1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The development history of high topography in the northeastern (NE) Tibetan Plateau is essential to test various plateau growth models and understand plateau construction. We present integrated provenance data from the NE Qaidam Basin, south of the Qilian Shan. Results show an increase in carbonate lithics, an increase in AlO/SiO ratios, a negative shift in values and an appearance of large amounts of Precambrian zircon grains in the period of ca. 13–8 Ma, arguing that the sediment source of the NE Qaidam Basin may have shifted from the East Kunlun Shan to the Qilian Shan during this time interval. We infer that significant topographic growth of the southern Qilian Shan occurred during the middle‐late Miocene. Along with widespread middle to late Miocene deformation records across the Qilian Shan and abruptly shifts on provenance, sedimentary facies and climate indexes in its surrounding basins, present high topography of the NE Tibetan Plateau may have been established since the middle‐late Miocene.

,

Integrated provenance analysis in the NE Qaidam Basin reveal topographic growth of the southern Qilian Shan during the middle‐late Miocene, from a lower relief region at ca. 13 Ma to a higher relief region at ca. 8 Ma.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12600
2021-11-11
2024-04-24
Loading full text...

Full text loading...

References

  1. An, G. Y. (2015). Tectonic geochemistry of the central segment of the East Kunlun Mountains in Qinghai Province and its geological significance. Geological and Geochemical Exploration, 39(1), 69–75. (in Chinese with English abstract).
    [Google Scholar]
  2. An, K., Lin, X., Wu, L., Yang, R., Chen, H., Cheng, X., Xia, Q., Zhang, F., Ding, W., Gao, S., Li, C., & Zhang, Y. (2020). An immediate response to the Indian‐Eurasian collision along the northeastern Tibetan Plateau: Evidence from apatite fission track analysis in the Kuantan Shan‐Hei Shan. Tectonophysics, 774, 228278. https://doi.org/10.1016/j.tecto.2019.228278
    [Google Scholar]
  3. Bao, J., Song, C., Yang, Y., Fang, X., Meng, Q., Feng, Y., & He, P. (2019). Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. Journal of Asian Earth Sciences, 170, 155–165. https://doi.org/10.1016/j.jseaes.2018.10.018
    [Google Scholar]
  4. Basu, A. R., Sharma, M., & DeCelles, P. G. (1990). Nd, Sr‐isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: Implications for ensialic Andean orogeny. Earth and Planetary Science Letters, 100(1–3), 1–17. https://doi.org/10.1016/0012‐821x(90)90172‐t
    [Google Scholar]
  5. Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y., Jorry, S. J., Ménot, G., Monin, L., Ponzevera, E., Rouget, M.‐L., Tachikawa, K., & Barrat, J. A. (2015). Rare earth elements and neodymium isotopes in world river sediments revisited. Geochimica et Cosmochimica Acta, 170, 17–38. https://doi.org/10.1016/j.gca.2015.08.001
    [Google Scholar]
  6. Bian, S., Gong, J., Zuza, A. V., Yang, R., Tian, Y., Ji, J., Chen, H., Xu, Q., Chen, L., Lin, X., Cheng, X., Tu, J., & Yu, X. (2020). Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan‐Tibetan orogen. Earth and Planetary Science Letters, 544, 116383. https://doi.org/10.1016/j.epsl.2020.116383
    [Google Scholar]
  7. Blisniuk, P. M., Hacker, B. R., Glodny, J., Ratschbacher, L., Bi, S., Wu, Z., McWilliams, M. O., & Calvert, A. (2001). Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412(6847), 628–632. https://doi.org/10.1038/35088045
    [Google Scholar]
  8. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu‐Hf and Sm‐Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
    [Google Scholar]
  9. Bovet, P. M., Ritts, B. D., Gehrels, G., Abbink, A. O., Darby, B., & Hourigan, J. (2009). Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4), 290–329. https://doi.org/10.2475/00.4009.02
    [Google Scholar]
  10. Bush, M. A., Saylor, J. E., Horton, B. K., & Nie, J. (2016). Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere, 8(1), 58–82. https://doi.org/10.1130/L449.1
    [Google Scholar]
  11. Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems, 7(5), https://doi.org/10.1029/2005GC001100
    [Google Scholar]
  12. Chen, C., Bai, Y., Fang, X., Guo, H., Meng, Q., Zhang, W., Zhou, P., & Murodov, A. (2019). A late miocene terrestrial temperature history for the northeastern Tibetan plateau's period of tectonic expansion. Geophysical Research Letters, 46(14), 8375–8386. https://doi.org/10.1029/2019GL082805
    [Google Scholar]
  13. Chen, D. L., Liu, L., Sun, Y., & Liou, J. G. (2009). Geochemistry and zircon U‐Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3–4), 259–272. https://doi.org/10.1016/j.jseaes.2008.12.001
    [Google Scholar]
  14. Chen, X., Gehrels, G., Yin, A., Zhou, Q., & Huang, P. (2015). Geochemical and Nd‐Sr‐Pb‐O isotopic constrains on Permo‐Triassic magmatism in eastern Qaidam Basin, northern Qinghai‐Tibetan plateau: Implications for the evolution of the Paleo‐Tethys. Journal of Asian Earth Sciences, 114, 674–692. https://doi.org/10.1016/j.jseaes.2014.11.013
    [Google Scholar]
  15. Chen, X. H., George, G., Yin, A., Li, L., & Jiang, R. B. (2012). Paleozoic and Mesozoic basement magmatisms of Eastern Qaidam Basin, Northern Qinghai‐Tibet Plateau: LA‐ICP‐MS zircon U‐Pb geochronology and its geological significance. Acta Geologica Sinica‐English Edition, 86(2), 350–369. https://doi.org/10.1111/j.1755‐6724.2012.00665.x
    [Google Scholar]
  16. Chen, X., Shao, Z., Xiong, X., Gao, R., Liu, X., Wang, C., Li, B., Wang, Z., & Zhang, Y. (2019). Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China. Geology in China, 46(5), 995–1020. (in Chinese with English abstract).
