1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

We look at structural variation along the flanks of a rift basin to show how this controls the sediment input and in turn the syn‐rift facies found in the depocentre. The presence of a pre‐rift salt layer can be shown to enhance intra‐slope accommodation space which limits sediment input into deeper basin along with controlling the topographic evolution of rift flanks.

, Abstract

Pre‐rift salt controls structural style variability within rifts by decoupling sub‐ and supra‐salt faults. However, the way in which this variability controls sediment erosion and dispersal, and facies distributions within the coeval syn‐rift stratigraphic succession, remains poorly known. We here use 3D seismic reflection and borehole data to study the tectono‐stratigraphic development of the Halten Terrace, offshore Mid‐Norway, a salt‐influenced rifted margin formed during Middle to Late Jurassic extension. On the eastern basin margin, the rift structural style passes southwards from an unbreached extensional growth fold dissected by numerous horst and graben (Bremstein Fault Complex [BFC]), into a single, through‐going normal fault (Vingleia Fault Complex [VFC]). This southwards change in structural style is likely related to the pinch‐out of or a change in the dominant lithology (and thus rheology) within a pre‐rift (Triassic) evaporite layer, which was thick and/or mobile enough in the north to decouple basement‐ and cover‐involved faulting, and to permit extensional forced folding. As a result, the salt‐influenced BFC underwent limited footwall uplift, with minor erosion of relatively small horsts supplying only limited volumes of sediment to the main downdip depocentre. In contrast, the VFC, which was directly coupled to basement, experienced significant uplift and extensive footwall erosion. The footwall of this structure also locally underwent salt‐detached gravity gliding and collapse as the pre‐rift detachment was tilted. Our results show that where through‐going normal faults develop along the rift flanks, the presence of a pre‐rift salt layer will suppress the topographic expression of the footwall. The pre‐rift salt layer may however facilitate footwall collapse and limit the volume of sediment supplied to downdip basins. Our results also show that variable topography along the rift flanks facilitated the development of relatively small, localised, intra‐rift flank accommodation that trapped flank‐derived sediment, and which meant basins nearer the rift axis were starved of sediment.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12603
2021-11-11
2021-12-04
Loading full text...

Full text loading...

References

  1. Bell, R. E., Jackson, C., Elliott, G. M., Gawthorpe, R. L., Sharp, I. R., & Michelsen, L. (2014). Insight into the development of major rift‐related unconformities from geologically constrained subsidence modelling: Halten Terrace, offshore Mid Norway. Basin Research, 26, 203–224.
    [Google Scholar]
  2. Bilal, A., McClay, K. R., & Scarselli, N. (2018). Fault‐scarp degradation in the central Exmouth Plateau, North West Shelf, Australia. In K. R.McClay & J. A.Hammerstein (Eds.), Passive margins: Tectonics, sedimentation and magmatism (Vol. 476, pp. 231–257). Geological Society, London, Special Publications.
    [Google Scholar]
  3. Blystad, P., Brekke, H., Faerseth, R. B., Larsen, B. T., Skogseid, J., & Torudbakken, B. (1995). Structural elements of the Norwegian continental shelf: Part II the Norwegian Sea region. NPD Bulletin, 8, 45.
    [Google Scholar]
  4. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. Geological Society, London, Special Publications, 167, 327–378. https://doi.org/10.1144/GSL.SP.2000.167.01.13
    [Google Scholar]
  5. Bukovics, C., Cartier, E. G., Shaw, N. D., & Ziegler, P. A. (1984). Structure and development of the mid‐Norway continental margin. In A. M.Spencer (Ed.), Petroleum geology of the North European margin (pp. 407–423). Graham & Trotman.
    [Google Scholar]
  6. Bunkholt, H. S. S., Oftedal, B. T., Hansen, J. A., Løseth, H., & Kløvjan, O. S. (2021). Halten‐Dønna Terraces & Trøndelag platform composite tectono‐sedimentary element, offshore mid‐Norway. In S. S.Drachev, H.Brekke, E.Henriksen, & T.Moore (Eds.), Sedimentary successions of the Arctic Region and their hydrocarbon prospectivity (p. 57). Geological Society.
