1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Understanding sedimentary routing systems at continental margins can be challenging in tectonically active regions such as forearc basins. Here, we combine sand modal composition and detrital zircon U‐Pb data from the Kumano Basin and surrounding Nankai Trough region of Japan to explore sedimentation in an active forearc and its linkages to the regional tectonic history. Our analyses are on Miocene‐to‐Pleistocene samples collected by the Integrated Ocean Drilling Program (IODP) at inner and outer forearc basin sites C0009 and C0002, river samples from onshore Honshu, and published results from other Nankai IODP sites. Results show the sediments of many IODP samples are similar to that of the modern rivers. Data from C0009 demonstrate that the early accretionary prism already contained slope basins fed by sediments similar to those in the modern Kumano River by 7.1 Ma. The more distal C0002 section was predominantly fed by a system similar to the modern Yodo River, located to the west‐southwest. We conclude that the section was therefore tectonically transported, in agreement with the ‘mobile model’ of oblique tectonic convergence across SW Japan during late Miocene time. Deposition resumed after a ca. 5.6–3.8 Ma hiatus, with sediments primarily fed from the paleo‐Kumano River, with some input from the paleo‐Tenryu and Kiso/Nagara rivers located to the northeast. Input from the paleo‐Tenryu and Kiso/Nagara rivers was likely re‐routed towards the trench by ca. 1.3 Ma. Sediments similar to those of the distal Yodo River also make up part of the Kumano basin fill and are best explained by erosion of uplifted older accretionary prism sediments along the Megasplay Fault that bounds the forearc basin. Despite the temporal variability in sedimentation routed to the basin, basin‐fill dynamics appear to have been governed primarily by the critical‐wedge style dynamics driven by variations in frontal accretion and in‐ or out‐of‐sequence thrusting response.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12601
2021-11-11
2024-04-25
Loading full text...

Full text loading...

References

  1. Aoki, K., Iizuka, T., Hirata, T., Maruyama, S., & Terabayashi, M. (2007). Tectonic boundary between the Sanbagawa belt and the Shimanto belt in central Shikoku, Japan. The Journal of the Geological Society of Japan, 113(5), 171–183. https://doi.org/10.5575/geosoc.113.171
    [Google Scholar]
  2. Aoki, K., Isozaki, Y., Yamamoto, S., Maki, K., Yokoyama, T., & Hirata, T. (2012). Tectonic erosion in a Pacific‐type orogen: Detrital zircon response to Cretaceous tectonics in Japan. Geology, 40, 1087–1090. https://doi.org/10.1130/G33414.1.Buchs
    [Google Scholar]
  3. Aoki, K., Maruyama, S., Isozaki, Y., Otoh, S., & Yanai, S. (2011). Recognition of the Shimanto HP metamorphic belt within the traditional Sanbagawa HP metamorphic belt: New perspectives of the Cretaceous‐Paleogene tectonics in Japan. Journal of Asian Earth Sciences, 42(3), 355–369. https://doi.org/10.1016/j.jseaes.2011.05.001
    [Google Scholar]
  4. Buchs, D. M., Cukur, D., Masago, H., & Garbe‐Schönberg, D. (2015). Sediment flow routing during formation of forearc basins: Constraints from integrated analysis of detrital pyroxenes and stratigraphy in the Kumano Basin, Japan. Earth and Planetary Science Letters, 414, 164–175. https://doi.org/10.1016/j.epsl.2014.12.046
    [Google Scholar]
  5. Burgreen, B., & Graham, S. (2014). Evolution of a deep‐water lobe system in the Neogene trench‐slope setting of the East Coast Basin, New Zealand: Lobe stratigraphy and architecture in a weakly confined basin configuration. Marine and Petroleum Geology, 54, 1–22. https://doi.org/10.1016/j.marpetgeo.2014.02.011
    [Google Scholar]
  6. Carter, L., Carter, R. M., McCave, I. N., & Gamble, J. (1996). Regional sediment recycling in the abyssal Southwest Pacific Ocean. Geology, 24(8), 735–738. https://doi.org/10.1130/0091‐7613(1996)024<0735:RSRITA>2.3.CO;2
    [Google Scholar]