    [Google Scholar]
  17. Cheng, F., Fu, S., Jolivet, M., Zhang, C., & Guo, Z. (2016). Source to sink relation between the Eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1–2), 258–283. https://doi.org/10.1130/B31260.1
    [Google Scholar]
  18. Cheng, F., Garzione, C., Jolivet, M., Guo, Z., Zhang, D., & Zhang, C. (2018). A new sediment accumulation model of Cenozoic depositional ages from the Qaidam basin, Tibetan Plateau. Journal of Geophysical Research: Earth Surface, 123(11), 3101–3121. https://doi.org/10.1029/2018JF004645
    [Google Scholar]
  19. Cheng, F., Garzione, C., Jolivet, M., Guo, Z., Zhang, D., Zhang, C., & Zhang, Q. (2019). Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam Basin. Tectonics, 38, 741–766. https://doi.org/10.1029/2018TC005214
    [Google Scholar]
  20. Cheng, F., Garzione, C. N., Mitra, G., Jolivet, M., Guo, Z., Lu, H., Li, X., Zhang, B., Zhang, C., Zhang, H., & Wang, L. (2019). The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau. Earth‐Science Reviews, 198, 102945. https://doi.org/10.1016/j.earscirev.2019.102945
    [Google Scholar]
  21. Cheng, F., Jolivet, M., Guo, Z., Lu, H., Zhang, B., Li, X., Zhang, D., Zhang, C., Zhang, H., Wang, L., Wang, Z., & Zhang, Q. (2019). Jurassic‐Early Cenozoic tectonic inversion in the Qilian Shan and Qaidam Basin, North Tibet: New insight from seismic reflection, isopach mapping, and drill core data. Journal of Geophysical Research: Solid Earth, 124(11), 12077–12098. https://doi.org/10.1029/2019JB018086
    [Google Scholar]
  22. Cheng, F., Jolivet, M., Hallot, E., Zhang, D., Zhang, C., & Guo, Z. (2017). Tectono‐magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49, 248–263. https://doi.org/10.1016/j.gr.2017.06.004
    [Google Scholar]
  23. Chung, S. L., Chu, M. F., Zhang, Y., Xie, Y., Lo, C. H., Lee, T. Y., Lan, C. Y., Li, X., Zhang, Q., & Wang, Y. (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post‐collisional magmatism. Earth‐Science Reviews, 68(3–4), 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001
    [Google Scholar]
  24. Clark, M. K. (2012). Continental collision slowing due to viscous mantle lithosphere rather than topography. Nature, 483(7387), 74–77. https://doi.org/10.1038/nature10848
    [Google Scholar]
  25. Clark, M. K., Farley, K. A., Zheng, D., Wang, Z., & Duvall, A. R. (2010). Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages. Earth and Planetary Science Letters, 296(1–2), 78–88. https://doi.org/10.1016/j.epsl.2010.04.051
    [Google Scholar]
  26. Clift, P. D., Blusztajn, J., & Nguyen, A. D. (2006). Large‐scale drainage capture and surface uplift in eastern Tibet‐SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33(19). https://doi.org/10.1029/2006GL027772
    [Google Scholar]
  27. Clift, P. D., Giosan, L., Blusztajn, J., Campbell, I. H., Allen, C., Pringle, M., Tabrez, A. R., Danish, M., Rabbani, M. M., Alizai, A., Carter, A., & Lückge, A. (2008). Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 36(1), 79–82. https://doi.org/10.1130/g24315a.1
    [Google Scholar]
  28. Dai, S., Fang, X., Dupont‐Nivet, G., Song, C., Gao, J., Krijgsman, W., Langereis, C., & Zhang, W. (2006). Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 111(B11). https://doi.org/10.1029/2005JB004
    [Google Scholar]
  29. Dettman, D. L., Fang, X., Garzione, C. N., & Li, J. (2003). Uplift‐driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan Plateau. Earth and Planetary Science Letters, 214(1–2), 267–277. https://doi.org/10.1016/s0012‐821x(03)00383‐2
    [Google Scholar]
  30. Dupont‐Nivet, G., Horton, B. K., Butler, R. F., Wang, J., Zhou, J., & Waanders, G. L. (2004). Paleogene clockwise tectonic rotation of the Xining‐Lanzhou region, northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003JB002620
    [Google Scholar]
  31. Duvall, A. R., Clark, M. K., Kirby, E., Farley, K. A., Craddock, W. H., Li, C., & Yuan, D. Y. (2013). Low‐temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late‐stage orogenesis. Tectonics, 32(5), 1190–1211. https://doi.org/10.1002/tect.20072