    [Google Scholar]
  7. Chiarella, D., Longhitano, S. G., Mosdell, W., & Telesca, D. (2020). Sedimentology and facies analysis of ancient sand ridges: Jurassic Rogn Formation, Trøndelag Platform, offshore Norway. Marine and Petroleum Geology, 112, 104082. https://doi.org/10.1016/j.marpetgeo.2019.104082.
    [Google Scholar]
  8. Clark, J. A., Stewart, S. A., & Cartwright, J. (1998). Evolution of the NW Margin of the North Permian Basin, UK North Sea. Journal of the Geological Society, 155, 663–676. https://doi.org/10.1144/gsjgs.155.4.0663
    [Google Scholar]
  9. Coleman, A. J., Duffy, O. B., & Jackson, C. A. L. (2019). Growth folds above propagating normal faults. Earth‐Science Reviews, 196, 102885. https://doi.org/10.1016/j.earscirev.2019.102885
    [Google Scholar]
  10. Corfield, S., & Sharp, I. R. (2000). Structural style and stratigraphic architecture of fault propagation folding in extensional settings: A seismic example from the Smørbukk, Halten Terrace, Mid Norway. Basin Research, 12, 329–341.
    [Google Scholar]
  11. Corfield, S., Sharp, I., Häger, K.‐O., Dreyer, T., Underhill, J., Ole, J. M., & Tom, D. (2001). An integrated study of the Garn and Melke formations (middle to upper jurassic) of the Smorbukk Area, Halten Terrace, Mid‐Norway. In O. J.Martinsen & T.Dreyer (Eds.), Norwegian Petroleum Society Special Publications (Vol. 10, pp. 199–210). Elsevier.
    [Google Scholar]
  12. Dalland, A., Worsley, D., & Ofstad, K. (1988). A lithostratigraphic scheme for the mesozoic and cenozoic succession mid ‐ and Northern Norway, Norwegian Petroleum Directorate. NPD Bulletin, 4, 65.
    [Google Scholar]
  13. Densmore, A. L., Dawers, N. H., Gupta, S., Allen, P. A., & Gilpin, R. (2003). Landscape evolution at extensional relay zones. Journal of Geophysical Research, 108, 2273. https://doi.org/10.1029/2001JB001741
    [Google Scholar]
  14. Densmore, A. L., Dawers, N. H., Gupta, S., Guidon, R., & Goldin, T. (2004). Footwall topographic development during continental extension. Journal of Geophysical Research, 109, F03001. https://doi.org/10.1029/2003JF000115
    [Google Scholar]
  15. Dooley, T., McClay, K. R., & Pascoe, R. (2003). 3D analogue models of variable displacement extensional faults: Applications to the Revfallet fault system, offshore mid‐Norway. In D. A.Nieuwland (Ed.), New insights into structural interpretation and modelling (Vol. 212, pp. 151–167). Geological Society, London, Special Publications.
    [Google Scholar]
  16. Dore, A. G., Lundin, E. R., Birkeland, O., Eliassen, P. E., & Jensen, L. N. (1997). The NE Atlantic margin; implications of late mesozoic and cenozoic events for hydrocarbon prospectivity. Petroleum Geoscience, 3, 117–131. https://doi.org/10.1144/petgeo.3.2.117
    [Google Scholar]
  17. Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, O., Eliassen, P. E., & Fichler, C. (1999). Principal tectonic events in the evolution of the northwest European Atlantic margin. In A. J.Fleet & S. A. R.Boldy (Eds.), Petroleum geology of Northwest Europe: Proceedings of the 5th conference (pp. 41–61). Geological Society.
    [Google Scholar]
  18. Duffy, O. B., Gawthorpe, R. L., Docherty, M., & Brocklehurst, S. H. (2013). Mobile evaporite controls on the structural style and evolution of rift basins: Danish Central Graben, North Sea. Basin Research, 25(3), 310–330.