  7. Center for Deep Earth Exploration . (2012). Guide to scientific analysis of cuttings for composition and MAD.
    [Google Scholar]
  8. Clift, P., Carter, A., Nicholson, U., & Masago, H. (2013). Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench, Japan: Sediment transport in an active and collisional margin setting. Tectonics, 32, 377–395. https://doi.org/10.1002/tect.20033
    [Google Scholar]
  9. Cowan, D. S., Brandon, M. T., & Garver, J. I. (1997). Geologic tests of hypotheses for large coastwise displacements–A critique illustrated by the Baja British Columbia controversy. American Journal of Science, 297(2), 117–173.
    [Google Scholar]
  10. Dickinson, W. R. (1970). Interpreting detrital modes of gray‐wacke and arkose. Journal of Sedimentary Research, 40(2), 695–707. https://doi.org/10.1306/74D72018‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  11. Dickinson, W. R., Soreghan, G. S. & Giles, K. A. (1994). Glacio‐eustatic origin of Permo‐carboniferous stratigraphic cycles: Evidence from the southern Cordilleran foreland region. In J. M.Dennison & F. R.Ettensohn (Eds)., Tectonic and eustatic controls on sedimentary cycles (Vol. 4, pp. 25–34). Society for sedimentary geology concepts in sedimentology and paleontology. https://doi.org/10.2110/csp.94.04.0025
    [Google Scholar]
  12. Endo, S., Wallis, S., Hirata, T., Anczkiewicz, R., Platt, J., Thirlwall, M., & Asahara, Y. (2009). Age and early metamorphic history of the Sanbagawa belt: Lu–Hf and P‐T constraints from the Western Iratsu eclogite. Journal of Metamorphic Geology, 27(5), 371–384. https://doi.org/10.1111/j.1525‐1314.2009.00821.x
    [Google Scholar]
  13. Fergusson, C. L. (2003). Provenance of Miocene‐Pleistocene turbidite sands and sandstones, Nankai Trough, Ocean Drilling Program Leg 190. In Proc. ODP, Sci. Results (Vol. 190(196), 1–28). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.190196.205.2003
    [Google Scholar]
  14. Frederik, M. C. G., Gulick, S. P. S., & Miller, J. J. (2020). Effect on subduction of deeply buried seamounts offshore of Kodiak Island. Tectonics, 39(7), e2019TC005710. https://doi.org/10.1029/2019TC005710
    [Google Scholar]
  15. Fuller, C. W., Willett, S. D., & Brandon, M. T. (2006). Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34(2), 65–68. https://doi.org/10.1130/G21828.1
    [Google Scholar]
