1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Reprocessed, regional, 2D seismic reflection profiles, 3D seismic volumes and well data (exploration and shallow boreholes), combined with 2D structural restorations and 1D backstripping were used to study the post‐salt evolution of the Nordkapp Basin in Barents Sea. The post‐salt evolution took place above a pre‐salt basement and basin configuration affected by multiple rift events that influenced the depositional facies and thickness of Pennsylvanian‐lower Permian‐layered evaporite sequence. Initially, regional mid‐late Permian extension reactivated pre‐salt Carboniferous faults, caused minor normal faulting in the Permian strata and triggered slight salt mobilization towards structural highs. The main phase of salt mobilization occurred during earliest Triassic when thick and rapidly prograding sediments entered from the east into the Nordkapp Basin. In the early‐mid‐Triassic, the change in the direction of progradation and sediment entry‐points shifted to the NW led to rotation of the earlier‐formed mini‐basins and shift of dominant salt evacuation direction to the south. The prograding sediment influx direction, sediment transport velocity and thickness influenced the dynamics of the early to late passive diapirism, salt expulsion and depletion along the strike of the basin. The basin topography resulting from salt highs and mini‐basin lows strongly affected the Triassic progradational fairways and determined the distinct sediment routing patterns. Minor rejuvenation of the salt structures and rotation of the mini‐basins took place at the Triassic–Jurassic transition, due to far‐field stresses caused by the evolving Novaya Zemlya fold‐and‐thrust belt to the east. This rejuvenation influenced the sediment dispersal routings and caused formation of dwarf secondary mini‐basins. The second and main rejuvenation phase took place during likely early‐mid‐Eocene when propagated far‐field stresses from the transpressional Eurekan/Spitsbergen orogeny to the NW inverted pre‐salt normal faults, reactivated the structural highs and rejuvenated the salt structures. The studied processes and study outcomes can be applicable to other evaporite‐dominated basins worldwide.

,

Sequential structural restoration of an interpreted and depth‐converted section showing the supra‐salt evolution of the NENB segment in the Nordkapp Basin. The detailed temporal evolution shows the interplay between the base‐salt relief, laterally‐varying syn‐ to early post‐rift LES and prograding sediments. The models shows the salt flow direction (within and out of the plain or three‐dimensions), was influenced by the far‐field stresses during the Triassic‐Jurassic transition and early‐middle Eocene, and by the rotation of the mini‐basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12602
2021-11-11
2021-11-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12602.html?itemId=/content/journals/10.1111/bre.12602&mimeType=html&fmt=ahah

References

  1. Baig, I., Faleide, J. I., Jahren, J., & Mondol, N. H. (2016). Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130. https://doi.org/10.1016/j.marpetgeo.2016.02.024
    [Google Scholar]
  2. Barrère, C., Ebbing, J., & Gernigon, L. (2009). Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling. Tectonophysics, 470(1–2), 71–88. https://doi.org/10.1016/j.tecto.2008.07.012
    [Google Scholar]
  3. Barrère, C., Ebbing, J., & Gernigon, L. (2011). 3‐D density and magnetic crustal characterisation of the southwestern Barents Shelf: Implications for the offshore prolongation of the Norwegian Caledonides. Geophysical Journal International, 184(3), 1147–1166.
    [Google Scholar]
  4. Beauchamp, B. (1994). Permian climatic cooling in the Canadian Arctic. Geological Society of America Special Paper, 288, 229–246.
    [Google Scholar]
  5. Bjørlykke, K., Chuhan, F., Kjeldstad, A., Gundersen, E., Lauvrak, O., & Høeg, K. (2004). Modelling of sediment compaction during burial in sedimentary basins. In O.Stephansson, J.Hudson, & L.King (Eds.), Coupled thermo‐hydro‐mechanical‐chemical processes in geo‐systems (pp. 699–708). Elsevier.