    [Google Scholar]
  32. England, P., & Houseman, G. (1986). Finite strain calculations of continental deformation: 2. Comparison with the India‐Asia Collision Zone. Journal of Geophysical Research: Solid Earth, 91(B3), 3664–3676. https://doi.org/10.1029/JB091iB03p03664
    [Google Scholar]
  33. Fan, L. G., Meng, Q. R., Wu, G. L., Wei, H. H., Du, Z. M., & Wang, E. (2019). Paleogene crustal extension in the eastern segment of the NE Tibetan plateau. Earth and Planetary Science Letters, 514, 62–74. https://doi.org/10.1016/j.epsl.2019.02.036
    [Google Scholar]
  34. Fang, X., Garzione, C., Van der Voo, R., Li, J., & Fan, M. (2003). Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 210, 545–560. https://doi.org/10.1016/S0012‐821X(03)00142‐0
    [Google Scholar]
  35. Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S., & Miao, Y. (2007). High‐resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1–2), 293–306. https://doi.org/10.1016/j.epsl.2007.03.042
    [Google Scholar]
  36. Gansu Bureau of Geology & Mineral Resources (GBGMR) . (1989). Regional geology of Gansu Province (in Chinese with English abstract) (pp. 120–137). Geological Publishing House.
    [Google Scholar]
  37. Garzanti, E., Andò, S., Padoan, M., Vezzoli, G., & El Kammar, A. (2015). The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130, 9–56. https://doi.org/10.1016/j.quascirev.2015.07.011
    [Google Scholar]
  38. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., & Yin, A. (2011). Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30(5). https://doi.org/10.1029/2011TC002868
    [Google Scholar]
  39. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3). https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  40. Goldstein, S. J., & Jacobsen, S. B. (1988). Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution. Earth and Planetary Science Letters, 87(3), 249–265. https://doi.org/10.1016/0012‐821X(88)90013‐1
    [Google Scholar]
  41. Guo, X., Gao, R., Li, S., Xu, X., Huang, X., Wang, H., Li, W., Zhao, S., & Li, X. (2016). Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes. Earth and Planetary Science Letters, 449, 89–95. https://doi.org/10.1016/j.epsl.2016.05.045
    [Google Scholar]
  42. Hager, C., Stockli, D. F., Dewane, T. J., Gehrels, G., & Ding, L. (2009). Anatomy and crustal evolution of the central Lhasa terrane (S‐Tibet) revealed by investigations in the Xainza rift. In EGU General Assembly Conference Abstracts (p. 11346).
    [Google Scholar]
  43. He, P., Song, C., Wang, Y., Chen, L., Chang, P., Wang, Q., & Ren, B. (2017). Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin. Journal of Geophysical Research: Solid Earth, 122(8), 6910–6927. https://doi.org/10.1002/2017JB014216
    [Google Scholar]
  44. He, P., Song, C., Wang, Y., Meng, Q., Chen, L., Yao, L., Huang, R., Feng, W., & Chen, S. (2018). Cenozoic deformation history of the Qilian Shan (northeastern Tibetan Plateau) constrained by detrital apatite fission‐track thermochronology in the northeastern Qaidam Basin. Tectonophysics, 749, 1–11. https://doi.org/10.1016/j.tecto.2018.10.017
    [Google Scholar]
  45. Hu, J., Ma, Y., Li, Z., Wu, Y., Gao, W., Peng, B., Wei, X., & Liu, D. (2019). Jurassic sediments geochemical constraints on provenance, weathering process, and palaeoclimate variation of the north margin of Qaidam Basin, north‐eastern Tibetan Plateau. Geological Journal, 55(4), 3247–3257. https://doi.org/10.1002/gj.3542
    [Google Scholar]
  46. Ji, J., Zhang, K., Clift, P. D., Zhuang, G., Song, B., Ke, X., & Xu, Y. (2017). High‐resolution magnetostratigraphic study of the Paleogene‐Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Research, 46, 141–155. https://doi.org/10.1016/j.gr.2017.02.015
    [Google Scholar]
  47. Jian, X., Guan, P., Zhang, W., & Feng, F. (2013). Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chemical Geology, 360–361, 74–88. https://doi.org/10.1016/j.chemgeo.2013.10.011
    [Google Scholar]