  16. Greenacre, M. (1984). Theory and applications of correspondence analysis (p. 364). Academic Press.
    [Google Scholar]
  17. Gulick, S. P., Austin, J. A., McNeill, L. C., Bangs, N. L., Martin, K. M., Henstock, T. J., Bull, J. M., Dean, S., Djajadihardja, Y. S., & Permana, H. (2011). Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nature Geoscience, 4(7), 453–456. https://doi.org/10.1038/ngeo1176
    [Google Scholar]
  18. Gulick, S. P. S., Bangs, N. L. B., Moore, G. F., Ashi, J., Martin, K. M., Sawyer, D. S., Tobin, H. J., Kuramoto, S., & Taira, A. (2010). Rapid forearc basin uplift and megasplay fault development from 3D seismic images of Nankai Margin off Kii Peninsula, Japan. Earth and Planetary Science Letters, 300, 55–62. https://doi.org/10.1016/j.epsl.2010.09.034
    [Google Scholar]
  19. Gulick, S. P. S., Bangs, N. L. B., Shipley, T. H., Nakamura, Y., Moore, G., & Kuramoto, S. (2004). 3‐D architecture of the Nankai accretionary prism’s imbricate thrust zone off Cape Muroto, Japan: Prism reconstruction via en echelon thrust propagation. Journal of Geophysical Research, 109, B02105. https://doi.org/10.1029/2003JB002654
    [Google Scholar]
  20. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer‐based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353–431. https://doi.org/10.1016/s1367‐9120(01)00069‐4
    [Google Scholar]
  21. Hara, H., & Hara, K. (2019). Radiolarian and U‐Pb zircon dating of Late Cretaceous and Paleogene Shimanto accretionary complexes, Southwest Japan: Temporal variations in provenance and offset across an out‐of‐sequence thrust. Journal of Asian Earth Sciences, 170, 29–44. https://doi.org/10.1016/j.jseaes.2018.10.016
    [Google Scholar]
  22. Hara, H., & Kimura, K. (2008). Metamorphic and cooling history of the Shimanto accretionary complex, Kyushu, Southwest Japan: Implications for the timing of out‐of‐sequence thrusting. Island Arc, 17(4), 546–559. https://doi.org/10.1111/j.1440‐1738.2008.00636.x
    [Google Scholar]
  23. Hara, H., Nakamura, Y., Hara, K., Kurihara, T., Mori, H., Iwano, H., Danhara, T., Sakata, S., & Hirata, T. (2017). Detrital zircon multi‐chronology, provenance, and low‐grade metamorphism of the Cretaceous Shimanto accretionary complex, eastern Shikoku, Southwest Japan: Tectonic evolution in response to igneous activity within a subduction zone. Island Arc, 26(6), e12218. https://doi.org/10.1111/iar.12218
    [Google Scholar]
  24. Hart, N. R., Stockli, D. F., & Hayman, N. W. (2016). Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U‐Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere, 12, 1166–1186. https://doi.org/10.1130/GES01273.1
    [Google Scholar]
  25. Hayman, N. W., Byrne, T. B., McNeill, L. C., Kanagawa, K., Kanamatsu, T., Browne, C. M., Schleicher, A. M., & Huftile, G. J. (2012). Structural evolution of an inner accretionary wedge and forearc basin initiation, Nankai margin, Japan. Earth and Planetary Science Letters, 353–354, 163–172. https://doi.org/10.1016/j.epsl.2012.07.040
    [Google Scholar]
  26. Hibbard, J. P., & Karig, D. E. (1990). Structural and magmatic responses to spreading ridge subduction: An example from southwest Japan. Tectonics, 9(2), 207–230. https://doi.org/10.1029/TC009i002p00207
    [Google Scholar]
  27. Houghton, H. F. (1980). Refined techniques for staining plagioclase and alkali feldspars in thin section. Journal of Sedimentary Research, 50(2), 629–631. https://doi.org/10.1306/212F7A7C‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  28. Ingersoll, R. V. (1979). Evolution of the Late Cretaceous forearc basin, northern and central California. Geological Society of America Bulletin, 90(9), 813–826. https://doi.org/10.1130/0016‐7606(1979)90<813:EOTLCF>2.0.CO;2
    [Google Scholar]
