.2008.00965.x
    [Google Scholar]
  34. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen‐Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941‐2948/2006/0130
    [Google Scholar]
  35. Kulikova, A. (2013). Architecture of distributive fluvial system deposits: Quantitative characterisation and implications to reservoir modelling (PhD thesis). Royal Holloway, University of London.
    [Google Scholar]
  36. Leleu, S., & Hartley, A. J. (2010). Controls on the stratigraphic development of the Triassic Fundy Basin, Nova Scotia: Implications for the tectonostratigraphic evolution of Triassic Atlantic rift basins. Journal of the Geological Society, 167(3), 437–454. https://doi.org/10.1144/0016‐76492009‐092
    [Google Scholar]
  37. Leleu, S., Hartley, A. J., & Williams, B. P. J. (2009). Large‐scale alluvial architecture and correlation in a Triassic pebbly braided river system, lower Wolfville Formation (Fundy Basin, Nova Scotia, Canada). Journal of Sedimentary Research, 79(5), 265–286. https://doi.org/10.2110/jsr.2009.034
    [Google Scholar]
  38. Luzón, A. (1997). Evolución megasecuencial de los materiales oligo‐miocenos del sector septentrional de la Cuenca del Ebro (provincia de Huesca). http://hdl.handle.net/10272/10309
  39. Luzón, A. (2005). Oligocene‐Miocene alluvial sedimentation in the northern Ebro Basin, NE Spain: Tectonic control and palaeogeographical evolution. Sedimentary Geology, 177(1–2), 19–39. https://doi.org/10.1016/j.sedgeo.2005.01.013
    [Google Scholar]
  40. Mack, G. H., & Leeder, M. R. (1999). Climatic and tectonic controls on alluvial‐fan and axial‐fluvial sedimentation in the Plio‐Pleistocene Palomas half graben, southern Rio Grande Rift. Journal of Sedimentary Research, 69(3), 635–652. https://doi.org/10.2110/jsr.69.635
    [Google Scholar]
  41. Martin, B., Owen, A., Nichols, G. J., Hartley, A. J., & Williams, R. D. (2021). Quantifying downstream, vertical and lateral variation in fluvial deposits: Implications from the Huesca Distributive Fluvial System. Frontiers in Earth Science, 8, 733. https://doi.org/10.3389/feart.2020.564017
    [Google Scholar]
  42. Martínez Peña, M., & Pocoví Juan, A. (1988). El amortiguamiento frontal de la estructura de la cobertera surpirenaica y su relación con el anticlinal de Barbastro‐Balaguer. Acta Geológica Hispánica, 23(2), 81–94.
    [Google Scholar]
  43. Mohindra, R., Parkash, B., & Prasad, J. (1992). Historical geomorphology and pedology of the Gandak Megafan, Middle Gangetic Plains. India. Earth Surface Processes and Landforms, 17(7), 643–662. https://doi.org/10.1002/esp.3290170702
    [Google Scholar]
  44. Muñoz, J. A. (1992). Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In K. R.McClay (Ed.), Thrust tectonics (pp. 235–246). Springer. https://doi.org/10.1007/978‐94‐011‐3066‐0_21
    [Google Scholar]
  45. Nichols, G. J. (1987). Structural controls on fluvial distributary systems–The Luna System, Northern Spain. In F. G.Ethridge, R. M.Florez, & M. D.Harvey (Eds.), Recent developments in fluvial sedimentology. Special publication (Vol. 39, pp. 269–277). The Society of Economic Paleontologists and Mineralogists. https://doi.org/10.2110/pec.87.39.0269
    [Google Scholar]
  46. Nichols, G. J., & Fisher, J. A. (2007). Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195(1–2), 75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004
    [Google Scholar]
  47. Nyquist, H. (1928). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47(2), 617–644. https://doi.org/10.1109/T‐AIEE.1928.5055024
    [Google Scholar]
  48. Owen, A., Nichols, G. J., Hartley, A. J., & Weissmann, G. S. (2017). Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States. Basin Research, 29(1), 64–80. https://doi.org/10.1111/bre.12165
    [Google Scholar]
  49. Owen, A., Nichols, G. J., Hartley, A. J., Weissmann, G. S., & Scuderi, L. A. (2015). Quantification of a distributive fluvial system: The Salt Wash DFS of the Morrison Formation, SW USA. SEPM Journal of Sedimentary Research, 85, 544–561. https://doi.org/10.2110/jsr.2015.35
    [Google Scholar]
  50. Pérez‐Rivarés, F. J., Garcés, M., Arenas, C., & Pardo, G. (2002). Magnetocronologia de la sucesion Miocena de la Sierra de Alcubierre (sector central de la Cuenca del Ebro). Revista Sociedad Geológica De España, 15, 210–225. http://www.sociedadgeologica.es/archivos/REV/15(3‐4)/Art07.pdf
    [Google Scholar]
  51. Puigdefàbregas, C., Muñoz, J. A., & Vergés, J. (1992). Thrusting and foreland basin evolution in the Southern Pyrenees. In K. R.McClay (Ed.), Thrust tectonics (pp. 247–254). Springer. https://doi.org/10.1007/978‐94‐011‐3066‐0_22
    [Google Scholar]
  52. Ringrose, P., & Bentley, M. (2015). Reservoir model design (1st ed.). Springer, Netherlands. https://doi.org/10.1007/978‐94‐007‐5497‐3
    [Google Scholar]
  53. Rittersbacher, A., Howell, J. A., & Buckley, S. J. (2014). Analysis of fluvial architecture in the Blackhawk Formation, Wasatch Plateau, Utah, USA, using large 3D photorealistic models. Journal of Sedimentary Research, 84(2), 72–87. https://doi.org/10.2110/jsr.2014.12