    [Google Scholar]
  19. Eliet, P. P., & Gawthorpe, R. L. (1995). Drainage development and sediment supply within rifts, examples from the Sperchios Basin, Central Greece. Journal of the Geological Society, 152, 883–893. https://doi.org/10.1144/gsjgs.152.5.0883
    [Google Scholar]
  20. Elliott, G. M., Wilson, P., Jackson, C. A. L., Gawthorpe, R. L., Michelsen, L., & Sharp, I. R. (2012). The linkage between fault throw and footwall scarp erosion patterns: An example from the Bremstein Fault Complex, offshore mid‐Norway. Basin Research, 24, 180–197. https://doi.org/10.1111/j.1365‐2117.2011.00524.x
    [Google Scholar]
  21. Elliott, G. M., Wilson, P., Jackson, C. A. L., Gawthorpe, R. L., Michelsen, L., & Sharp, I. R. (2017). Late syn‐rift evolution of the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway; a test of rift basin tectono‐stratigraphic models. Basin Research, 29(Suppl. 1), 465–487. https://doi.org/10.1111/bre.12158
    [Google Scholar]
  22. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  23. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  24. Gawthorpe, R. L., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, 150, 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  25. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  26. Gjellberg, J., Dreyer, T., Hoie, A., Tjelland, T., & Lilleng, T. (1987). Late Triassic to mid‐ Jurassic Sandbody development on the Barents and mid‐Norwegian shelf. In J.Brooks & K. W.Glennie (Eds.), Petroleum geology of North West Europe (pp. 1105–1129). Graham & Trotman.
    [Google Scholar]
  27. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598.
    [Google Scholar]
  28. Harvey, M. J., & Stewart, S. A. (1998). Influence of salt on the structural evolution of the Channel Basin. In J. R.Underhill (Ed.), Development, evolution and petroleum geology of the Wessex basin (Vol. 133, pp. 241–266). Geological Society Special Publication.
    [Google Scholar]
  29. Hesthammer, J., & Fossen, H. (1999). Evolution and geometries of gravitational collapse structures with examples from the Statfjord Field, northern North Sea. Marine and Petroleum Geology, 16, 259–281. https://doi.org/10.1016/S0264‐8172(98)00071‐3
    [Google Scholar]
  30. Jackson, C.‐A.‐L., Elliott, G. M., Royce‐Rogers, E., Gawthorpe, R. L., & Aas, T. E. (2019). Salt thickness and composition influence rift structural style, northern North Sea, offshore Norway. Basin Research, 31(3), 514–538. https://doi.org/10.1111/bre.12332
    [Google Scholar]
  31. Jackson, C.‐ A.‐L., & Lewis, M. M. (2014). Structural style and evolution of a salt‐influenced rift basin margin; the impact of variations in salt composition and the role of polyphase extension. Basin Research, 26, 81–102. https://doi.org/10.1111/bre.12099
    [Google Scholar]
  32. Jacobsen, V. W., & van Veen, P. (1984). The Triassic offshore Norway North of 62n. In A. M.Spencer (Ed.), Petroleum geology of the North European margin (pp. 317–327). Graham & Trotman.
    [Google Scholar]
  33. Jones, G. E. D., Welbon, A. I. F., Mohammadlou, H., Sakharov, A., Ford, J., Needham, T., & Ottesen, C. (2021). Complex stratigraphic fill of a small, confined syn‐rift basins: An upper Jurassic example from offshore Mid‐Norway. In D.Chiarella, S. G.Archer, J. A.Howell, C.‐ A.‐L.Jackson, H.Kombrink, & S.Patruno (Eds.), Cross‐border themes in petroleum geology II: Atlantic margin and Barents Sea. Geological Society Special Publication. https://doi.org/10.1144/SP495‐2019‐143
    [Google Scholar]
  34. Kane, K. E., Jackson, C.‐A.‐L., & Larsen, E. (2010). Normal fault growth and fault‐related folding in a salt‐influenced rift basin: South Viking Graben, offshore Norway. Journal of Structural Geology, 32, 490–506. https://doi.org/10.1016/j.jsg.2010.02.005
    [Google Scholar]
  35. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the Western United States and Central Greece. Basin Research, 5, 79–102. https://doi.org/10.1111/j.1365‐2117.1993.tb00059.x
    [Google Scholar]
  36. Løseth, H., Wensaas, L., & Gading, M. (2011). Deformation structures in organic‐rich shales. AAPG Bulletin, 95, 729–747.