  29. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54(1), 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  30. Isozaki, Y. (2019). A visage of early Paleozoic Japan: Geotectonic and paleobiogeographical significance of Greater South China. Island Arc, 28(3), e12296. https://doi.org/10.1111/iar.12296
    [Google Scholar]
  31. Isozaki, Y., Aoki, K., Nakama, T., & Yanai, S. (2010). New insight into a subduction‐related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18, 82–105. https://doi.org/10.1016/j.gr.2010.02.015
    [Google Scholar]
  32. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  33. Jaeger, D., Stalder, R., Masago, H., & Strasser, M. (2019). OH defects in quartz as a provenance tool: Application to fluvial and deep marine sediments from SW Japan. Sedimentary Geology, 388, 66–80. https://doi.org/10.1016/j.sedgeo.2019.05.003
    [Google Scholar]
  34. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19), https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  35. Kent, B. A., Dashtgard, S. E., Huang, C., MacEachern, J. A., Gibson, H. D., & Cathyl‐Huhn, G. (2020). Initiation and early evolution of a forearc basin: Georgia Basin, Canada. Basin Research, 32(1), 163–185. https://doi.org/10.1111/bre.12378
    [Google Scholar]
  36. Kimura, G., Hashimoto, Y., Kitamura, Y., Yamaguchi, A., & Koge, H. (2014). Middle Miocene swift migration of the TTT triple junction and rapid crustal growth in southwest Japan: A review. Tectonics, 33, 1219–1238. https://doi.org/10.1002/2014TC003531
    [Google Scholar]
  37. Kimura, G., Moore, G. F., Strasser, M., Screaton, E., Curewitz, D., Streiff, C., & Tobin, H. (2011). Spatial and temporal evolution of the megasplay fault in the Nankai Trough. Geochemistry, Geophysics, Geosystems, 12. https://doi.org/10.1029/2010GC003335
    [Google Scholar]
  38. Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E. J., Curewitz, D., Masago, H., Thu, M. K., & the Expedition 314/315/316 Scientists . (2009). Proc. IODP. Integrated Ocean Drilling Program. Management International Inc.https://doi.org/10.2204/iodp.proc.314315316.111.2009
    [Google Scholar]
  39. Lackey, J. K., Regalla, C. A., & Moore, G. F. (2020). Tectonic influences on trench slope basin development via structural restoration along the outer Nankai Accretionary prism, southwest Japan. Geochemistry, Geophysics, Geosystems. e2020GC009038. https://doi.org/10.1029/2020GC009038
    [Google Scholar]
  40. Mahony, S. H., Wallace, L. M., Miyoshi, M., Villamor, P., Sparks, R. S. J., & Hasenaka, T. (2011). Volcano‐tectonic interactions during rapid plate‐boundary evolution in the Kyushu region, SW Japan. Geological Society of America Bulletin, 123, 2201–2223. https://doi.org/10.1130/B30408.1
    [Google Scholar]
  41. Mannu, U., Ueda, K., Willett, S., Gerya, T., & Strasser, M. (2016). Impact of sedimentation on evolution of accretionary wedges: Insights from high‐resolution thermo‐mechanical modeling. Tectonics, 35(12), 2828–2846. https://doi.org/10.1002/2016TC004239
    [Google Scholar]
  42. Marsaglia, K. M., Ingersoll, R. V., & Packer, B. M. (1992). Tectonic evolution of the Japanese Islands as reflected in modal compositions of Cenozoic forearc and backarc sand and sandstone. Tectonics, 11(5), 1028–1044. https://doi.org/10.1029/91TC03183
    [Google Scholar]
  43. Milliken, K. L., Comer, E. E., & Marsaglia, K. M. (2012). Data report: Modal sand composition at Sites C0004, C0006, C0007, and C0008, IODP Expedition 316, Nankai accretionary prism. In M.Kinoshita, H.Tobin, J.Ashi, G.Kimura, S.Lallemant, E. J.Screaton, D.Curewitz, H.Masago, K. T.Moe, & the Expedition 314/315/316 Scientists (Eds.), Proc. IODP (Vol. 314/315/316). Integrated Ocean Drilling Program Management International, Inc. https://doi.org/10.2204/iodp.proc.314315316.221.2012
    [Google Scholar]
  44. Moore, G. F. (2001). Data report: Structural setting of the Leg 190 Muroto transect. In Proceeding of Ocean Drilling Program, Initial Reports (Vol. 190, pp. 1–14).