  48. Jimenez‐Munt, I., Fernandez, M., Verges, J., & Platt, J. P. (2008). Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth and Planetary Science Letters, 267, 276–289. https://doi.org/10.1016/j.epsl.2007.11.045
    [Google Scholar]
  49. Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Malavieille, J., Roger, F., Leyreloup, A., Arnaud, N., & Wu, C. (2003). Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22(5), 1052. https://doi.org/10.1029/2002TC001428
    [Google Scholar]
  50. Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P., Malavieille, J., Arnaud, N., & Wu, C. (2001). Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission‐track constraints. Tectonophysics, 343(1–2), 111–134. https://doi.org/10.1016/s0040‐1951(01)00196‐2
    [Google Scholar]
  51. Jonell, T. N., Li, Y., Blusztajn, J., Giosan, L., & Clift, P. D. (2018). Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance. Chemical Geology, 485, 56–73. https://doi.org/10.1016/j.chemgeo.2018.03.036
    [Google Scholar]
  52. Ke, X., Ji, J., Zhang, K., Kou, X., Song, B., & Wang, C. (2013). Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe formation in the northeastern Qaidam basin. Acta Geologica Sinica, 87, 576–587. https://doi.org/10.1111/1755‐6724.12069
    [Google Scholar]
  53. Ketcham, R. A., Donelick, R. A., Balestrieri, M. L., & Zattin, M. (2009). Reproducibility of apatite fission‐track length data and thermal history reconstruction. Earth and Planetary Science Letters, 284(3–4), 504–515. https://doi.org/10.1016/j.epsl.2009.05.015
    [Google Scholar]
  54. Ketcham, R. A., Van Der Beek, P., Barbarand, J., Bernet, M., & Gautheron, C. (2018). Reproducibility of thermal history reconstruction from apatite fission‐track and (U‐Th)/He data. Geochemistry, Geophysics, Geosystems, 19, 2411–2436. https://doi.org/10.1029/2018GC007555
    [Google Scholar]
  55. Lease, R. O. (2014). Cenozoic mountain building on the northeastern Tibetan Plateau. In Geological Society of America Special Papers (Vol. 507, pp. 115–127). https://doi.org/10.1130/2014.2507(06)
    [Google Scholar]
  56. Lease, R. O., Burbank, D. W., Clark, M. K., Farley, K. A., Zheng, D., & Zhang, H. (2011). Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology, 39(4), 359–362. https://doi.org/10.1130/G31356.1
    [Google Scholar]
  57. Lei, S., Li, Y., Cowgill, E., Verosub, K. L., Gao, S., Xu, L., & Ran, Y. (2018). Magnetostratigraphy of the Ganyanchi (salt Lake) basin along the Haiyuan fault, northeastern Tibet. Geosphere, 14(5), 2188–2205. https://doi.org/10.1130/ges01629.1
    [Google Scholar]
  58. Li, B., Chen, X., Zuza, A. V., Hu, D., Ding, W., Huang, P., & Xu, S. (2019). Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite‐and zircon‐fission track thermochronology. Tectonophysics, 751, 109–124. https://doi.org/10.1016/j.tecto.2018.12.005
    [Google Scholar]
  59. Li, B., Zuza, A. V., Chen, X., Hu, D., Shao, Z., Qi, B., Wang, Z. Z., Levy, D. A., & Xiong, X. (2020). Cenozoic multi‐phase deformation in the Qilian Shan and out‐of‐sequence development of the northern Tibetan Plateau. Tectonophysics, 782, 228423. https://doi.org/10.1016/j.tecto.2020.228423
    [Google Scholar]
  60. Li, C. F., Wang, X. C., Guo, J. H., Chu, Z. Y., & Feng, L. J. (2016). Rapid separation scheme of Sr, Nd, Pb and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. Journal of Analytical Atomic Spectrometry, 31, 1150–1159. https://doi.org/10.1039/C5JA00477B
    [Google Scholar]
  61. Li, C. F., Wu, H. Q., Chu, Z. Y., Wang, X. C., Li, Y. L., & Guo, J. H. (2019). Precise determination of radiogenic Sr and Nd isotopic ratios and Rb, Sr, Sm, Nd elemental concentrations in four coal ash and coal fly ash reference materials using isotope dilution thermal ionization mass spectrometry. Microchemical Journal, 146, 906–913. https://doi.org/10.1016/j.microc.2019.02.034
    [Google Scholar]
  62. Li, C. P., Zheng, D. W., Wang, Y., Pang, J. Z., Xiao, L., & Li, Y. J. (2019). Precise and accurate in site U‐Pb dating of zircon by LA‐ICP‐MS. Seismology and Geology, 41(1), 237–249. (in Chinese with English abstract).