    [Google Scholar]
  54. Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1), 10–21. https://doi.org/10.1109/JRPROC.1949.232969
    [Google Scholar]
  55. Soares, M., Basilici, G., Lorenzoni, P., Colombera, L., Mountney, N., Martinelli, A., Mesquita, Á., Marinho, T., Vásconez, R., & Marconato, A. (2020). Landscape and depositional controls on palaeosols of a distributive fluvial system (Upper Cretaceous. Brazil). Sedimentary Geology, 410, 105774. https://doi.org/10.1016/j.sedgeo.2020.105774
    [Google Scholar]
  56. Soares, M. V. T., Basilici, G., Silva Marinho, T., Martinelli, A. G., Marconato, A., Mountney, N. P., Colombera, L., Mesquita, Á. F., Vasques, J. T., Junior, F. R. A., & Ribeiro, L. C. B. (2020). Sedimentology of a distributive fluvial system: The Serra da Galga Formation, a new lithostratigraphic unit (Upper Cretaceous. Bauru Basin, Brazil). Geological Journal, 56(2), 951–975. https://doi.org/10.1002/gj.3987
    [Google Scholar]
  57. Soler‐Sampere, M., & Puigdefábregas, C. (1970). Líneas generales de la geología del Alto Aragón Occidental (Vol. 96, pp. 5–19) CSIC ‐ Instituto De Estudios Pirenaicos. http://hdl.handle.net/10261/93785
    [Google Scholar]
  58. Teixel, A. (1996). The Ansó transect of the southern Pyrenees: Basement and cover thrust geometries. Journal of the Geological Society, 153(2), 301–310. https://doi.org/10.1144/gsjgs.153.2.0301
    [Google Scholar]
  59. Terwisscha van Scheltinga, R. C., McMahon, W. J., Dijk, W. M., Eggenhuisen, J. T., & Kleinhans, M. G. (2020). Experimental distributive fluvial systems: Bridging the gap between river and rock record. The Depositional Record, 6(3), 670–684. https://doi.org/10.1002/dep2.124
    [Google Scholar]
  60. Tetzlaff, D. M., & Harbaugh, J. W. (1989). Simulating clastic sedimentation. In R.Van Nostrand (Ed.), Simulating clastic sedimentation. Springer US. https://doi.org/10.1007/978‐1‐4757‐0692‐5
    [Google Scholar]
  61. Turner, P., Hirst, J. P. P., & Friend, P. F. (1984). A palaeomagnetic analysis of Miocene fluvial sediments at Pertusa, near Huesca, Ebro Basin, Spain. Geological Magazine, 121(4), 279–290. https://doi.org/10.1017/S0016756800029174
    [Google Scholar]
  62. Valero, L., Garcés, M., Cabrera, L., Costa, E., & Sáez, A. (2014). 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin. Earth and Planetary Science Letters, 408, 183–193. https://doi.org/10.1016/j.epsl.2014.10.007
    [Google Scholar]
  63. van der Vegt, H., Storms, J. E. A., Walstra, D. J. R., & Howes, N. C. (2016). Can bed load transport drive varying depositional behaviour in river delta environments?Sedimentary Geology, 345, 19–32. https://doi.org/10.1016/j.sedgeo.2016.08.009
    [Google Scholar]
  64. Vergés, J. (1993). Estudi geològic del vessant sud del Pirineu oriental i central. Evolució cinemàtica en 3D.
    [Google Scholar]
  65. Vincent, S. J., & Elliott, T. (1996). Long‐lived fluvial palaeovalleys sited on structural lineaments in the Tertiary of the Spanish Pyrenees. In P. F.Friend, & C.Dabrio (Eds.), Tertiary Basins of Spain: The stratigraphic records of crustal kinematics (pp. 161–165). Cambridge University Press. https://doi.org/10.1017/CBO9780511524851.024
    [Google Scholar]
  66. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., & Banteah, R. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38(1), 39–42. https://doi.org/10.1130/G30242.1
    [Google Scholar]
  67. Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., Felicia, A. L., Holland, F., & Anaya, F. M. L. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219. https://doi.org/10.1016/j.geomorph.2015.09.005
    [Google Scholar]
  68. Welivitiya, W. D. D. P., Willgoose, G. R., & Hancock, G. R. (2020). Geomorphological evolution and sediment stratigraphy of numerically simulated alluvial fans. Earth Surface Processes and Landforms, 45(9), 2148–2166. https://doi.org/10.1002/esp.4872
    [Google Scholar]
  69. Whipple, K. X., Parker, G., Paola, C., & Mohrig, D. (1998). Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. The Journal of Geology, 106(6), 677–694. https://doi.org/10.1086/516053
    [Google Scholar]
  70. Yan, N. A., Mountney, N. P., Colombera, L., & Dorrell, R. M. (2017). A 3D forward stratigraphic model of fluvial meander‐bend evolution for prediction of point‐bar lithofacies architecture. Computers and Geosciences, 105, 65–80. https://doi.org/10.1016/j.cageo.2017.04.012
    [Google Scholar]
  71. Zhang, L., Wang, H., Li, Y., & Pan, M. (2017). Quantitative characterization of sandstone amalgamation and its impact on reservoir connectivity. Petroleum Exploration and Development, 44(2), 226–233. https://doi.org/10.1016/S1876‐3804(17)30025‐3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12597
Loading
/content/journals/10.1111/bre.12597
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error