    [Google Scholar]
  45. Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E., & Tobin, H. J. (2007). Three‐dimensional splay fault geometry and implications for tsunami generation. Science, 318, 1128–1131. https://doi.org/10.1126/science.1147195
    [Google Scholar]
  46. Moore, G. F., Boston, B. B., Strasser, M., Underwood, M. B., & Ratliff, R. A. (2015). Evolution of tectono‐sedimentary systems in the Kumano Basin, Nankai Trough forearc. Marine and Petroleum Geology, 67, 604–616. https://doi.org/10.1016/j.marpetgeo.2015.05.032
    [Google Scholar]
  47. Moore, G. F., & Karig, D. E. (1976). Development of sedimentary basins on the lower trench slope. Geology, 4(11), 693–697. https://doi.org/10.1130/0091‐7613(1976)4<693:DOSBOT>2.0.CO;2
    [Google Scholar]
  48. Moore, G. F., Park, J. O., Bangs, N. L., Gulick, S. P., Tobin, H. J., Nakamura, Y., Saito, S., Tsuji, T., Yoro, T., Tanaka, H., Uraki, S., Kido, Y., Sanada, Y., Kuramoto, S., & Taira, A. (2009). Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 Transect. In Proc. IODP (Vol. 314/315/316, pp. 1e46). https://doi.org/10.2204/iodp.proc.314315316.102.2009
    [Google Scholar]
  49. Moore, G. F., & Strasser, M. (2016). Large mass transport deposits in kumano basin, Nankai trough, Japan. In Submarine mass movements and their consequences, advances in natural and technological hazards research (pp. 371–379). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐20979‐1_37
    [Google Scholar]
  50. Muck, M. T., & Underwood, M. B. (1990). Upslope flow of turbidity currents: A comparison among field observations, theory, and laboratory models. Geology, 18(1), 54–57. https://doi.org/10.1130/0091‐7613(1990)018<0054:UFOTCA>2.3.CO;2
    [Google Scholar]
  51. Nagata, M., Miyazaki, K., Iwano, H., Danhara, T., Obayashi, H., Hirata, T., Yagi, K., Kouchi, Y., Yamamoto, K., & Otoh, S. (2019). Timescale of material circulation in subduction zone: U‐Pb zircon and K–Ar phengite double‐dating of the Sanbagawa metamorphic complex in the Ikeda district, central Shikoku, southwest Japan. Island Arc, 28(4), e12306. https://doi.org/10.1111/iar.12306
    [Google Scholar]
  52. Noda, A. (2016). Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Bulletin, 128(5–6), 879–895. https://doi.org/10.1130/B31345.1
    [Google Scholar]
  53. Noda, A. (2018). Forearc basin stratigraphy and interactions with accretionary wedge growth according to the critical taper concept. Tectonics, 37(3), 965–988. https://doi.org/10.1002/2017TC004744
    [Google Scholar]
  54. Noda, A., TuZino, T., Kanai, Y., Furukawa, R., & Uchida, J. I. (2008). Paleoseismicity along the southern Kuril Trench deduced from submarine‐fan turbidites. Marine Geology, 254(1–2), 73–90. https://doi.org/10.1016/j.margeo.2008.05.015
    [Google Scholar]
  55. Okamoto, K., Shinjoe, H., Katayama, I., Terada, K., Sano, Y., & Johnson, S. (2004). SHRIMP U‐Pb zircon dating of quartz‐bearing eclogite from the Sanbagawa Belt, south‐west Japan: Implications for metamorphic evolution of subducted protolith. Terra Nova, 16(2), 81–89. https://doi.org/10.1111/j.1365‐3121.2004.00531.x
    [Google Scholar]
  56. Orme, D. A., & Surpless, K. D. (2019). The birth of a forearc: The basal Great Valley Group, California, USA. Geology, 47(8), 757–761. https://doi.org/10.1130/G46283.1
    [Google Scholar]
  57. Otoh, S., Shimojo, M., Aoki, K., Nakama, T., Maruyama, S., & Yanai, S. (2010). Age distribution of detrital zircons in the psammitic schist of the Sanbagawa belt, southwest Japan. Chigaku Zasshi, 119(2), 333–346. https://doi.org/10.5026/jgeography.119.333