    [Google Scholar]
  63. Li, C., Zheng, D., Zhou, R., Yu, J., Wang, Y., Pang, J., Wang, Y., Hao, Y., & Li, Y. (2020). Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48, e2020GL091281. https://doi.org/10.1029/2020GL091281
    [Google Scholar]
  64. Li, J., Fang, X., Song, C., Pan, B., Ma, Y., & Yan, M. (2014). Late Miocene‐Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81(3), 400–423. https://doi.org/10.1016/j.yqres.2014.01.002
    [Google Scholar]
  65. Liu, X., Sun, H., Miao, Y., Dong, B., & Yin, Z. Y. (2015). Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quaternary Science Reviews, 116, 1–14. https://doi.org/10.1016/j.quascirev.2015.03.010
    [Google Scholar]
  66. Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., & Chen, H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA‐ICP‐MS without applying an internal standard. Chemical Geology, 257(1–2), 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    [Google Scholar]
  67. Lu, H., Wang, E., Shi, X., & Meng, K. (2012). Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses. Tectonophysics, 580, 150–161. https://doi.org/10.1016/j.tecto.2012.09.013
    [Google Scholar]
  68. Lu, H., Ye, J., Guo, L., Pan, J., Xiong, S., & Li, H. (2018). Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam Basin. Lithosphere, 11(2), 252–272. https://doi.org/10.1130/L1037.1
    [Google Scholar]
  69. Meng, Q. Q. (2008). High resolution magnetostratigraphy in the north of Qaidam Basin and sedimentary response to tectonic since late Cenozoic (Doctoral dissertation). China National Knowledge Infrastructure (CNKI) (http://cdmd.cnki.com.cn/Article/CDMD‐10730‐2008162337.htm). Lanzhou University (in Chinese).
    [Google Scholar]
  70. Meng, Q., Song, C., Nie, J., Liu, C., He, P., Liu, F., & Li, L. (2020). Middle‐late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau. Tectonophysics, 774, 228279. https://doi.org/10.1016/j.tecto.2019.228279
    [Google Scholar]
  71. Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Shunmin, G., & Zhitai, C. (1998). Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1), 1–47. https://doi.org/10.1046/j.1365‐246X.1998.00567.x
    [Google Scholar]
  72. Mo, X. X., Zhao, Z. D., DePaolo, D. J., Zhou, S., & Dong, G. C. (2007). Three types of collisional and post‐collisional magmatism in the Lhasa block, Tibet and implications for India intra‐continental subduction and mineralization: Evidence from Sr‐Nd isotopes. Acta Petrologica Sinica, 22, 795–803. (in Chinese with English abstract).
    [Google Scholar]
  73. Molnar, P., Boos, W. R., & Battisti, D. S. (2010). Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38, https://doi.org/10.1146/annurev‐earth‐040809‐152456
    [Google Scholar]
  74. Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4), 357–396. https://doi.org/10.1029/93RG02030
    [Google Scholar]
  75. Molnar, P., & Stock, J. M. (2009). Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28. https://doi.org/10.1029/2008TC002271
    [Google Scholar]
  76. Nesbitt, H. W., & Markovics, G. (1997). Weathering of granodioritic crust, long‐term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica Et Cosmochimica Acta, 61(8), 1653–1670. https://doi.org/10.1016/S0016‐7037(97)00031‐8
    [Google Scholar]
  77. Nie, J., Garzione, C., Su, Q., Liu, Q., Zhang, R., Heslop, D., Necula, C., Zhang, S., Song, Y., & Luo, Z. (2017). Dominant 100,000‐year precipitation cyclicity in a late Miocene lake from northeast Tibet. Science Advances, 3(3), e1600762. https://doi.org/10.1126/sciadv.1600762
    [Google Scholar]
  78. Nie, J., Horton, B. K., Saylor, J. E., Mora, A., Mange, M., Garzione, C. N., Basu, A., Moreno, C. J., Caballero, V., & Parra, M. (2012). Integrated provenance analysis of a convergent retroarc foreland system: U‐Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth‐science Reviews, 110(1–4), 111–126. https://doi.org/10.1016/j.earscirev.2011.11.002
    [Google Scholar]
  79. Nie, J., Ren, X., Saylor, J. E., Su, Q., Horton, B. K., Bush, M. A., Chen, W., & Pfaff, K. (2020). Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1–2), 310–320. https://doi.org/10.1130/B35175.1
    [Google Scholar]
  80. Pang, J., Yu, J., Zheng, D., Wang, W., Ma, Y., Wang, Y., Li, C., Li, Y., & Wang, Y. (2019). Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3), 1018–1032. https://doi.org/10.1029/2018TC005258
    [Google Scholar]