    [Google Scholar]
  6. Blaich, O. A., Tsikalas, F., & Faleide, J. I. (2017). New insights into the tectono‐stratigraphic evolution of the southern Stappen High and its transition to Bjørnøya Basin, SW Barents Sea. Marine and Petroleum Geology, 85, 89–105. https://doi.org/10.1016/j.marpetgeo.2017.04.015
    [Google Scholar]
  7. Breivik, A. J., Gudlaugsson, S. T., & Faleide, J. I. (1995). Ottar Basin, SW Barents Sea: A major Upper Palaeozoic rift basin containing large volumes of deeply buried salt. Basin Research, 7, 299–312. https://doi.org/10.1111/j.1365‐2117.1995.tb00119.x
    [Google Scholar]
  8. Bugge, T., Mangerud, G., Elvebakk, G., Mørk, A., Nilsson, I., Fanavoll, S., & Vigran, J. O. (1995). The Upper Palaeozoic succession on the Finnmark Platform, Barents Sea. Norsk Geologisk Tidsskrift, 75(1), 3–30.
    [Google Scholar]
  9. Callot, J.‐P., Salel, J.‐F., Letouzey, J., Daniel, J.‐M., & Ringenbach, J.‐C. (2016). Three‐dimensional evolution of salt‐controlled minibasins: Interactions, folding, and megaflap development. AAPG Bulletin, 100(9), 1419–1442. https://doi.org/10.1306/03101614087
    [Google Scholar]
  10. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245. https://doi.org/10.1127/0078‐0421/2011/0011
    [Google Scholar]
  11. Clark, J., Stewart, S., & Cartwright, J. (1998). Evolution of the NW margin of the North Permian Basin, UK North Sea. Journal of the Geological Society, 155(4), 663–676. https://doi.org/10.1144/gsjgs.155.4.0663
    [Google Scholar]
  12. Clark, S., Glorstad‐Clark, E., Faleide, J., Schmid, D., Hartz, E., & Fjeldskaar, W. (2014). Southwest Barents Sea rift basin evolution: Comparing results from backstripping and timeforward modelling. Basin Research, 26(4), 550–566. https://doi.org/10.1111/bre.12039
    [Google Scholar]
  13. Cumberpatch, Z., Finch, E., Kane, I., Pichel, L. M., Jackson, C., Kilhams, B., Hodgson, D., & Huuse, M. (2021). Halokinetic modulation of sedimentary thickness and architecture: A numerical modelling approach. Basin Reseach. https://doi.org/10.1111/bre.12569
    [Google Scholar]
  14. Dengo, C., & Røssland, K. (1992). Extensional tectonic history of the western Barents Sea. In R. M.Larsen, R. T.Larsen, H.Brekke & E.Talleraas (Eds.), Structural and tectonic modelling and its application to petroleum geology (pp. 91–107). Elsevier.
    [Google Scholar]
  15. Duffy, O. B., Dooley, T. P., Hudec, M. R., Fernandez, N., Jackson, C. A. L., & Soto, J. I. (2021). Principles of shortening in salt basins containing isolated minibasins. Basin Research, 33(3), 2089–2117. https://doi.org/10.1111/bre.12550
    [Google Scholar]
  16. Duffy, O. B., Dooley, T. P., Hudec, M. R., Jackson, M. P., Fernandez, N., Jackson, C. A., & Soto, J. I. (2018). Structural evolution of salt‐influenced fold‐and‐thrust belts: A synthesis and new insights from basins containing isolated salt diapirs. Journal of Structural Geology, 114, 206–221. https://doi.org/10.1016/j.jsg.2018.06.024
    [Google Scholar]
  17. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2018). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. GSA Bulletin, 130(1–2), 263–283. https://doi.org/10.1130/B31639.1
    [Google Scholar]
  18. Faleide, J. I., Gudlaugsson, S. T., & Jacquart, G. (1984). Evolution of the western Barents Sea. Marine and Petroleum Geology, 1(2), 123–150. https://doi.org/10.1016/0264‐8172(84)90082‐5
    [Google Scholar]
  19. Faleide, J. I., Pease, V., Curtis, M., Klitzke, P., Minakov, A., Scheck‐Wenderoth, M., Kostyuchenko, S., & Zayonchek, A. (2018). Tectonic implications of the lithospheric structure across the Barents and Kara shelves. Geological Society, London, Special Publications, 460(1), 285–314. https://doi.org/10.1144/SP460.18
    [Google Scholar]
  20. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  21. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10(3), 186–214. https://doi.org/10.1016/0264‐8172(93)90104‐Z
    [Google Scholar]
  22. Fernandez, N., Hudec, M. R., Jackson, C.‐A.‐L., Dooley, T. P., & Duffy, O. B. (2020). The competition for salt and kinematic interactions between minibasins during density‐driven subsidence: Observations from numerical models. Petroleum Geoscience, 26(1), 3–15. https://doi.org/10.1144/petgeo2019‐051
    [Google Scholar]
  23. Gabrielsen, R. (1984). Long‐lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. Journal of the Geological Society, 141(4), 651–662. https://doi.org/10.1144/gsjgs.141.4.0651
    [Google Scholar]
  24. Gabrielsen, R. H., Faerseth, R. B., & Jensen, L. N. (1990). Structural elements of the Norwegian Continental Shelf. Pt. 1. The Barents Sea Region. Norwegian Petroleum Directorate.
