1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Petroleum system modelling showing present‐day maturity (%Ro) of the Vaca Muerta Formation from from the Agrio Fold and Thrust Belt (west) to the NE Platform (east). The increase in TOC0 values from east to west is associated with thickening of the unit, which suggests the potential larger volumes of generated hydrocarbons for the same thermal gradient. The E–W thermal maturity trend is consistent with the decrease in HI and increase in TR values to the west, indicating that in conjunction with increased TOC0, organic pores represent the main control on total porosity in organic‐rich intervals of the unit.

, Abstract

The Vaca Muerta Formation (Tithonian–early Valanginian) is the main source rock in the Neuquén Basin and the most important unconventional shale resource in South America. In the present study, organic geochemistry, electron microscopy and basin and petroleum system modelling (BPSM) were combined to evaluate source rock properties and related processes along a transect from the early oil (east) to the dry gas (west) window. The unit is characterized by high present‐day (1%–8% average) and original (2%–16% average) total organic carbon contents, which increase towards the base of the unit and basinal (west) settings. Scanning electron microscopy shows that organic pores derived from the transformation of type II kerogen. Isolated bubble pores are typical of the oil window, whereas bubble and densely distributed spongy pores occur in the gas stage, indicating that the maturity gradient exerts strong control on organic porosity. Organic geochemistry, pressure and porosity data were incorporated into a 2D basin petroleum system model that includes the sequential restoration of tectonic events and calculation of compaction trends, kerogen transformation, hydrocarbon generation and estimation of pore pressure through geologic time. The W–E regional model extends from the Agrio Fold and Thrust Belts to the basin border and allows us to evaluate the relationship between thermal maturity and timing of hydrocarbon generation from highly deformed (west) to undeformed (east) regions. Modelling results show a clear decrease in maturity and organic matter (OM) transformation towards the eastern basin margin. Maximum hydrocarbon generation occurred in the inner sectors of the belt, at ca. 120 Ma; long before the first Andean compression phase, which started during the Late Cretaceous (ca. 70 Ma). Miocene compression (15–7 Ma) promoted tectonic uplift of the inner and outer sectors of the belt associated with a reduction in thermal stress and kerogen cracking, as well as massive loss of retained fluids and a decrease in pore pressure. The OM transformation impacted (a) the magnitude of effective porosity associated with organic porosity development, and (b) the magnitude and distribution of pore pressure within the unit controlled by hydrocarbon generation and compaction disequilibrium. BPSM shows a progressive increase in effective porosity from the top to the base and towards the west region related to the original organic carbon content and maturity increasing along the same trend. Overpressure intervals with high organic carbon contents are the most prone to develop organic pores. The latter represent favourable sites for the storage of hydrocarbons in the Vaca Muerta Formation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12599
2021-11-11
2021-12-04
Loading full text...

Full text loading...

References

  1. Aguirre‐Urreta, B., Tunik, M., Naipauer, M., Pazos, P., Ottone, E., Fanning, M., & Ramos, V. A. (2011). Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: Implications for the onset of the first Atlantic transgression related to Western Gondwana break‐up. Gondwana Research, 19, 482–494. https://doi.org/10.1016/j.gr.2010.06.008
    [Google Scholar]
  2. Aguirre‐Urreta, M. B., Mourgues, F. A., Rawson, P. F., Bulot, L. G., & Jaillard, E. (2007). The Lower Cretaceous Chañarcillo and Neuquén Andean basins: Ammonoid biostratigraphy and correlations. Geological Journal, 42, 143–173. https://doi.org/10.1002/gj.1068
    [Google Scholar]
  3. Al‐Hajeri, M. M., Saeed, M. A., Derks, J., Fuchs, T., Hantschel, T., Kauerauf, A., Neumaier, M., Schenk, O., Swientek, O., Tessen, N., Welte, D., Wygrala, B., Kornpihl, D., & Peters, K. (2009). Basin and petroleum system modeling. Oilfield Review, 21, 14–29.
    [Google Scholar]
  4. Askenazi, A., Biscayart, P., Cáneva, M., Montenegro, S., & Moreno, M. (2013). Analogía entre la Formación Vaca Muerta y shale gas/oil plays de EEUU. Society of Petroleum Engeneers (SPE).
    [Google Scholar]
  5. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  6. Badessich, M. F., Hryb, D. E., Suarez, M., Mosse, L., Palermo, N., Pichon, S., & Reynolds, L. (2016). Vaca Muerta shale—Taming a giant. Oilfield Review, 28, 26–39.
    [Google Scholar]
  7. Bakar, R. (2018). Modeling and analysis of diagnostic fracture injection tests (DFITs) (M.Sc. Thesis). Department of Petroleum Engineering, Colorado School of Mines.
    [Google Scholar]
  8. Barker, C. (1990). Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs. AAPG Bulletin, 74, 1254–1261.
    [Google Scholar]
  9. Berg, R. R., & Gangi, A. F. (1999). Primary migration by oil‐generation microfracturing in low‐permeability source rocks: Application to the Austin Chalk, Texas. AAPG Bulletin, 83, 727–756.
    [Google Scholar]
  10. Berthelon, J., Brüch, A., Colombo, D., Frey, J., Traby, R., Bouziat, A., Cacas‐Stentz, M. C., & Cornu, T. (2021). Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, Argentina. Marine and Petroleum Geology, 127, 104933.
    [Google Scholar]
  11. Boll, A., Alonso, A., Fuentes, F., Vergara, M., Laffitte, G., & Villar, H. J. (2014). Proceedings of IX Congreso de Exploración y Desarrollo de Hidrocarburos, Mendoza, Argentina, Actas (pp. 3–44).
  12. Borge, H. (2002). Modelling generation and dissipation of overpressure in sedimentary basins: An example from the Halten Terrace, offshore Norway. Marine and Petroleum Geology, 19, 377–388. https://doi.org/10.1016/S0264‐8172(02)00023‐5
    [Google Scholar]
  13. Borge, H., & Sylta, Ø. (1998). 3D modelling of fault bounded pressure compartments in the North Viking Graben. Energy Exploration and Exploitation, 16(4), 301–323.