  81. Qi, B., Hu, D., Yang, X., Zhang, Y., Tan, C., Zhang, P., & Feng, C. (2016). Apatite fission track evidence for the Cretaceous‐Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene. Journal of Asian Earth Sciences, 124, 28–41. https://doi.org/10.1016/j.jseaes.2016.04.009
    [Google Scholar]
  82. Ren, X., Nie, J., Saylor, J. E., Wang, X., Liu, F., & Horton, B. K. (2020). Temperature control on silicate weathering intensity and evolution of the Neogene East Asian summer monsoon. Geophysical Research Letters, 47(15). https://doi.org/10.1029/2020gl088808
    [Google Scholar]
  83. Shi, D., Klemperer, S. L., Shi, J., Wu, Z., & Zhao, W. (2020). Localized foundering of Indian lower crust in the India‐Tibet collision zone. Proceedings of the National Academy of Sciences, 117(40), 24742–24747. https://doi.org/10.1073/pnas.2000015117
    [Google Scholar]
  84. Shi, W., Wang, F., Yang, L., Wu, L., & Zhang, W. (2018). Diachronous growth of the altyn tagh mountains: Constraints on propagation of the northern tibetan margin from (U‐Th)/He dating. Journal of Geophysical Research: Solid Earth, 123(7), 6000–6018. https://doi.org/10.1029/2017JB014844
    [Google Scholar]
  85. Song, B., Spicer, R. A., Zhang, K., Ji, J., Farnsworth, A., Hughes, A. C., Yang, Y., Han, F., Xu, Y., Spicer, T., Shen, T., Lunt, D. J., & Shi, G. (2020). Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth and Planetary Science Letters, 537, 116175. https://doi.org/10.1016/j.epsl.2020.116175
    [Google Scholar]
  86. Song, B., Zhang, K., Hou, Y., Ji, J., Wang, J., Yang, Y., Yang, T., Wang, C., & Shen, T. (2019). New insights into the provenance of Cenozoic strata in the Qaidam Basin, northern Tibet: Constraints from combined U‐Pb dating of detrital zircons in recent and ancient fluvial sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 533, 109254. https://doi.org/10.1016/j.palaeo.2019.109254
    [Google Scholar]
  87. Staisch, L. M., Niemi, N. A., Clark, M. K., & Hong, C. (2020). The Cenozoic evolution of crustal shortening and left‐lateral shear in the central East Kunlun Shan: Implications for the uplift history of the Tibetan Plateau. Tectonics, 39, e2020TC006065. https://doi.org/10.1029/2020TC006065
    [Google Scholar]
  88. Styron, R., Taylor, M., & Sundell, K. (2015). Accelerated extension of Tibet linked to the northward underthrusting of Indian crust. Nature Geoscience, 8(2), 131–134. https://doi.org/10.1038/ngeo2336
    [Google Scholar]
  89. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547), 1671–1677. https://doi.org/10.1126/science.105978
    [Google Scholar]
  90. Tunini, L., Jiménez‐Munt, I., Fernandez, M., Vergés, J., Villaseñor, A., Melchiorre, M., & Afonso, J. C. (2016). Geophysicalpetrological model of the crust and upper mantle in the India‐Eurasia collision zone. Tectonics, 35, 1642–1669. https://doi.org/10.1002/2016tc004161
    [Google Scholar]
  91. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  92. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  93. Wan, Y. S., Zhang, J. X., Yang, J. S., & Xu, Z. Q. (2006). Geochemistry of high‐grade metamorphic rocks of the North Qaidam mountains and their geological significance. Journal of Asian Earth Sciences, 28(2–3), 174–184. https://doi.org/10.1016/j.jseaes.2005.09.018
    [Google Scholar]
  94. Wang, F., Feng, H., Shi, W., Zhang, W., Wu, L., Yang, L., Wang, Y., Zhang, Z., & Zhu, R. (2016). Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U‐Th)/He dating and implications for far‐field effect of rising plateau. Tectonophysics, 675, 196–208. https://doi.org/10.1016/j.tecto.2016.03.001
    [Google Scholar]
  95. Wang, F., Shi, W., Zhang, W., Wu, L., Yang, L., Wang, Y., & Zhu, R. (2017). Differential growth of the northern Tibetan margin: Evidence for oblique stepwise rise of the Tibetan Plateau. Scientific Reports, 7, 1–9. https://doi.org/10.1038/srep41164
    [Google Scholar]
  96. Wang, L., Johnston, S. T., & Chen, N. (2019). New insights into the Precambrian tectonic evolution and continental affinity of the Qilian block: Evidence from geochronology and geochemistry of metasupracrustal rocks in the North Wulan terrane. Geological Society of America Bulletin, 131(9–10), 1723–1743. https://doi.org/10.1130/B35059.1
    [Google Scholar]