    [Google Scholar]
  58. Park, J. O., Tsuru, T., Kodaira, S., Cummins, P. R., & Kaneda, Y. (2002). Splay fault branching along the Nankai subduction zone. Science, 297, 1157–1160. https://doi.org/10.1126/science.1074111
    [Google Scholar]
  59. Parra, J. G., Marsaglia, K. M., Rivera, K. S., Dawson, S. T., & Walsh, J. P. (2012). Provenance of sand on the Poverty Bay shelf, the link between source and sink sectors of the Waipaoa River sedimentary system. Sedimentary Geology, 280, 208–233. https://doi.org/10.1016/j.sedgeo.2012.04.012
    [Google Scholar]
  60. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2511. https://doi.org/10.1039/c1ja10172b
    [Google Scholar]
  61. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36, 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  62. Pickering, K. T., Underwood, M. B., Saito, S., Naruse, H., Kutterolf, S., Scudder, R., Park, J. O., Moore, G. F., & Slagle, A. (2013). Depositional architecture, provenance, and tectonic/eustatic modulation of Miocene submarine fans in the Shikoku Basin: Results from Nankai Trough Seismogenic Zone Experiment. Geochemistry, Geophysics, Geosystems, 14(6), 1722–1739. https://doi.org/10.1002/ggge.20107
    [Google Scholar]
  63. Ramirez, S. G., Gulick, S. P. S., & Hayman, N. W. (2015). Early sedimentation and deformation in the Kumano forearc basin linked with Nankai accretionary prism evolution, southwest Japan. Geochemistry, Geophysics, Geosystems, 16, 1616–1633. https://doi.org/10.1002/2014GC005643
    [Google Scholar]
  64. Ramirez, S. G., & Milliken, K. L. (2016). Data report: atlas of lithic grain types at Site C0002; reference for petrographic provenance analysis in the Kumano Basin and upper Nankai accretionary prism. In M.Strasser, B.Dugan, K.Kanagawa, G. F.Moore, S.Toczko, & L.Maeda; the Expedition 338 Scientists . (Eds.), Proceedings of the Integrated Ocean Drilling Program (Vol. 338). Integrated Ocean Drilling Program. https://doi.org/10.2204/iodp.proc.338.204.2016
    [Google Scholar]
  65. Reagan, M. K., Heaton, D. E., Schmitz, M. D., Pearce, J. A., Shervais, J. W., & Koppers, A. A. (2019). Forearc ages reveal extensive short‐lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters, 506, 520–529. https://doi.org/10.1016/j.epsl.2018.11.020
    [Google Scholar]
  66. Ruff, L., & Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, 23(3), 240–252. https://doi.org/10.1016/0031‐9201(80)90117‐X
    [Google Scholar]
  67. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332
    [Google Scholar]
  68. Saffer, D., McNeill, L., Byrne, T., Araki, E., Toczko, S., Eguchi, N., & Takahashi, K.; and the Expedition 319 Scientists . (2010). Proc. IODP (Vol. 319). Integrated Ocean Drilling Program Management International, Inc.https://doi.org/10.2204/iodp.proc.319.101.2010
    [Google Scholar]
  69. Seno, T., & Maruyama, S. (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1–4), 53–84. https://doi.org/10.1016/0040‐1951(84)90008‐8
    [Google Scholar]
  70. Shibata, T., Orihashi, Y., Kimura, G., & Hashimoto, Y. (2008). Underplating of mélange evidenced by the depositional ages: U‐Pb dating of zircons from the Shimanto accretionary complex, southwest Japan. Island Arc, 17(3), 376–393. https://doi.org/10.1111/j.1440‐1738.2008.00626.x
    [Google Scholar]
  71. Shimura, Y., Tokiwa, T., Takeuchi, M., Mori, H., & Yamamoto, K. (2019). Lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex and the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. Island Arc, 28(6), e12325. https://doi.org/10.1111/iar.12325