    [Google Scholar]
  14. Bredehoeft, J. D., Wesley, J. B., & Fouch, T. D. (1994). Simulations of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta Basin, Utah. AAPG Bulletin, 78(11), 1729–1747.
    [Google Scholar]
  15. Brisson, I. E., Fasola, M. E., & Villar, H. J. (2020). Organic geochemical patterns of the Vaca Muerta Shale. In D.Minisini, M.Fantin, I.Lanusse, & H.Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play, Argentina. AAPG Memoir 120, Chapter 11.
    [Google Scholar]
  16. Burgreen‐Chan, B., Meisling, K. E., & Graham, S. (2015). Basin and petroleum system modelling of the East Coast Basin, New Zealand: A test of overpressure scenarios in a convergent margin. Basin Research, 28, 536–567. https://doi.org/10.1111/bre.12121
    [Google Scholar]
  17. Capelli, I. A., Scasso, R. A., Spangenberg, J. E., Kietzmann, D. A., Cravero, F., Duperron, M., & Adatte, T. (2021). Mineralogy and geochemistry of deeply‐buried marine sediments of the Vaca Muerta‐Quintuco system in the Neuquén Basin (Chacay Melehue section), Argentina: Paleoclimatic and paleoenvironmental implications for the global Tithonian‐Valanginian reconstructions. Journal of South American Earth Sciences, 107, 103103.
    [Google Scholar]
  18. Carcione, J. M., & Gangi, A. F. (2000). Gas generation and overpressure: Effects on seismic attributes. Geophysics, 65, 1769–1779. https://doi.org/10.1190/1.1444861
    [Google Scholar]
  19. Cavelan, A., Boussafir, M., Rozenbaum, O., & Laggoun‐Défarge, F. (2019). Organic petrography and pore structure characterization of low‐mature and gas‐mature marine organic‐rich mudstones: Insights into porosity controls in gas shale systems. Marine and Petroleum Geology, 103, 331–350. https://doi.org/10.1016/j.marpetgeo.2019.02.027
    [Google Scholar]
  20. Chen, Z., & Jiang, C. (2016). A revised method for organic porosity estimation in shale reservoirs using Rock‐Eval data: Example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bulletin, 100, 405–422. https://doi.org/10.1306/08261514173
    [Google Scholar]
  21. Chen, Z., Wang, T., Liu, Q., Zhang, S., & Zhang, L. (2015). Quantitative evaluation of potential organic‐matter porosity and hydrocarbon generation and expulsion from mudstone in continental lake basins: A case study of Dongying sag, eastern China. Marine and Petroleum Geology, 66, 906–924. https://doi.org/10.1016/j.marpetgeo.2015.07.027
    [Google Scholar]
  22. Cobbold, P. R., & Rossello, E. A. (2003). Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Marine and Petroleum Geology, 20, 429–443. https://doi.org/10.1016/S0264‐8172(03)00077‐1
    [Google Scholar]
  23. Cobbold, P. R., Zanella, A., Rodrigues, N., & Løseth, H. (2013). Bedding‐parallel fibrous veins (beef and cone‐in‐cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization. Marine and Petroleum Geology, 43, 1–20. https://doi.org/10.1016/j.marpetgeo.2013.01.010
    [Google Scholar]
  24. Comerio, M., Fernández, D. E., & Pazos, P. J. (2018). Sedimentological and ichnological characterization of muddy storm related deposits: The upper Hauterivian ramp of the Agrio Formation in the Neuquén Basin, Argentina. Cretaceous Research, 85, 78–94. https://doi.org/10.1016/j.cretres.2017.11.024
    [Google Scholar]
  25. Comerio, M., Fernández, D. E., Rendtorff, N., Cipollone, M., Zalba, P. E., & Pazos, P. J. (2020). Depositional and postdepositional processes of an oil‐shale analog at the microstructure scale: The Lower Cretaceous Agrio Formation, Neuquén Basin, northern Patagonia. AAPG Bulletin, 104, 1679–1705. https://doi.org/10.1306/04082017419
    [Google Scholar]
  26. Couzens‐Schultz, B., Axon, A., & Azbel, K. (2013). Pore pressure prediction in unconventional resources. In IPTC Paper 16849 presented at the International Petroleum Technology Conference, Beijing, China, 26–28 March.
    [Google Scholar]
  27. Cruz, C. E., Boll, A., Gómez Omil, R., Martínez, E. A., Arregui, C., Gulisano, C., Laffitte, G., & Villar, H. J. (2002). Hábitat de hidrocarburos y sistemas de carga Los Molles y Vaca Muerta en el sector central de la Cuenca Neuquina, Argentina. In Congreso de Exploración y Desarrollo de Hidrocarburos (No. 5).
    [Google Scholar]
  28. Cruz, C. E., Villar, H. J., & Muñoz, N. G. (1996). Los sistemas petroleros del Grupo Mendoza en la Fosa de Chos Malal. Cuenca Neuquina, Argentina. In 13° Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos, Actas 1, AGA–IAPG, Buenos Aires, Argentina, 13–18 October (pp. 45–60).
    [Google Scholar]
  29. Cuervo, S., Lombardo, E., Vallejo, D., Crousse, L., Hernandez, C., & Mosse, L. (2016). Towards a simplified petrophysical model for the Vaca Muerta Formation. In Unconventional Resources Technology Conference (URTeC), San Antonio, Texas, 1–3 August 2016 (pp. 778–796).