  97. Wang, L., MacLennan, S. A., & Cheng, F. (2020). From a proximal‐deposition‐dominated basin sink to a significant sediment source to the Chinese Loess Plateau: Insight from the quantitative provenance analysis on the Cenozoic sediments in the Qaidam basin, northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109883. https://doi.org/10.1016/j.palaeo.2020.109883
    [Google Scholar]
  98. Wang, W., Kirby, E., Peizhen, Z., Dewen, Z., Guangliang, Z., Huiping, Z., Wenjun, Z., & Chizhang, C. (2013). Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension. Bulletin of the Geological Society of America, 125(3–4), 377–400. https://doi.org/10.1130/b30611.1
    [Google Scholar]
  99. Wang, W., Zhang, P., Kirby, E., Wang, L., Zhang, G., Zheng, D., & Chai, C. (2011). A revised chronology for tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan plateau. Tectonophysics, 505(1), 100–114. https://doi.org/10.1016/j.tecto.2011.04.006
    [Google Scholar]
  100. Wang, W., Zhang, P., Pang, J., Garzione, C., Zhang, H., Liu, C., Zheng, D., Zheng, W., & Yu, J. (2016). The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: A sedimentary archive from the Jiuxi Basin. Journal of Geophysical Research: Solid Earth, 121(4), 2235–2257. https://doi.org/10.1002/2015JB012689
    [Google Scholar]
  101. Wang, W., Zhang, P., Yu, J., Wang, Y., Zheng, D., Zheng, W., Zhang, H., & Pang, J. (2016). Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/srep27604
    [Google Scholar]
  102. Wang, W., Zheng, D., Li, C., Wang, Y., Zhang, Z., Pang, J., Wang, Y., Yu, J., Wang, Y., Zheng, W., Zhang, H., & Zhang, P. (2020). Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: Evidence from low‐temperature thermochronology. Tectonics, 39(4). https://doi.org/10.1029/2019TC005705
    [Google Scholar]
  103. Wang, W., Zheng, W., Zhang, P., Li, Q., Kirby, E., Yuan, D., Zheng, D., Liu, C., Wang, Z., Zhang, H., & Pang, J. (2017). Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8, 15887. https://doi.org/10.1038/ncomms15887
    [Google Scholar]
  104. Wang, X., Wang, B., Qiu, Z., Xie, G., Xie, J., Downs, W., Qiu, Z., & Deng, T. (2003). Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth and Planetary Science Letters, 208(3–4), 253–269. https://doi.org/10.1016/S0012‐821X(03)00047‐5
    [Google Scholar]
  105. Wu, C., Yin, A., Zuza, A. V., Zhang, J., Liu, W., & Ding, L. (2016). Pre‐Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3), 254–292. https://doi.org/10.1130/L494.1
    [Google Scholar]
  106. Wu, C., Zuza, A. V., Chen, X., Ding, L., Levy, D. A., Liu, C., Liu, W., Jiang, T., & Stockli, D. F. (2019). Tectonics of the Eastern Kunlun Range: Cenozoic reactivation of a Paleozoic‐early Mesozoic orogen. Tectonics, 38(5), 1609–1650. https://doi.org/10.1029/2018TC005370
    [Google Scholar]
  107. Wu, W., Xu, S., Yang, J., Yin, H., Lu, H., & Zhang, K. (2010). Isotopic characteristics of river sediments on the Tibetan Plateau. Chemical Geology, 269(3–4), 406–413. https://doi.org/10.1016/j.chemgeo.2009.10.015
    [Google Scholar]
  108. Xia, W. C., Zhang, N., Yuan, X. P., Fan, L. S., & Zhang, B. S. (2001). Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifted basin. AAPG Bulletin, 85(4), 715–736. https://doi.org/10.1306/8626C98D‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  109. Xiao, W., Windley, B. F., Yong, Y., Yan, Z., Yuan, C., Liu, C., & Li, J. (2009). Early Paleozoic to Devonian multiple‐accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3–4), 323–333. https://doi.org/10.1016/j.jseaes.2008.10.001
    [Google Scholar]
  110. Yin, A., Dang, Y. Q., Wang, L. C., Jiang, W. M., Zhou, S. P., Chen, X. H., Gehrels, G. E., & McRivette, M. W. (2008). Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120(7–8), 813–846. https://doi.org/10.1130/B26180.1
    [Google Scholar]
  111. Yin, A., Dang, Y. Q., Zhang, M., Chen, X. H., & McRivette, M. W. (2008). Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7–8), 847–876. https://doi.org/10.1130/B26232.1
    [Google Scholar]
  112. Yin, A., Dang, Y., Zhang, M., McRivette, M. W., Burgess, W. P., & Chen, X. (2007). Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam Basin and the Eastern Kunlun Range. In J. W.Sears, T. A.Harms & C. A.Evenchick (Eds.), Whence the mountains? Inquiries into the evolution of orogenic systems: A volume in honor of Raymond A. Geological Society of America Bulletin. https://doi.org/10.1130/2007.2433
    [Google Scholar]
  113. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    [Google Scholar]