    [Google Scholar]
  37. Marsh, N., Imber, J., Holdsworth, R. E., Brockbank, P., & Ringrose, P. (2010). The structural evolution of the Halten Terrace, Offshore Mid‐Norway: Extensional fault growth and strain localisation in a multi‐layer brittle & ductile system. Basin Research, 22, 195–214. https://doi.org/10.1111/j.1365‐2117.2009.00404.x
    [Google Scholar]
  38. Martinius, A. W., Kaas, I., Nss, A., Helgesen, G., Kjrefjord, J. M., Leith, D. A., Ole, J. M., & Tom, D. (2001). Sedimentology of the heterolithic and tide‐dominated Tilje formation (Early Jurassic, Halten Terrace, Offshore Mid‐Norway). In O. J.Martinsen & T.Dreyer (Eds.), Norwegian petroleum society special publications (Vol. 10, pp. 103–144). Elsevier.
    [Google Scholar]
  39. Martinius, A. W., Ringrose, P. S., Brostrom, C., Elfenbein, C., Naess, A., & Ringas, J. E. (2005). Reservoir challenges of heterolithic tidal sandstone reservoirs in the Halten Terrace, Mid‐Norway. Petroleum Geoscience, 11, 3–16. https://doi.org/10.1144/1354‐079304‐629
    [Google Scholar]
  40. McLeod, A. E., & Underhill, J. R. (1999). Processes and products of footwall degradation, Northern Brent Field, Northern North Sea. In A. J.Fleet & S. A. R.Boldy (Eds.), Petroleum geology of Northwest Europe: Proceedings of the 5th conference (pp. 91–106). Geological Society, London.
    [Google Scholar]
  41. Messina, C., Nemec, W., Martinius, A. W., & Elfenbein, C. (2014). The Garn formation (Bajocian‐Bathonian) in the Kristin Field, Halten Terrace: Its origin, facies architecture and primary heterogeneity model. In A. W.Martinius, R.Ravnås, J. A.Howell, & J. P.Wonham (Eds.), From depositional systems to sedimentary successions on the Norwegian continental margin (pp. 513–550). International Association of Sedimentologists/John Wiley & Sons, Ltd.
    [Google Scholar]
  42. Pascoe, R., Hooper, P. R., Storhaug, K., & Harper, H. (1999). Evolution of extensional styles at the Southern termination of the Nordland Ridge, Mid‐Norway: A response to variations in coupling above Triassic salt. In J. A.Fleet & S. A. R.Boldy (Eds.), Petroleum geology of Northwest Europe: Proceedings of the 5th conference (pp. 83–90). Geological Society of London.
    [Google Scholar]
  43. Penge, J., Taylor, B., Huckerby, J. A., & Munns, J. W. (1993). Extension and salt tectonics in the East Central Graben. In J. R.Parker (Ed.), Petroleum geology of Northwest Europe: Proceedings of the 4th conference (pp. 1197–1209). Geological Society of London, London.
    [Google Scholar]
  44. Peron‐Pinvidic, G., & Osmundsen, P. T. (2018). The Mid Norwegian ‐ NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup. Marine and Petroleum Geology, 98, 162–184. https://doi.org/10.1016/j.marpetgeo.2018.08.011
    [Google Scholar]
  45. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. In G. D.Williams & A.Dobb (Eds.), Tectonics and seismic sequence stratigraphy (Vol. 71, pp. 35–66). Geological Society, London, Special Publications.