    [Google Scholar]
  30. Curiale, J. A., & Curtis, J. B. (2016). Organic geochemical applications to the exploration for source‐rock reservoirs–A review. Journal of Unconventional Oil and Gas Resources, 13, 1–31. https://doi.org/10.1016/j.juogr.2015.10.001
    [Google Scholar]
  31. Dembicki, H.Jr (2009). Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bulletin, 93, 341–356. https://doi.org/10.1306/10230808076
    [Google Scholar]
  32. Deming, D. (1989). Application of bottom‐hole temperature corrections in geothermal studies. Geothermics, 18, 775–786. https://doi.org/10.1016/0375‐6505(89)90106‐5
    [Google Scholar]
  33. Desjardins, P., Fantín, M., González Tomassini, F., Reijenstein, H., Sattler, F., Dominguez, R. F., Kietzmann, D., Leanza, H. A., Bande, A., Benoit, S., Borgnia, M., Vittore, F., Gil, G., Simo, T., & Minisini, D. (2016). Capítulo 2: Estratigrafía Sísmica Regional. In G.González (Ed.), Transecta Regional de la Formación Vaca Muerta (IAPG), Buenos Aires.
    [Google Scholar]
  34. Dominguez, F., Noguera, I. L., Continanzia, M. J., Mykietiuk, K., Ponce, C., Pérez, G., Guerello, R., Caneva, M., Di Benedetto, M., & Cristallini, E. (2016). Organic‐rich stratigraphic units in the Vaca Muerta formation, and their distribution and characterization in the Neuquén Basin (Argentina). Unconventional Resources Technology Conference (URTEC).
    [Google Scholar]
  35. Dominguez, R. F., & Di Benedetto, M. (2019). Understanding 3‐D distribution of organic‐rich units in the Vaca Muerta Formation. In Unconventional Resources Technology Conference, Denver, Colorado, 22–24 July 2019 (pp. 5114–5128).
    [Google Scholar]
  36. Doré, A. G., & Jensen, L. N. (1996). The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: Offshore Norway and some other uplifted basins. Global and Planetary Change, 12, 415–436. https://doi.org/10.1016/0921‐8181(95)00031‐3
    [Google Scholar]
  37. Ejofodomi, E., Baihly, J. D., Malpani, R., Altman, R. M., Huchton, T. J., Welch, D., & Zieche, J. (2011). Integrating all available data to improve production in the Marcellus Shale. In North American Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers.
    [Google Scholar]
  38. Espitalié, J., Deroo, G., & Marquis, F. (1986). La pyrolyse Rock‐Eval et ses applications. Troisième partie. Revue de l'institut Français du Pétrole, 41(1), 73–89. https://doi.org/10.2516/ogst:1986003
    [Google Scholar]
  39. Franzese, J. R., & Spalletti, L. A. (2001). Late Triassic continentalextension in southwestern Gondwana: Tectonic segmentation and pre‐breakup rifting. Journal of South American Earth Sciences, 14, 257–270.
    [Google Scholar]
  40. Gao, J., Zhang, J.‐K., He, S., Zhao, J.‐X., He, Z.‐L., Wo, Y.‐J., Feng, Y.‐X., & Li, W. (2019). Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Marine and Petroleum Geology, 102, 844–859. https://doi.org/10.1016/j.marpetgeo.2019.01.032
    [Google Scholar]
  41. Gibson, R. G., & Bentham, P. A. (2003). Use of fault‐seal analysis in understanding petroleum migration in a complexly faulted anticlinal trap, Columbus Basin, offshore Trinidad. AAPG Bulletin, 87, 465–478.
    [Google Scholar]
  42. Gómez Omil, R., Caniggia, J., & Borghi, P. (2014). La Formación Vaca Muerta en la faja plegada de Neuquén y Mendoza. Procesos que controlaron su madurez. IX Congreso de Exploración y Desarrollo de Hidrocarburos. Actas DVD (pp. 71–96).
    [Google Scholar]
  43. Groeber, P. (1946). Observaciones geológicas a lo largo del meridiano 70° 1. Hoja Chos Malal. Revista de la Asociación Geológica Argentina, 1, 177–208.
    [Google Scholar]
  44. Grohmann, S., Fietz, W. S., Nader, F. H., Romero‐Sarmiento, M. F., Baudin, F., & Littke, R. (2021). Characterization of Late Cretaceous to Miocene source rocks in the Eastern Mediterranean Sea: An integrated numerical approach of stratigraphic forward modelling and petroleum system modelling. Basin Research, 33, 846–874. https://doi.org/10.1111/bre.12497
    [Google Scholar]
  45. Hackley, P. C., & Cardott, B. J. (2016). Application of organic petrography in North American shale petroleum systems: A review. International Journal of Coal Geology, 163, 8–51. https://doi.org/10.1016/j.coal.2016.06.010
    [Google Scholar]
  46. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling (p. 476). Springer.
    [Google Scholar]
  47. Hao, F., Li, S., Sun, Y., & Zhang, Q. (1996). Characteristics and origin of the gas and condensate in the Yinggehai Basin, offshore South China Sea: Evidence for effects of overpressure on petroleum generation and migration. Organic Geochemistry, 24, 363–375. https://doi.org/10.1016/0146‐6380(96)00009‐5
    [Google Scholar]
  48. Hazra, B., Wood, D. A., Mani, D., Singh, P. K., & Singh, A. K. (2019). Evaluation of shale source rocks and reservoirs (p. 139). Springer.
    [Google Scholar]
  49. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 178, 279–309.
    [Google Scholar]
  50. Horton, B. K., Fuentes, F., Boll, A., Starck, D., Ramirez, S. G., & Stockli, D. F. (2016). Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina. Journal of South American Earth Sciences, 71, 17–40. https://doi.org/10.1016/j.jsames.2016.06.003
    [Google Scholar]
  51. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén Basin: An overview. In G. D.Veiga, L. A.Spalletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 1–14). Geological Society, London, Special Publications.