    [Google Scholar]
  72. Simpson, G. D. H. (2010). Formation of accretionary prisms influenced by sediment subduction and supplied by sediments from adjacent continents. Geology, 38, 131–134. https://doi.org/10.1130/G30461.1
    [Google Scholar]
  73. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  74. Soh, W., & Tokuyama, H. (2002). Rejuvenation of submarine canyon associated with ridge subduction, Tenryu Canyon, off Tokai, central Japan. Marine Geology, 187(1–2), 203–220. https://doi.org/10.1016/S0025‐3227(02)00267‐0
    [Google Scholar]
  75. Spencer, C. J., & Kirkland, C. L. (2016). Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach. Lithosphere, 8, 29–37. https://doi.org/10.1130/L479.1
    [Google Scholar]
  76. Strasser, M., Dugan, B., Kanagawa, K., Moore, G. F., Toczko, S., Maeda, L., & the Expedition 338 Scientists. (2014). Proc. IODP (Vol. 338). Integrated Ocean Drilling Program. https://doi.org/10.2204/iodp.proc.338.2014
    [Google Scholar]
  77. Strasser, M., Moore, G. F., Kimura, G., Kitamura, Y., Kopf, A. J., Lallemant, S., Park, J. O., Screaton, E. J., Su, X., Underwood, M. B., & Zhao, X. (2009). Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geoscience, 2, 648–652. https://doi.org/10.1038/ngeo609
    [Google Scholar]
  78. Taira, A. (2001). Tectonic evolution of the Japanese island arc system. Annual Review of Earth and Planetary Sciences, 29(1), 109–134. https://doi.org/10.1146/annurev.earth.29.1.109
    [Google Scholar]
  79. Taira, A., & Niitsuma, N. (1986). Turbidite sedimentation in the Nankai Trough as interpreted from magnetic fabric, grain size, and detrital modal analyses. In H.Kagami, D. E.Karig, W. T.Coulbourn (Eds.), Init. Repts. DSDP (Vol. 87, pp. 909–926). U.S. Govt. Printing Office. https://doi.org/10.2973/dsdp.proc.87.112.1986
    [Google Scholar]
  80. Tobin, H., Hirose, T., Saffer, D., Toczko, S., Maeda, L., Kubo, Y., & the Expedition 348 Scientists . (2015). Proc. IODP (Vol. 348). Integrated Ocean Drilling Program. https://doi.org/10.2204/iodp.proc.348.101.2015
    [Google Scholar]
  81. Tobin, H. J., & Kinoshita, M. (2006). NanTroSEIZE: The IODP Nankai Trough seismogenic zone experiment. Scientific Drilling, 2, 23–27. https://doi.org/10.5194/sd‐2‐23‐2006
    [Google Scholar]
  82. Tsuji, T., Ashi, J., Strasser, M., & Kimura, G. (2015). Identification of the static backstop and its influence on the evolution of the accretionary prism in the Nankai Trough. Earth and Planetary Science Letters, 431, 15–25. https://doi.org/10.1016/j.epsl.2015.09.011
    [Google Scholar]
  83. Underwood, M. B., & Fergusson, C. L. (2005). Late Cenozoic evolution of the Nankai trench‐slope system: Evidence from sand petrography and clay mineralogy, Geological Society, London, Special Publications, 244, 113–129. https://doi.org/10.1144/GSL.SP.2005.244.01.07
    [Google Scholar]
  84. Underwood, M. B., & Guo, J. (2018). Clay‐mineral assemblages across the Nankai‐Shikoku subduction system, offshore Japan: A synthesis of results from the NanTroSEIZE project. Geosphere, 14(5), 2009–2043. https://doi.org/10.1130/GES01626.1
    [Google Scholar]
  85. Underwood, M. B., & Karig, D. E. (1980). Role of submarine canyons in trench and trench‐slope sedimentation. Geology, 8(9), 432–436. https://doi.org/10.1130/0091‐7613(1980)8<432:ROSCIT>2.0.CO;2
    [Google Scholar]
  86. Underwood, M. B., & Pickering, K. T. (1996). Clay‐mineral provenance, sediment dispersal patterns, and mudrock diagenesis in the Nankai accretionary prism, southwest Japan. Clays and Clay Minerals, 44, 339–356. https://doi.org/10.1346/ccmn.1996.0440304