    [Google Scholar]
  25. Gabrielsen, R. H., Grunnaleite, I., & Rasmussen, E. (1997). Cretaceous and tertiary inversion in the Bjørnøyrenna Fault Complex, south‐western Barents Sea. Marine and Petroleum Geology, 14, 165–178. https://doi.org/10.1016/S0264‐8172(96)00064‐5
    [Google Scholar]
  26. Gabrielsen, R., Kløvjan, O., Rasmussen, A., & Stølan, T. (1992). Interaction between halokinesis and faulting: Structuring of the margins of the Nordkapp Basin, Barents Sea region. Proceedings Structural and Tectonic Modelling and Its Implication to Petroleum Geology; Proceedings1992, 1, 121–131.
    [Google Scholar]
  27. Gac, S., Minakov, A., Shephard, G. E., Faleide, J. I., & Planke, S. (2020). Deformation analysis in the Barents Sea in relation to Paleogene transpression along the Greenland‐Eurasia plate boundary. Tectonics, 39. https://doi.org/10.1029/2020TC006172
    [Google Scholar]
  28. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  29. Gee, D., Bogolepova, O., & Lorenz, H. (2006). The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo‐continents Laurentia, Baltica and Siberia. Geological Society, London, Memoirs, 32(1), 507–520.
    [Google Scholar]
  30. Gernigon, L., & Brönner, M. (2012). Late Palaeozoic architecture and evolution of the southwestern Barents Sea: Insights from a new generation of aeromagnetic data. Journal of the Geological Society, 169(4), 449–459. https://doi.org/10.1144/0016‐76492011‐131
    [Google Scholar]
  31. Gernigon, L., Brönner, M., Dumais, M.‐A., Gradmann, S., Grønlie, A., Nasuti, A., & Roberts, D. (2018). Basement inheritance and salt structures in the SE Barents Sea: Insights from new potential field data. Journal of Geodynamics, 119, 82–106. https://doi.org/10.1016/j.jog.2018.03.008
    [Google Scholar]
  32. Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., & Yamasaki, T. (2014). Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup. Tectonics, 33(4), 347–373.
    [Google Scholar]
  33. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363(1), 7–31. https://doi.org/10.1144/SP363.2
    [Google Scholar]
  34. Gilmullina, A., Klausen, T. G., Paterson, N. W., Suslova, A., & Eide, C. H. (2021). Regional correlation and seismic stratigraphy of Triassic Strata in the Greater Barents Sea: Implications for sediment transport in Arctic basins. Basin Research, 33(2), 1546–1579. https://doi.org/10.1111/bre.12526
    [Google Scholar]
  35. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27(7), 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  36. Gradstein, F. M., & Ogg, J. G. (2020). The chronostratigraphic scale. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz & G. M.Ogg (Eds.), Geologic Time Scale 2020 (pp. 21–32). Elsevier.
    [Google Scholar]
  37. Grimstad, S. (2016). Salt tectonics in the central and northeastern Nordkapp Basin, Barents Sea (Master thesis) (pp. 1–127). University of Oslo.