    [Google Scholar]
  52. Hunt, J. M. (1990). Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74, 1–12.
    [Google Scholar]
  53. Jorgensen, L., López Pezé, A., & Pisani, F. (2013). Caracterización de la Formación Los Molles como reservorio de tipo Shale Gas en el ámbito Norte de la Dorsal de Huincul, Cuenca Neuquina, Argentina, Mostrando su analogía con reservorio de Shale Gas probado en EEUU. Society of Petroleum Engineers.
    [Google Scholar]
  54. Karg, H., & Littke, R. (2020). Tectonic control on hydrocarbon generation in the northwestern Neuquén Basin, Argentina. AAPG Bulletin, 104, 2173–2208. https://doi.org/10.1306/05082018171
    [Google Scholar]
  55. Katz, B. J. (Ed.) (1995). Petroleum source rocks—An introductory overview. In: Petroleum source rocks (pp. 1–8). Springer‐Verlag; Berlin.
    [Google Scholar]
  56. Katz, B. J., & Arango, I. (2018). Organic porosity: A geochemist's view of the current state of understanding. Organic Geochemistry, 123, 1–16. https://doi.org/10.1016/j.orggeochem.2018.05.015
    [Google Scholar]
  57. Katz, B. J., & Lin, F. (2021). Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies. AAPG Bulletin, 105(4), 695–720.
    [Google Scholar]
  58. Kietzmann, D. A., Ambrosio, A. L., Suriano, J., Alonso, M. S., González Tomassini, F., Depine, G., & Repol, D. (2016). The Vaca Muerta‐Quintuco system (Tithonian–Valanginian) in the Neuquén basin, Argentina: A view from the outcrops in the Chos Malal fold and thrust belt. AAPG Bulletin, 100, 743–771. https://doi.org/10.1306/02101615121
    [Google Scholar]
  59. Ko, L. T., Loucks, R. G., Ruppel, S. C., Zhang, T., & Peng, S. (2017). Origin and characterization of Eagle Ford pore networks in the south Texas Upper Cretaceous shelf. AAPG Bulletin, 101, 387–418. https://doi.org/10.1306/08051616035
    [Google Scholar]
  60. Kozlowski, S., Cruz, C. E., & Sylwan, C. (1998). Modelo exploratorio en la faja corrida de la Cuenca Neuquina, Argentina. Boletín de Informaciones Petroleras, 55, 4–23.
    [Google Scholar]
  61. Krim, N., Tribovillard, N., Riboulleau, A., Bout‐Roumazeilles, V., Bonnel, C., Imbert, P., Aubourg, C., Hoareau, G., & Fasentieux, B. (2019). Reconstruction of palaeoenvironmental conditions of the Vaca Muerta Formation in the southern part of the Neuquén Basin (Tithonian‐Valanginian): Evidences of initial short‐lived development of anoxia. Marine and Petroleum Geology, 103, 176–201. https://doi.org/10.1016/j.marpetgeo.2019.02.011
    [Google Scholar]
  62. Lampe, C., Kornpihl, K., Sciamanna, S., Zapata, T., Zamora, G., & Varadé, R. (2006). Petroleum systems modeling in tectonically complex areas—A 2D migration study from the Neuquen Basin, Argentina. Journal of Geochemical Exploration, 89, 201–204.
    [Google Scholar]
  63. Law, B. E., & Dickinson, W. W. (1985). Conceptual model for origin of abnormally pressured gas accumulations in low‐permeability reservoirs. AAPG Bulletin, 69, 1295–1304.
    [Google Scholar]
  64. Law, B. E. & Spencer, C. W. (1998). Abnormal pressures in hydrocarbon environments. In: B. E.Law, G. F.Ulmishek & V. I.Slavin (Eds.), Abnormal pressures in hydrocarbon environments (Vol. 70, pp. 1–11). AAPG Memoir.
    [Google Scholar]
  65. Leanza, H. A. (2003). Las sedimentitas huitrinianas y rayosianas (Cretácico inferior) en el ámbito central y meridional de la cuenca Neuquina, Argentina. Servicio Geológico Minero Argentino, Serie Contribuciones Técnicas, Geología 2 (p. 31).
    [Google Scholar]
  66. Leanza, H. A., & Hugo, C. A. (2001). Hoja Geológica 3969‐I: Zapala: Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000. Instituto de Geología y Recursos Minerales Boletín 275 (p. 128).
    [Google Scholar]
  67. Legarreta, L., & Uliana, M. A. (1991). Jurassic–marine oscillations and geometry of back‐arc basin fill, Central Argentina Andes. In D. I. M.McDonald (Ed.), Sedimentation, tectonics and eustacy: Sea level changes at active plate margins (pp. 429–450). Blackwell Scientific Publications.
    [Google Scholar]
  68. Legarreta, L., ViIIar, H. J., Cruz, C. E., Laffitte, G. A., & Varadé, R. (2008). Revisión integrada de los sistemas generadores, estilos de migración‐entrampamiento, y volumetría de hidrocarburos en los distritos productivos de la cuenca Neuquina, Argentina. In C. E.Cruz, J. F.Rodríguez, J. J.Hechern, & H. J.Villar (Eds.), Sistemas Petroleros de las Cuencas Andinas (pp. 79–108). Instituto Argentino del Petróleo y el Gas.
    [Google Scholar]
  69. Legarreta, L., & Villar, H. J. (2011). Geological and geochemical keys of the potential shale resources, Argentina basins. AAPG Search and Discovery Article 80196. Accessed November 7, 2011. http://www.searchanddiscovery.com/pdfz/documents/2011/80196legarreta/ndx_legarreta.pdf.html
    [Google Scholar]
  70. Legarreta, L., & Villar, H. J. (2012). Las facies generadoras de hidrocarburos de la Cuenca Neuquina. Petrotecnia, 14–39.
    [Google Scholar]
  71. Legarreta, L., & Villar, H. J. (2015). The Vaca Muerta Formation (Late Jurassic‐Early Cretaceous), Neuquén Basin, Argentina: Sequences, facies and source rock characteristics. In Extended Abstracts.