    [Google Scholar]
  46. Provan, D. (1992). Draugen oil field, Haltenbanken Province, Offshore Norway. In M. T.Halbouty (Ed.), Giant oil and gas fields of the last decade 1978‐1988 (AAPG Memoir 54, pp. 371–382). AAPG, Tulsa.
    [Google Scholar]
  47. Ravnås, R., Nøttvedt, A., Steel, R. J., & Windelstad, J. (2000). Syn‐rift sedimentary architectures in the Northern North Sea. In A.Nottvedt (Ed.), Dynamics of the Norwegian Margin (Vol. 167, pp. 133–177). Geological Society, London, Special Publications.
    [Google Scholar]
  48. Richardson, N. J., Underhill, J. R., & Lewis, G. (2005). The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid‐Norway. Basin Research, 17, 203–223. https://doi.org/10.1111/j.1365‐2117.2005.00250.x
    [Google Scholar]
  49. Roberts, A. M., Kusznir, N. J., Yielding, G., & Beeley, H. (2019). Mapping the bathymetric evolution of the Northern North Sea: From Jurassic synrift archipelago through Cretaceous‐Tertiary post‐rift subsidence. Petroleum Geoscience, 25, 306–321. https://doi.org/10.1144/petgeo2018‐066
    [Google Scholar]
  50. Roberts, A. M., & Yielding, G. (1991). Deformation around basin‐margin faults in the North Sea/mid‐Norway rift. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The geometry of normal faults (Vol. 56, pp. 61–78). Geological Society Special Publication, London.
    [Google Scholar]
  51. Roberts, D. G., Thompson, M., Mitchener, B., Hossack, J., Carmichael, S., & Bjornseth, H. M. (1999). Palaeozoic to tertiary rift and basin dynamics: Mid‐Norway to the Bay of Biscay ‐ A new context for hydrocarbon prospectivity in the deep water frontier. In J. A.Fleet & S. A. R.Boldy (Eds.), Petroleum geology of Northwest Europe (pp. 7–40). Geological Society of London.
    [Google Scholar]
  52. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26, 154–182. https://doi.org/10.1111/bre.12043
    [Google Scholar]
  53. Sandwell, D. T., & Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102, 10039–10054. https://doi.org/10.1029/96JB03223
    [Google Scholar]
  54. Slagstad, T., Davidsen, B., & Daly, J. S. (2011). Age and composition of crystalline basement rocks on the Norwegian continental margin: Offshore extension and continuity of the Caledonian‐Appalachian orogenic belt. Journal of the Geological Society, 168, 1167–1185. https://doi.org/10.1144/0016‐76492010‐136
    [Google Scholar]
  55. Stewart, S. A., Harvey, M. J., Otto, S. C., & Weston, P. J. (1996). Influence of salt on fault geometry; example from the UK salt basins. In G. I.Alsop, D. J.Blundell, & I.Davison (Eds.), Salt tectonics (Vol. 100, pp. 175–202). Geological Society Special Publication.
    [Google Scholar]
  56. Stewart, S. A., Ruffell, A. H., & Harvey, M. J. (1997). Relationship between basement‐linked and gravity‐driven fault systems in the UKCS salt basins. Marine and Petroleum Geology, 14, 581–604. https://doi.org/10.1016/S0264‐8172(97)00008‐1
    [Google Scholar]
  57. Swiecicki, T., Gibbs, P. B., Farrow, G. E., & Coward, M. P. (1998). A tectonostratigraphic framework for the Mid‐Norway region. Marine and Petroleum Geology, 15, 245–276. https://doi.org/10.1016/S0264‐8172(97)00029‐9
    [Google Scholar]
  58. Tavani, S., Balsamo, F., & Granado, P. (2018). Petroleum system in supra‐salt strata of extensional forced‐folds: A case‐study from the Basque‐Cantabrian basin (Spain). Marine and Petroleum Geology, 96, 315–330. https://doi.org/10.1016/j.marpetgeo.2018.06.008
    [Google Scholar]
  59. Tavani, S., & Granado, P. (2015). Along‐strike evolution of folding, stretching and breaching of supra‐salt strata in the Plataforma Burgalesa extensional forced fold system (northern Spain). Basin Research, 27(4), 573–585. https://doi.org/10.1111/bre.12089
    [Google Scholar]
  60. Underhill, J. R., Sawyer, M. J., Hodgson, P., Shallcross, M. D., & Gawthorpe, R. L. (1997). Implications of fault scarp degradation for Brent group prospectivity, Ninian Field, Northern North Sea. AAPG Bulletin, 81, 999–1022.