    [Google Scholar]
  38. Gudlaugsson, S., Faleide, J., Johansen, S., & Breivik, A. (1998). Late Palaeozoic structural development of the south‐western Barents Sea. Marine and Petroleum Geology, 15(1), 73–102. https://doi.org/10.1016/S0264‐8172(97)00048‐2
    [Google Scholar]
  39. Hassaan, M., Faleide, J. I., Gabrielsen, R. H., & Tsikalas, F. (2020). Carboniferous graben structures, evaporite accumulations and tectonic inversion in the southeastern Norwegian Barents Sea. Marine and Petroleum Geology, 112, 104038. https://doi.org/10.1016/j.marpetgeo.2019.104038
    [Google Scholar]
  40. Hassaan, M., Faleide, J. I., Gabrielsen, R. H., & Tsikalas, F. (2021a). Architecture of the evaporite accumulation and salt structures dynamics in Tiddlybanken Basin, southeastern Norwegian Barents Sea. Basin Research, 33(1), 91–117. https://doi.org/10.1111/bre.12456
    [Google Scholar]
  41. Hassaan, M., Faleide, J. I., Gabrielsen, R. H. & Tsikalas, F. (2021b). The effects of Carboniferous basin configuration and structural inheritance on evaporite distribution and the development of salt structures in the Nordkapp Basin, Barents Sea–Part I. https://doi.org/10.1111/bre.12565
  42. Hassanpour, J., Yassaghi, A., Muñoz, J. A., & Jahani, S. (2021a). Salt tectonics in a double salt‐source layer setting (Eastern Persian Gulf, Iran): Insights from interpretation of seismic profiles and sequential cross‐section restoration. Basin Research, 33(1), 159–185. https://doi.org/10.1111/bre.12459
    [Google Scholar]
  43. Hassanpour, J., Muñoz, J. A., Yassaghi, A., Ferrer, O., Jahani, S., Santolaria, P., & SeyedAli, S. M. (2021b). Impact of salt layers interaction on the salt flow kinematics and diapirism in the Eastern Persian Gulf, Iran: Constraints from seismic interpretation, sequential restoration, and physical modelling. Tectonophysics, 811, 228887.
    [Google Scholar]
  44. Hearon, T. E., IV, Rowan, M. G., Giles, K. A., & Hart, W. H. (2014). Halokinetic deformation adjacent to the deepwater Auger diapir, Garden Banks 470, northern Gulf of Mexico: Testing the applicability of an outcrop‐based model using subsurface data. Interpretation, 2(4), SM57–SM76. https://doi.org/10.1190/INT‐2014‐0053.1
    [Google Scholar]
  45. Heidari, M., Nikolinakou, M. A., Hudec, M. R., & Flemings, P. B. (2019). Influence of a reservoir bed on diapirism and drilling hazards near a salt diapir: A geomechanical approach. Petroleum Geoscience, 25(3), 282–297. https://doi.org/10.1144/petgeo2018‐113
    [Google Scholar]
  46. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., Larssen, G. B., Ryseth, A. E., Rønning, K., Sollid, K., & Stoupakova, A. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281.
    [Google Scholar]
  47. Indrevær, K., Gac, S., Gabrielsen, R. H., & Faleide, J. I. (2018). Crustal‐scale subsidence and uplift caused by metamorphic phase changes in the lower crust: A model for the evolution of the Loppa High area, SW Barents Sea from late Paleozoic to Present. Journal of the Geological Society, 175(3), 497–508. https://doi.org/10.1144/jgs2017‐063
    [Google Scholar]
  48. Jackson, C. A. L., Duffy, O. B., Fernandez, N., Dooley, T. P., Hudec, M. R., Jackson, M. P., & Burg, G. (2020). The stratigraphic record of minibasin subsidence, Precaspian Basin, Kazakhstan. Basin Research, 32(4), 739–763. https://doi.org/10.1111/bre.12393
    [Google Scholar]
  49. Jackson, C. A. L., Elliott, G. M., Royce‐Rogers, E., Gawthorpe, R. L., & Aas, T. E. (2018). Salt thickness and composition influence rift structural style, northern North Sea, offshore Norway. Basin Research, 31(3), 514–538.
    [Google Scholar]
  50. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  51. Jensen, L., & Sørensen, K. (1992). Tectonic framework and halokinesis of the Nordkapp Basin, Barents Sea. In R. M.Larsen, R. T.Larsen, H.Brekke & E.Talleraas (Eds.), Structural and tectonic modelling and its application to petroleum geology (pp. 109–120). Elsevier.
    [Google Scholar]
  52. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  53. Koyi, H., Talbot, C. J., & Tørudbakken, B. O. (1993). Salt diapirs of the southwest Nordkapp Basin: Analogue modelling. Tectonophysics, 228(3–4), 167–187. https://doi.org/10.1016/0040‐1951(93)90339‐L
    [Google Scholar]
  54. Koyi, H., Talbot, C. J., & Tørudbakken, B. O. (1995). Salt tectonics in the Northeastern Nordkapp basin, Southwestern Barents sea. AAPG Memoir, 65, 437–447.