  72. Liu, B., Schieber, J., & Mastalerz, M. (2017). Combined SEM and reflected light petrography of organic matter in the New Albany Shale (Devonian‐Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation. International Journal of Coal Geology, 184, 57–72. https://doi.org/10.1016/j.coal.2017.11.002
    [Google Scholar]
  73. Löhr, S., Baruch, E., Hall, P., & Kennedy, M. (2015). Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?Organic Geochemistry, 87, 119–132. https://doi.org/10.1016/j.orggeochem.2015.07.010
    [Google Scholar]
  74. Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer‐scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79, 848–861. https://doi.org/10.2110/jsr.2009.092
    [Google Scholar]
  75. Małachowska, A., Mastalerz, M., Hampton, L., Hupka, J., & Drobniak, A. (2019). Origin of bitumen fractions in the Jurassic‐early Cretaceous Vaca Muerta Formation in Argentina: Insights from organic petrography and geochemical techniques. International Journal of Coal Geology, 205, 155–165. https://doi.org/10.1016/j.coal.2018.11.013
    [Google Scholar]
  76. Martínez, M. A., Prámparo, M. B., Quattrocchio, M. E., & Zavala, C. A. (2008). Depositional environments and hydrocarbon potential of the Middle Jurassic Los Molles Formation, Neuquén Basin, Argentina: Palynofacies and organic geochemical data. Andean Geology, 35, 279–305. https://doi.org/10.5027/andgeoV35n2‐a05
    [Google Scholar]
  77. Mastalerz, M., Drobniak, A., & Tankiewicz, A. B. (2018). Origin, properties, and implications of solid bitumen in source‐rock reservoirs: A review. International Journal of Coal Geology, 195, 14–36. https://doi.org/10.1016/j.coal.2018.05.013
    [Google Scholar]
  78. McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K., & Stankiewicz, A. (2011). Basic petroleum geochemistry for source rock evaluation. Oilfield Review, 23, 32–43.
    [Google Scholar]
  79. McPeek, L. A. (1981). Eastern Green River basin: A developing giant gas supply from deep, overpressured Upper Cretaceous sandstones. AAPG Bulletin, 65, 1078–1098.
    [Google Scholar]
  80. Mei, M., Burnham, A. K., Schoellkopf, N., Wendebourg, J., & Gelin, F. (2021). Modeling petroleum generation, retention, and expulsion from the Vaca Muerta Formation, Neuquén Basin, Argentina: Part I. Integrating compositional kinetics and basin modeling. Marine and Petroleum Geology, 123, 104743.
    [Google Scholar]
  81. Milliken, K. L., Ko, L. T., Pommer, M., & Marsaglia, K. M. (2014). SEM Petrography of Eastern Mediterranean sapropels: Analogue data for assessing organic matter in oil and gas shales. Journal of Sedimentary Research, 84, 961–974.
    [Google Scholar]
  82. Milliken, K. L., Reed, R. M., McCarty, D. K., Bishop, J., Lipinski, C., Fischer, T. B., Crousse, L., & Reijenstein, H. (2019). Grain assemblages and diagenesis in the Vaca Muerta Formation (Jurassic‐Cretaceous), Neuquén Basin, Argentina. Sedimentary Geology, 380, 45–64. https://doi.org/10.1016/j.sedgeo.2018.11.007
    [Google Scholar]
  83. Milliken, K. L., Rudnicki, M., Awwiller, D. N., & Zhang, T. (2013). Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania. AAPG Bulletin, 97, 177–200. https://doi.org/10.1306/07231212048
    [Google Scholar]
  84. Mitchum, R. M.Jr, & Uliana, M. A. (1985). Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic‐Lower Cretaceous, Neuquén Basin, Argentina. In O. R.Berg, & D. G.Woolverton (Eds.), Seismic stratigraphy II: An integrated approach to hydrocarbon exploration (pp. 255–274). American Association Petroleum Geologists, Memoir 39.
    [Google Scholar]
  85. Modica, C. J., & Lapierre, S. G. (2012). Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming estimation of kerogen porosity as a function of thermal transformation. AAPG Bulletin, 96, 87–108. https://doi.org/10.1306/04111110201
    [Google Scholar]
  86. Naipauer, M., Comerio, M., Lescano, M. A., Vennari, V. V., Aguirre‐Urreta, B., Pimentel, M. M., & Ramos, V. A. (2020). The Huncal Member of the Vaca Muerta Formation, Neuquén Basin of Argentina: Insight into biostratigraphy, structure, U‐Pb detrital zircon ages and provenance. Journal of South American Earth Sciences, 100, 102567. https://doi.org/10.1016/j.jsames.2020.102567
    [Google Scholar]
  87. Neuzil, C. E., & Pollock, D. W. (1983). Erosional unloading and fluid pressures in hydraulically "tight" rocks. The Journal of Geology, 91, 179–193. https://doi.org/10.1086/628755
    [Google Scholar]
  88. Nunn, J. A. (2012). Burial and thermal history of the Haynesville Shale: Implications for overpressure, gas generation, and natural hydrofracture. Gulf Coast Association of Geological Society Journal, 1, 81–96.
    [Google Scholar]
  89. Olivera, D. E., Martínez, M. A., Zavala, C., Di Nardo, J. E., & Otharán, G. (2020). New contributions to the palaeoenvironmental framework of the Los Molles Formation (Early‐to‐Middle Jurassic), Neuquén Basin, based on palynological data. Facies, 66, 1–21. https://doi.org/10.1007/s10347‐020‐00607‐8
    [Google Scholar]
  90. Ortiz, A. C., Crousse, L., Bernhardt, C., Vallejo, D., & Mosse, L. (2020). Reservoir properties: Mineralogy, porosity, and fluid types. In D.Minisini, M.Fantín, I.Lanusse Noguera, & H.Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play, Argentina. AAPG Memoir 121 (pp. 329–350).