    [Google Scholar]
  61. Van Der Zwan, C. J. (1990). Palynostratigraphy and palynofacies reconstruction of the upper Jurassic to lowermost cretaceous of the Draugen Field, Offshore Mid Norway. Review of Palaeobotany and Palynology, 62, 157–186. https://doi.org/10.1016/0034‐6667(90)90021‐A
    [Google Scholar]
  62. Welbon, A. I. F., Brockbank, P. J., Brunsden, D., & Olsen, T. S. (2007). Characterizing and producing from reservoirs in landslides: Challenges and opportunities. In S. J.Jolley, D.Barr, J. J.Walsh, & R. J.Knipe (Eds.), Structurally complex reservoirs (Vol. 292, pp. 49–74). Geological Society Special Publication, London.
    [Google Scholar]
  63. Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C. A. L., Michelsen, L. M., & Sharp, I. R. (2013). Structure and growth of an evaporite‐detached normal fault array: The Southern Bremstein Fault Complex, offshore Mid‐Norway. Journal of Structural Geology, 51, 74–91.
    [Google Scholar]
  64. Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C.‐A.‐L., & Sharp, I. R. (2015). Lateral variation in structural style along an evaporite‐influenced rift fault system in the Halten Terrace, Norway: The influence of basement structure and evaporite facies. Journal of Structural Geology, 79, 10–123.
    [Google Scholar]
  65. Withjack, M. O., Meisling, K., & Russell, L. (1989). Forced folding and basement‐detached normal faulting in the Haltenbanken Area, Offshore Norway. In A.Tankard & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic Margins (AAPG Memoir 46, pp. 567–575). AAPG.
    [Google Scholar]
  66. Withjack, M. O., Olson, J., & Peterson, E. (1990). Experimental models of extensional forced folds. AAPG Bulletin, 74, 1038–1054.
    [Google Scholar]
  67. Withjack, M. O., Schlische, R. W., & Olsen, P. O. (2002). Rift basin structure and its influence on sedimentary systems. In R. W.Renaut & G. M.Ashley (Eds.), Sedimentation in continental rifts (Vol. 73, pp. 57–81). SEPM Special Publication.
    [Google Scholar]
  68. Yielding, G. (1990). Footwall uplift associated with Late Jurassic normal faulting in the northern North Sea. Journal of the Geological Society, 147, 219–222. https://doi.org/10.1144/gsjgs.147.2.0219
    [Google Scholar]
  69. Zastrozhnov, D., Gernigon, L., Gogin, I., Planke, S., Abdelmalak, M. M., Polteau, S., Faleide, J. I., Manton, B., & Myklebust, R. (2020). Regional structure and polyphased Cretaceous‐Paleocene rift and basin development of the mid‐Norwegian volcanic passive margin. Marine and Petroleum Geology, 115, 104269. https://doi.org/10.1016/j.marpetgeo.2020.104269
    [Google Scholar]
  70. Zhong, X., & Escalona, A. (2020). Evidence of rift segmentation and controls of Middle to Late Jurassic synrift deposition in the Ryggsteinen ridge area, northern North Sea. AAPG Bulletin, 104(7), 1531–1565. https://doi.org/10.1306/03172018173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12603
Loading
/content/journals/10.1111/bre.12603
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basin analysis , rift basin , salt‐influenced rift , sedimentology , structure and tectono‐stratigraphy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error