    [Google Scholar]
  55. Larssen, G., Elvebakk, G., Henriksen, L. B., Kristensen, S., Nilsson, I., Samuelsberg, T. J., Svånå, T.A., Stemmerik, L., & Worsley, D. (2002). Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. Norwegian Petroleum Directorate Bulletin, 9, 76.
    [Google Scholar]
  56. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Høgseth, G. (2018). Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass‐balance approach. Marine and Petroleum Geology, 96, 501–521. https://doi.org/10.1016/j.marpetgeo.2018.05.039
    [Google Scholar]
  57. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Safronova, P. (2018). Cenozoic tectonostratigraphy and pre‐glacial erosion: A mass‐balance study of the northwestern Barents Sea margin, Norwegian Arctic. Journal of Geodynamics, 119, 149–166. https://doi.org/10.1016/j.jog.2018.03.004
    [Google Scholar]
  58. Marello, L., Ebbing, J., & Gernigon, L. (2013). Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophysical Journal International, 193(2), 557–584. https://doi.org/10.1093/gji/ggt018
    [Google Scholar]
  59. Mattingsdal, R., Høy, T., Simonstad, E., & Brekke, H. (2015). An updated map of structural elements in the southern Barents Sea. Paper presented at the 31st Geological Winter Meeting.
    [Google Scholar]
  60. Midtkandal, I., Faleide, T. S., Faleide, J. I., Planke, S., Anell, I., & Nystuen, J. P. (2020). Nested intrashelf platform clinoforms—Evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 32(2), 216–223.
    [Google Scholar]
  61. Mondol, N. H., Bjørlykke, K., Jahren, J., & Høeg, K. (2007). Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial. Marine and Petroleum Geology, 24, 289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006
    [Google Scholar]
  62. Müller, R., Klausen, T., Faleide, J., Olaussen, S., Eide, C., & Suslova, A. (2019). Linking regional unconformities in the Barents Sea to compression‐induced forebulge uplift at the Triassic‐Jurassic transition. Tectonophysics, 765, 35–51. https://doi.org/10.1016/j.tecto.2019.04.006
    [Google Scholar]
  63. Nilsen, K. T., Vendeville, B. C. & Johansen, J.‐T. (1995). Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In M. P. A.Jackson, D. G.Roberts & S.Snelson (Eds.), Salt tectonics: a global perspective Vol. 65, (pp. 413–436). AAPG Memoir.
    [Google Scholar]
  64. Pease, V., Scarrow, J., Silva, I. N., & Cambeses, A. (2016). Devonian magmatism in the Timan Range, Arctic Russia—Subduction, post‐orogenic extension, or rifting?Tectonophysics, 691, 185–197.
    [Google Scholar]
  65. Pichel, L. M., Finch, E., & Gawthorpe, R. L. (2019). The impact of pre‐salt rift topography on salt tectonics: A discrete‐element modeling approach. Tectonics, 38(4), 1466–1488. https://doi.org/10.1029/2018TC005174
    [Google Scholar]
  66. Pichel, L. M., & Jackson, C. A. L. (2020). Four‐dimensional variability of composite Halokinetic sequences. Basin Research, 32(6), 1277–1299. https://doi.org/10.1111/bre.12428
    [Google Scholar]
  67. Rice, A., Gayer, R., Robinson, D., & Bevins, R. (1989). Strike‐slip restoration of the Barents Sea Caledonides Terrane, Finnmark, north Norway. Tectonics, 8(2), 247–264. https://doi.org/10.1029/TC008i002p00247
    [Google Scholar]
  68. Ritzmann, O., & Faleide, J. I. (2007). Caledonian basement of the western Barents Sea. Tectonics, 26(5), 1–20. https://doi.org/10.1029/2006TC002059
    [Google Scholar]
  69. Roberts, D. (1972). Tectonic deformation in the Barents Sea region of Varanger peninsula. Universitetsforlaget.
    [Google Scholar]
  70. Roberts, D., & Gee, D. G. (1985). An introduction to the structure of the Scandinavian Caledonides. The Caledonide Orogen–scandinavia and Related Areas, 1, 55–68.
    [Google Scholar]
  71. Rodriguez, C. R., Jackson, C. L., Rotevatn, A., Bell, R. E., & Francis, M. (2018). Dual tectonic‐climatic controls on salt giant deposition in the Santos Basin, offshore Brazil. Geosphere, 14(1), 215–242.