    [Google Scholar]
  91. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81, 1023–1041.
    [Google Scholar]
  92. Otharán, G., Zavala, C., Arcuri, M., Di Meglio, M., Zorzano, A., Marchal, D., & Koller, G. (2020). Análisis de facies de fangolitas bituminosas asociadas a flujos fluidos de fango. Sección inferior de la Formación Vaca Muerta (Tithoniano), Cuenca Neuquina central, Argentina. Andean Geology, 47, 384–417.
    [Google Scholar]
  93. Passey, Q. R., Bohacs, K., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From oil‐prone source rock to gas‐producing shale reservoir‐geologic and petrophysical characterization of unconventional shale gas reservoirs. In International Oil and Gas Conference and Exhibition, Beijing, China, June 8–10, 2010, SPE Paper 131350 (p. 29).
    [Google Scholar]
  94. Pazos, P. J., Comerio, M., Fernández, D. E., Gutiérrez, C., Estebenet, M. C. G., & Heredia, A. M. (2020). Sedimentology and Sequence Stratigraphy of the Agrio Formation (Late Valanginian‐Earliest Barremian) and the Closure of the Mendoza Group to the North of the Huincul High. In: A.Folguera & D.Kietzmann (Eds.), Opening and Closure of the Neuquén Basin in the Southern Andes (pp. 237–265). Springer.
    [Google Scholar]
  95. Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70, 318–329.
    [Google Scholar]
  96. Peters, K. E., Burnham, A. K., Walters, C. C., & Schenk, O. (2018). Guidelines for kinetic input to petroleum system models from open‐system pyrolysis. Marine and Petroleum Geology, 92, 979–986. https://doi.org/10.1016/j.marpetgeo.2017.11.024
    [Google Scholar]
  97. Peters, K. E. & Cassa, M. R. (1994). Applied source rock geochemistry. In: L. B.Magoon & W. G.Dow (Eds.), The Petroleum System—From Source to Trap (Vol. 60, pp. 93–117). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  98. Peters, K. E., Schenk, O., Hosford Scheirer, A., Wygrala, B., & Hantschel, T. (2017). Basin and petroleum system modeling, Chapter 11. In C. S.Hsu & P. R.Robinson (Eds.), Handbook of petroleum technology (2nd edn., pp. 381–417). Springer.
    [Google Scholar]
  99. Petersen, H. I., Sanei, H., Gelin, F., Loustaunau, E., & Despujols, V. (2020). Kerogen composition and maturity assessment of a solid bitumen‐rich and vitrinite‐lean shale: Insights from the Upper Jurassic Vaca Muerta Shale, Argentina. International Journal of Coal Geology, 229, 103575.
    [Google Scholar]
  100. Pommer, M., & Milliken, K. (2015). Pore types and pore‐size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bulletin, 99, 1713–1744. https://doi.org/10.1306/03051514151
    [Google Scholar]
  101. Ramdhan, A. M., & Goulty, N. R. (2010). Overpressure‐generating mechanisms in the Peciko field, lower Kutai Basin, Indonesia. Petroleum Geoscience, 16, 367–376. https://doi.org/10.1144/1354‐079309‐027
    [Google Scholar]
  102. Ramos, V. A., Mosquera, A., Folguera, A., & García Morabito, E. (2011). Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In Geología y Recursos Naturales de la Provincia de Neuquén. Relatorio del VXIII Congreso Geológico Argentino, Buenos Aires (pp. 335–348).
    [Google Scholar]
  103. Reed, R. M., & Loucks, R. G. (2015). Low‐thermal‐maturity (0.7% VR) mudrock pore systems: Mississippian Barnett Shale, southern Fort Worth Basin. Gulf Coast Association of Geological Society, 4, 15–28.
    [Google Scholar]
  104. Rocha, E., Brisson, I., & Fasola, M. (2018). Modelado de Sistemas petroleros a lo largo de la faja plegada de cuenca neuquina. In M.Gardini, M. L.Ayoroa, C. E.Cruz, M.Gomez, M.Limeres, P.Malone, R.Manceda, G.Peroni, & H.Villar (Eds.), X Congreso de Exploración y Desarrollo de Hidrocarburos, Mendoza, Argentina, 5–9 November (pp. 301–314).
    [Google Scholar]
  105. Rodrigues, N., Cobbold, P. R., Loseth, H., & Ruffet, G. (2009). Widespread bedding‐parallel veins of fibrous calcite ('beef') in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression. Journal of the Geological Society, 166, 695–709. https://doi.org/10.1144/0016‐76492008‐111
    [Google Scholar]
  106. Roduit, N. (2008). JMICROVISION version 1.2.7: Image analysis toolbox for measuring and quantifying components of high definition images. Accessed November 1, 2012. http://www.jmicrovision.com
  107. Rojas Vera, E. A., Folguera, A., Zamora Valcarce, G., Giménez, M., Ruiz, F., Martínez, P., Bottesi, G., & Ramos, V. A. (2010). Neogene to Quaternary extensional reactivation of a fold and thrust belt: The Agrio belt in the Southern Central Andes and its relation to the Loncopue trough (38°–39° S). Tectonophysics, 492, 279–294.