  114. Yu, J., Pang, J., Wang, Y., Zheng, D., Liu, C., Wang, W., Li, Y., Li, C., & Xiao, L. (2019). Mid‐Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere, 15(2), 423–432. https://doi.org/10.1130/GES01520.1
    [Google Scholar]
  115. Yu, J., Zheng, D., Pang, J., Wang, Y., Fox, M., Vermeesch, P., Li, C., Xiao, L., Hao, Y., & Wang, Y. (2019). Miocene range growth along the Altyn Tagh fault: Insights from apatite fission track and (U‐Th)/He thermochronometry in the Western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8), 9433–9453. https://doi.org/10.1029/2019JB017570
    [Google Scholar]
  116. Yu, L., Xiao, A., Wu, L., Tian, Y., Rittner, M., Lou, Q., & Pan, X. (2017). Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications: Evidence from detrital zircon geochronology. International Journal of Earth Sciences, 106(8), 2713–2726. https://doi.org/10.1007/s00531‐017‐1455‐z
    [Google Scholar]
  117. Yuan, D.‐Y., Champagnac, J.‐D., Ge, W.‐P., Molnar, P., Zhang, P.‐Z., Zheng, W.‐J., Zhang, H.‐P., & Liu, X.‐W. (2011). Late quaternary right‐lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau. Geological Society of America Bulletin, 123(9–10), https://doi.org/10.1130/B30315.1
    [Google Scholar]
  118. Zhao, Z. F., Gao, P., & Zheng, Y. F. (2015). The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chemical Geology, 395, 11–26. https://doi.org/10.1016/j.chemgeo.2014.11.028
    [Google Scholar]
  119. Zheng, D., Clark, M. K., Zhang, P., Zheng, W., & Farley, K. A. (2010). Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere, 6(6), 937–941. https://doi.org/10.1130/GES00523.1
    [Google Scholar]
  120. Zheng, D., Wang, W., Wan, J., Yuan, D., Liu, C., Zheng, W., Zhang, H., Pang, J., & Zhang, P. (2017). Progressive northward growth of the northern Qilian Shan‐Hexi Corridor (northeastern Tibet) during the Cenozoic. Lithosphere, 9(3), 408–416. https://doi.org/10.1130/l587.1
    [Google Scholar]
  121. Zheng, D., Zhang, P. Z., Wan, J., Yuan, D., Li, C., Yin, G., Zhang, G., Wang, Z., Min, W., & Chen, J. (2006). Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission‐track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248(1–2), 198–208. https://doi.org/10.1016/j.epsl.2006.05.023
    [Google Scholar]
  122. Zhisheng, A. N., Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya‐Tibetan plateau since Late Miocene times. Nature, 411, 62–66. https://doi.org/10.1038/35075035
    [Google Scholar]
  123. Zhuang, G., Hourigan, J. K., Koch, P. L., Ritts, B. D., & Kent‐Corson, M. L. (2011). Isotopic constraints on intensified aridity in Central Asia around 12 Ma. Earth and Planetary Science Letters, 312(1–2), 152–163. https://doi.org/10.1016/j.epsl.2011.10.005
    [Google Scholar]
  124. Zhuang, G., Hourigan, J. K., Ritts, B. D., & Kent‐Corson, M. L. (2011). Cenozoic multiple‐phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China. American Journal of Science, 311(2), 116–152. https://doi.org/10.2475/02.2011.02
    [Google Scholar]
  125. Zhuang, G., Johnstone, S. A., Hourigan, J., Ritts, B., Robinson, A., & Sobel, E. R. (2018). Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers. Gondwana Research, 58, 195–210. https://doi.org/10.1016/j.gr.2018.02.014
    [Google Scholar]
  126. Zhuang, G., Zhang, Y. G., Hourigan, J., Ritts, B., Hren, M., Hou, M., Wu, M., & Kim, B. (2019). Microbial and geochronologic constraints on the Neogene paleotopography of northern Tibetan Plateau. Geophysical Research Letters, 46(3), 1312–1319. https://doi.org/10.1029/2018GL081505
    [Google Scholar]
  127. Zuza, A. V., Cheng, X., & Yin, A. (2016). Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan‐Nan Shan thrust belt. Geosphere, 12(2), 501–532. https://doi.org/10.1130/GES01254.1
    [Google Scholar]
  128. Zuza, A. V., Wu, C., Reith, R. C., Yin, A., Li, J., Zhang, J., Zhang, Y., Wu, L., & Liu, W. (2018). Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Geological Society of America Bulletin, 130(5–6), 881–925. https://doi.org/10.1130/B31721.1
    [Google Scholar]
  129. Zuza, A. V., Wu, C., Wang, Z., Levy, D. A., Li, B., Xiong, X., & Chen, X. (2019). Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan‐Tibetan orogen. Lithosphere, 11(2), 209–231. https://doi.org/10.1130/l1042.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12600
Loading
/content/journals/10.1111/bre.12600
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error