    [Google Scholar]
  72. Rojo, L. A., Cardozo, N., Escalona, A., & Koyi, H. (2019). Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bulletin, 103, 2177–2217. https://doi.org/10.1306/01301918028
    [Google Scholar]
  73. Rojo, L. A., & Escalona, A. (2018). Controls on minibasin infill in the Nordkapp Basin: Evidence of complex Triassic synsedimentary deposition influenced by salt tectonics. AAPG Bulletin, 102(7), 1239–1272. https://doi.org/10.1306/0926171524316523
    [Google Scholar]
  74. Rowan, M. G., & Ratliff, R. A. (2012). Cross‐section restoration of salt‐related deformation: Best practices and potential pitfalls. Journal of Structural Geology, 41, 24–37.
    [Google Scholar]
  75. Rowan, M. G., & Lindsø, S. (2017). Salt Tectonics of the Norwegian Barents Sea and Northeast Greenland Shelf. In J. I.Soto, J. F.Flinch & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 265–286). Elsevier.
    [Google Scholar]
  76. Rowan, M. G., Urai, J. L., Fiduk, J. C., & Kukla, P. A. (2019). Deformation of intrasalt competent layers in different modes of salt tectonics. Solid Earth, 10(3), 987–1013. https://doi.org/10.5194/se‐10‐987‐2019
    [Google Scholar]
  77. Santolaria, P., Ferrer, O., Rowan, M. G., Snidero, M., Carrera, N., Granado, P., Muñoz, J. A., Roca, E., Schneider, C. L., Piña, A., & Zamora, G. (2021). Influence of preexisting salt diapirs during thrust wedge evolution and secondary welding: Insights from analog modeling. Journal of Structural Geology, 149, 104374. https://doi.org/10.1016/j.jsg.2021.104374
    [Google Scholar]
  78. Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., Peace, A. L., Petersen, K. D., Phillips, T. B., Stephenson, R., Stoker, M. S., & Welford, J. K. (2020). Structural inheritance in the North Atlantic. Earth‐Science Reviews, 206, 102975. https://doi.org/10.1016/j.earscirev.2019.102975
    [Google Scholar]
  79. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid Cretaceous subsidence of the Central North Sea Basin. Journal of Geophysical Research, 85, 3711–3739 [Appendix A, 3730–3735].
    [Google Scholar]
  80. Stemmerik, L. (2000). Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(1–2), 95–126. https://doi.org/10.1016/S0031‐0182(00)00119‐X
    [Google Scholar]
  81. Stewart, S. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. Special Publication‐Geological Society of London, 272, 361–396. https://doi.org/10.1144/GSL.SP.2007.272.01.19
    [Google Scholar]
  82. Stewart, S., Ruffell, A., & Harvey, M. (1997). Relationship between basement‐linked and gravity‐driven fault systems in the UKCS salt basins. Marine and Petroleum Geology, 14(5), 581–604. https://doi.org/10.1016/S0264‐8172(97)00008‐1
    [Google Scholar]
  83. Trusheim, F. (1960). Mechanism of salt migration in northern Germany. AAPG Bulletin, 44(9), 1519–1540.
    [Google Scholar]
  84. Tsikalas, F., Blaich, O. A., Faleide, J. I., & Olaussen, S. (2021). Stappen High‐Bjørnøya tectono‐sedimentary element, Barents Sea. In S. S.Drachev, H.Brekke, E.Henriksen, & T.Moore (Eds.), Sedimentary successions of the Arctic Region and their hydrocarbon prospectivity. Geological Society, London, Memoirs (Vol. 57). https://doi.org/10.1144/M57‐2016‐24
    [Google Scholar]
  85. Tsikalas, F., Faleide, J. I., Eldholm, O., & Blaich, O. A. (2012). The NE Atlantic conjugate margins. In D. G.Roberts & A. W.Bally (Eds.), Regional geology and tectonics: Phanerozoic passive margins, Cratonic Basins and Global Tectonic Maps (pp. 141–200). Elsevier.
    [Google Scholar]
  86. Warren, J. K. (2016). Evaporites: A geological compendium. Springer.
    [Google Scholar]
  87. Withjack, M. O., & Callaway, S. (2000). Active normal faulting beneath a salt layer: An experimental study of deformation patterns in the cover sequence. AAPG Bulletin, 84(5), 627–651.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12602
Loading
/content/journals/10.1111/bre.12602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error