    [Google Scholar]
  108. Rojas Vera, E. R., Mescua, J., Folguera, A., Becker, T., Sagripanti, L., Fennell, L., Orts, D., & Ramos, V. A. (2015). Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating. Journal of South American Earth Sciences, 64, 418–433. https://doi.org/10.1016/j.jsames.2015.10.001
    [Google Scholar]
  109. Romero‐Sarmiento, M.‐F., Ducros, M., Carpentier, B., Lorant, F., Cacas, M.‐C., Pegaz‐Fiornet, S., Wolf, S., Rohais, S., & Moretti, I. (2013). Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale. Marine and Petroleum Geology, 45, 315–330. https://doi.org/10.1016/j.marpetgeo.2013.04.003
    [Google Scholar]
  110. Romero‐Sarmiento, M. F., Ramiro‐Ramirez, S., Berthe, G., Fleury, M., & Littke, R. (2017). Geochemical and petrophysical source rock characterization of the Vaca Muerta Formation, Argentina: Implications for unconventional petroleum resource estimations. International Journal of Coal Geology, 184, 27–41. https://doi.org/10.1016/j.coal.2017.11.004
    [Google Scholar]
  111. Romero‐Sarmiento, M. F., Rouzaud, J. N., Bernard, S., Deldicque, D., Thomas, M., & Littke, R. (2014). Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation. Organic Geochemistry, 71, 7–16. https://doi.org/10.1016/j.orggeochem.2014.03.008
    [Google Scholar]
  112. Rouquerol, J., Avnir, D., Fairbridge, D. H., Everett, J. H., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, F. (1994). Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 68, 1739–1758.
    [Google Scholar]
  113. Sagasti, G., Foster, M., Hryb, D., Ortiz, A., & Lazzari, V. (2014). Understanding geological heterogeneity to customize field development: An example from the Vaca Muerta unconventional play, Argentina. In Unconventional Resources Technology Conference, Denver, Colorado (pp. 797–816).
    [Google Scholar]
  114. Sánchez, N. P., Coutand, I., Turienzo, M., Lebinson, F., Araujo, V., & Dimieri, L. (2018). Tectonic evolution of the Chos Malal fold‐and‐thrust belt (Neuquén Basin, Argentina) from (U‐Th)/He and fission track thermochronometry. Tectonics, 37, 1907–1929. https://doi.org/10.1029/2018TC004981
    [Google Scholar]
  115. Scasso, R. A., Alonso, M. S., Lanes, S., Villar, H. J., & Laffitte, G. (2005). Geochemistry and petrology of a Middle Tithonian limestone‐marl rhythmite in the Neuquén Basin, Argentina: Depositional and burial history. In G. D.Veiga, L. A.Spalletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 207–229). Geological Society, London, Special Publication.
    [Google Scholar]
  116. Schieber, J. (2010). Common themes in the formation and preservation of intrinsic porosity in shales and mudstones—Illustrated with examples across the Phanerozoic. In Society of Petroleum Engineers Unconventional Gas Conference, Pittsburgh, Pennsylvania, February 23–25, 2010, SPE‐132370‐MS (p. 10).
    [Google Scholar]
  117. Schieber, J. (2013). SEM observations on ion‐milled samples of Devonian black shales from Indiana and New York: The petrographic context of multiple pore types. In W.Camp, E.Diaz, & B.Wawak (Eds.), Electron microscopy of shale hydrocarbon reservoirs. AAPG Memoir 102 (pp. 153–171).
    [Google Scholar]
  118. Schieber, J., Lazar, R., Bohacs, K., Klimentidis, B., Ottmann, J., & Dumitrescu, M. (2016). An SEM study of porosity in the Eagle Ford Shale of Texas – Pore types and porosity distribution in a depositional and sequence stratigraphic context. AAPG Memoir, 110, 153–172.
    [Google Scholar]
  119. Shanley, K. W., & Cluff, R. M. (2015). The evolution of pore‐scale fluid‐saturation in low‐permeability sandstone reservoirs. AAPG Bulletin, 99, 1957–1990. https://doi.org/10.1306/03041411168
    [Google Scholar]
  120. Spacapan, J. B., D'Odorico, A., Palma, O., Galland, O., Vera, E. R., Ruiz, R., Leanza, H. A., Medialdea, A., & Manceda, R. (2020). Igneous petroleum systems in the Malargüe fold and thrust belt, Río Grande Valley area, Neuquén Basin, Argentina. Marine and Petroleum Geology, 111, 309–331. https://doi.org/10.1016/j.marpetgeo.2019.08.038
    [Google Scholar]
  121. Spacapan, J. B., Palma, J. O., Galland, O., Manceda, R., Rocha, E., D'Odorico, A., & Leanza, H. A. (2018). Thermal impact of igneous sill‐complexes on organic‐rich formations and implications for petroleum systems: A case study in the northern Neuquén Basin, Argentina. Marine and Petroleum Geology, 91, 519–531. https://doi.org/10.1016/j.marpetgeo.2018.01.018
    [Google Scholar]
  122. Spalletti, L., Franzese, J., Matheos, S., & Schwarz, E. (2000). Sequence stratigraphy of tidally‐dominated carbonate‐siliciclastic ramp; the Tithonian of the southern Neuquén Basin, Argentina. Journal of the Geological Society of London, 157, 433–446.
    [Google Scholar]
  123. Stipanicic, P. N., Rodrigo, F., Baulies, O. L., & Martínez, C. G. (1968). Las Formaciones presenonianas en el denominado Macizo Nordpatagónico y regiones adyacentes. Revista de la Asociación Geológica Argentina, 23, 67–98.
    [Google Scholar]
  124. Swarbrick, R. E., Osborne, M. J., & Yardley, G. S. (2002). Comparison of overpressure magnitude resulting 809 from the main generating mechanisms. In A. R.Huffman & G. L.Bowers (Eds.), Pressure regimes in 810 sedimentary basins and their prediction. AAPG Memoir 76 (pp. 1–12).
    [Google Scholar]
  125. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  126. Sylwan, C. (2014). Source rock properties of Vaca Muerta Formation, Neuquina Basin, Argentina. Simposio de Recursos No Convencionales. Ampliando el Horizonte Energético. IX° Congreso de Exploración y Desarrollo de Hidrocarburos (pp. 365–386).
    [Google Scholar]
  127. Tingay, M. R., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2009). Origin of overpressure and pore‐pressure prediction in the Baram province, Brunei. AAPG Bulletin, 93, 51–74. https://doi.org/10.1306/08080808016
    [Google Scholar]
  128. Tissot, B. P., & Welte, D. H. (1984). From kerogen to petroleum. In B. P.Tissot & D. H.Welte (Eds.), Petroleum formation and occurrence (pp. 160–198). Springer.