    [Google Scholar]
  87. Underwood, M. B., & Pickering, K. T. (2018). Facies architecture, detrital provenance, and tectonic modulation of sedimentation in the Shikoku Basin: Inputs to the Nankai Trough subduction zone. In T.Byrne, M. B.Underwood, D.Fisher, L.McNeill, D.Saffer, K.Ujiie, & A.Yamaguchi (Eds.), Geology and tectonics of subduction zones: A tribute to Gaku Kimura (Vol. 534, pp. 1–34). Geological Society of America Special Paper. https://doi.org/10.1130/2018.2534(01)
    [Google Scholar]
  88. Usman, M. O., Masago, H., Winkler, W., & Strasser, M. (2014). Mid‐Quaternary decoupling of sediment routing in the Nankai Forearc revealed by provenance analysis of turbiditic sands. International Journal of Earth Sciences (Geologische Rundschau), 103, 1141–1161. https://doi.org/10.1007/s00531‐014‐1011‐z
    [Google Scholar]
  89. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  90. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  91. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  92. von Huene, R., Ranero, C. R., & Vannucchi, P. (2004). Generic model of subduction erosion. Geology, 32(10), 913–916. https://doi.org/10.1130/G20563.1
    [Google Scholar]
  93. Wakita, K. (2013). Geology and tectonics of Japanese islands: A review–the key to understanding the geology of Asia. Journal of Asian Earth Sciences, 10(72), 75–87. https://doi.org/10.1016/j.jseaes.2012.04.014
    [Google Scholar]
  94. Wallis, S. R., Anczkiewicz, R., Endo, S., Aoya, M., Platt, J. P., Thirlwall, M., & Hirata, T. (2009). Plate movements, ductile deformation and geochronology of the Sanbagawa belt, SW Japan: Tectonic significance of 89–88 Ma Lu–Hf eclogite ages. Journal of Metamorphic Geology, 27(2), 93–105. https://doi.org/10.1111/j.1525‐1314.2008.00806.x
    [Google Scholar]
  95. Wallis, S. R., Yamaoka, K., Mori, H., Ishiwatari, A., Miyazaki, K., & Ueda, H. (2020). The basement geology of Japan from A to Z. Island Arc, 29(1), e12339. https://doi.org/10.1111/iar.12339
    [Google Scholar]
  96. Wang, K., & Hu, Y. (2006). Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/10.1029/2005JB004094
    [Google Scholar]
  97. Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., & Dinterman, P. A. (2003). Basin‐centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion?Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2002JB002072
    [Google Scholar]
  98. Weltje, G. J. (2006). Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. Geological Society, London, Special Publications, 264(1), 79–99. https://doi.org/10.1144/GSL.SP.2006.264.01.07
    [Google Scholar]
  99. Worthington, L. L., Daigle, H., Clary, W. A., Gulick, S. P. S., & Montelli, A. (2017). High sedimentation rates and thrust fault modulation: Insights from ocean drilling offshore the St. Elias Mountains, southern Alaska. Earth and Planetary Science Letters, 483, 1–12. https://doi.org/10.1016/j.epsl.2017.11.041
    [Google Scholar]
  100. Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth, 121(6), 4670–4741. https://doi.org/10.1002/2016JB012923
    [Google Scholar]
  101. Zahid, K. M., & Barbeau, D. L.Jr. (2011). Constructing sandstone provenance and classification ternary diagrams using an electronic spreadsheet. Journal of Sedimentary Research, 81(9), 702–707. https://doi.org/10.2110/jsr.2011.55
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12601
Loading
/content/journals/10.1111/bre.12601
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error