    [Google Scholar]
  129. Tomassini, F. G., Smith, L., Rodriguez, M. J., Kietzmann, D., Jausoro, I., Floridia, M. A., Cipollone, M., Caneiro, A., Epele, B., Santillán, N., & Medina, F. (2019). Semi‐quantitative SEM analysis of the Vaca Muerta Formation and its impact on reservoir characterization, Neuquén Basin, Argentina. In Unconventional Resources Technology Conference (URTeC), Denver, Colorado, 22–24 July 2019 (pp. 3175–3188).
    [Google Scholar]
  130. Tunik, M. A., Folguera, A., Naipauer, M., Pimentel, M., & Ramos, V. A. (2010). Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U‐Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489, 258–273. https://doi.org/10.1016/j.tecto.2010.04.017
    [Google Scholar]
  131. Uliana, M., & Legarreta, L. (1993). Hydrocarbon habitat in a Triassic‐to‐Cretaceous Sub‐Andean setting: Neuquén Basin, Argentina. Journal of Petroleum Geology, 16, 397–420.
    [Google Scholar]
  132. Urien, M. C., & Zambrano, J. J. (1994). Petroleum systems in the Neuquén Basin, Argentina. In L. B.Magoon & W. G.Dow (Eds.), The petroleum system–From source to trap. AAPG Memoir 60 (pp. 513–534).
    [Google Scholar]
  133. Veiga, R. D., Vergani, G. D., Brissón, I. E., Macellari, C. E., & Leanza, H. A. (2020). The Neuquén Super Basin. AAPG Bulletin, 104, 2521–2555. https://doi.org/10.1306/09092020023
    [Google Scholar]
  134. Vennari, V. V., Lescano, M., Naipauer, M., Aguirre‐Urreta, M. B., Concheyro, A., Schaltegger, U., Armstrong, R., Pimentel, M., & Ramos, V. A. (2014). New constraints on the Jurassic‐Cretaceous boundary in the High Andes using high‐precision U‐Pb data. Gondwana Research, 26, 374–385. https://doi.org/10.1016/j.gr.2013.07.005
    [Google Scholar]
  135. Vergani, G., Arregui, C., Carbone, O., Leanza, H. A., Danieli, J. C., & Vallés, J. M. (2011). Sistemas petroleros y tipos de entrampamientos en la Cuenca Neuquina. In Geologıa y Recursos Naturales de la Provincia de Neuquén: XVIII Congreso Geológico Argentino (pp. 645–656).
    [Google Scholar]
  136. Vergani, G. D., Tankard, A. J., Belotti, H. J., & Welsink, H. J. (1995). Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In A. J.Tankard, S. R.Suárez, & H. J.Welsink (Eds.), Petroleum Basins of South America. AAPG Memoir 62 (pp. 383–402).
    [Google Scholar]
  137. Wang, F. P., & Gale, J. F. (2009). Screening criteria for shale‐gas systems. Gulf Coast Association of Geological Societies Transactions, 59, 779–793.
    [Google Scholar]
  138. Wang, G. (2020). Deformation of organic matter and its effect on pores in mud rocks. AAPG Bulletin, 104, 21–36. https://doi.org/10.1306/04241918098
    [Google Scholar]
  139. Waples, D., & Tobey, M. H. (2015). Like space and time, transformation ratio is curved. Search and Discovery Article #41713 (2015) Posted October 26, 2015.
  140. Weaver, C. E. (1931). Paleontology of the Jurassic and Cretaceous of West Central Argentina. Memoirs of the University of Washington (Vol. 1, p. 469). University of Washington Press.
    [Google Scholar]
  141. Williams, K. E., & Madatov, A. G. (2005). Analysis of pore pressure compartments in extensional basins. In 25th Annual, GCSSEPM Foundation Annual Bob F. Perkins Research Conference Proceedings: Petroleum Systems of Divergent Continental Margin Basins (pp. 862–890).
    [Google Scholar]
  142. Wilson, R. D., & Schieber, J. (2016). The influence of primary and secondary sedimentary features on reservoir quality: Examples from the Geneseo Formation of New York, U.S.A. In T.Olson (Ed.), Imaging unconventional reservoir pore systems. AAPG Memoir 112 (pp. 167–184).
    [Google Scholar]
  143. Wygrala, B. P. (1989). Integrated study of an oil field in the southern Po Basin, Northern Italy. Berichte Kernforschungsanlage Jülich, 2313, 217.
    [Google Scholar]
  144. Zamora Valcarce, G., Rapalini, A. E., & Spagnuolo, C. M. (2007). Reactivación de estructuras cretácicas durante la deformación miocena, Faja Plegada del Agrio, Neuquén. Revista de la Asociación Geológica de Argentina, 62, 299–307.
    [Google Scholar]
  145. Zamora Valcarce, G. Z., Zapata, T., & Ramos, V. A. (2011). La faja plegada y corrida del Agrio. In Relatorio Geología y Recursos Naturales de la provincia del Neuquén (pp. 367–374).
    [Google Scholar]
  146. Zanella, A., Cobbold, P. R., Ruffet, G., & Leanza, H. A. (2015). Geological evidence for fluid overpressure, hydraulic fracturing and strong heating during maturation and migration of hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza Province, Argentina. Journal of South American Earth Sciences, 62, 229–242. https://doi.org/10.1016/j.jsames.2015.06.006
    [Google Scholar]
  147. Zapata, T., & Folguera, A. (2005). Tectonic evolution of the Andean fold and thrust belt of the southern Neuquén Basin, Argentina. In: G. D.Veiga, L. A.Spalletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 37–56). The Geological Society, Special Publication.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12599
Loading
/content/journals/10.1111/bre.12599
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): hydrocarbon generation , modelling , organic porosity , pore pressure , thermal maturation and Vaca Muerta
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error