1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Distal slope and basin depositional systems in deep waters of the Pará‐Maranhão Basin, Equatorial Brazil, are investigated using a high‐resolution 3D seismic volume, borehole data and multispectral satellite imagery. A Neogene calciclastic submarine fan and a series of channel‐levee systems are analysed at water depths of 100–3,500 m. Channel‐levee systems have sinuous and straight morphologies and are of different sizes. Their origin is related to turbidity flows sourced and funnelled from the carbonate shelf to submarine canyons and gullies, as well as from areas with marked slope instability. A mixed calciclastic‐siliciclastic sediment input is recognised with autochthonous calcarenites and calcilutites comprising the bulk of sediment on the mid and outer continental shelf. Minor amounts of siliciclastic sediment sourced from small rivers occur on the inner shelf. Sedimentation processes of a distally steepened carbonate ramp are discussed considering a general depositional setting dominated by fluctuations in relative sea‐level. Cross‐sectional and planar parameters of mixed calciclastic‐siliciclastic channel‐levee systems are compared to their siliciclastic counterparts. Morphological results show similarities between calciclastic and siliciclastic channel‐levee systems. As a corollary, three types of channel‐levee systems are described: (a) channels related to calciclastic submarine fans, (b) low‐sinuosity, aggradational channels, and (c) high‐sinuosity channels.

,

Channel‐levee systems are found in deep and ultra‐deep waters of Equatorial Brazil with a mixed calciclastic‐siliciclastic depositional system.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12604
2021-11-11
2021-11-27
Loading full text...

Full text loading...

References

  1. Aguilera, O., Oliveira de Araújo, O. M., Hendy, A., Nogueira, A. A. E., Nogueira, A. C. R., Maurity, C. W., Kutter, V. T., Martins, M. V. A., Coletti, G., Dias, B. B., da Silva‐Caminha, S. A. F., Jaramillo, C., Bencomo, K., & Lopes, R. T. (2020). Palaeontological framework from Pirabas Formation (North Brazil) used as potential model for equatorial carbonate platform. Marine Micropaleontology, 154, 101813.
    [Google Scholar]
  2. Almeida, N. M. D., Alves, T. M., Filho, F. N., Souza, A. C. B., Oliveira, K. M. L., & Barbosa, T. H. S. (2020). A three‐dimensional (3D) structural model for an oil‐producing basin of the Brazilian Equatorial margin. Marine and Petroleum Geology, 122, 104599.
    [Google Scholar]
  3. Almeida, N. M., Alves, T. M., Filho, F. N., Freire, G. S. S., de Souza, A. C. B., Normando, M. N., Oliveira, K. M. L., & da Silva Barbosa, T. H. (2020). Tectono‐sedimentary evolution and petroleum systems of the Mundaú subbasin: A new deep‐water exploration frontier in equatorial Brazil. AAPG Bulletin, 104, 795–824.
    [Google Scholar]
  4. Alves, T. M., & Abreu Cunha, T. (2018). A phase of transient subsidence, sediment bypass and deposition of regressive–transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters, 484, 168–183.
    [Google Scholar]
  5. Alves, T., Fetter, M., Busby, C., Gontijo, R., Cunha, T. A., & Mattos, N. H. (2020). A tectono‐stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems. Marine and Petroleum Geology, 117, 104341.
    [Google Scholar]
  6. Andresen, N., Reijmer, J. J. G., & Droxler, A. W. (2003). Timing and distribution of calciturbidites around a deeply submerged carbonate platform in a seismically active setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea). International Journal of Earth Sciences, 92, 573–592. https://doi.org/10.1007/s00531‐003‐0340‐0
    [Google Scholar]
  7. Aquino da Silva, A. G., Amaro, V. E., Stattegger, K., Schwarzer, K., Vital, H., & Heise, B. (2015). Spectral calibration of CBERS 2B multispectral satellite images to assess suspended sediment concentration. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 53–62. https://doi.org/10.1016/j.isprsjprs.2015.02.011
    [Google Scholar]
  8. Back, S., & Reuning, L. (2015). Channels in carbonate environments: 3‐D‐seismic characteristics extracted from the sedimentary record. AAPG Annual Convention and Exhibition.
    [Google Scholar]
  9. Baker, E., Gaill, F., Karageorgis, A., Lamarche, G., Narayanaswamy, B., Parr, J., Raharimananirina, C., Santos, R., Sharma, R., & Tuhumwire, J. (2016). Offshore mining industries. In U.Nations (Ed.), The first global integrated marine assessment; World ocean assessment I. New York, NY, USA.
    [Google Scholar]
  10. Betzler, C., Lindhorst, S., Eberli, G. P., Lüdmann, T., Möbius, J., Ludwig, J., Schutter, I., Wunsch, M., Reijmer, J. J. G., & Hübscher, C. (2014). Periplatform drift: The combined result of contour current and off‐bank transport along carbonate platforms. Geology, 42, 871–874. https://doi.org/10.1130/G35900.1
    [Google Scholar]
  11. Betzler, C., Reijmer, J. J. G., Bernetà, K., Eberlià, G. P., & Anselmetti, F. S. (1999). Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene±Lower Pliocene, Great Bahama Bank). Sedimentology, 46, 1127–1143.
    [Google Scholar]
  12. Bornhold, B. D., & Pilkey, O. H. (1971). Bioclastic turbidite sedimentation in Columbus Basin, Bahamas. Bulletin of the Geological Society of America, 82, 1341–1354. https://doi.org/10.1130/0016‐7606(1971)82[1341:BTSICB]2.0.CO;2
    [Google Scholar]
  13. Braga, J. C., Martin, J. M., & Wood, J. L. (2001). Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed siliciclastic‐carbonate platform deposits (Vera Basin, Almerõ Âa, southern Spain).
  14. Brandão, J., & Feijó, F. J. (1994). Bacia do Pará‐Maranhão. Boletim De Geociências Da Petrobrás, 8, 101–102.
    [Google Scholar]
  15. Catuneanu, O. (2006). Principles of sequence stratigraphy. Elsevier.
    [Google Scholar]
  16. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2017). Types of mixing and heterogeneities in siliciclastic‐carbonate sediments. Marine and Petroleum Geology, 88, 617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010
    [Google Scholar]
  17. Clare, M. A., Vardy, M. E., Cartigny, M. J. B., Talling, P. J., Himsworth, M. D., Dix, J. K., Harris, J. M., Whitehouse, R. J. S., & Belal, M. (2017). Direct monitoring of active geohazards: Emerging geophysical tools for deep‐water assessments. Near Surface Geophysics, 15, 427–444. https://doi.org/10.3997/1873‐0604.2017033
    [Google Scholar]
  18. Coniglio, M., & Dix, G. R. (1992). Carbonate slopes. In R. G.Walker & N. P.James (Eds.), Facies models‐response to sea‐level change. Geological Association of Canada, St. John’s Newfoundland.
    [Google Scholar]
  19. Counts, J. W., Jorry, S. J., Vazquez Riveiros, N., Jouet, G., Giraudeau, J., Cheron, S., Boissier, A., & Miramontes, E. (2019). A Late Quaternary record of highstand shedding from an isolated carbonate platform (Juan de Nova, southern Indian Ocean). The Depositional Record, 5, 540–557. https://doi.org/10.1002/dep2.57
    [Google Scholar]
  20. Crevello, P. D., & Schlager, W. (1980). Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. Journal of Sedimentary Petrology, 50, 1121–1148.
    [Google Scholar]
  21. Cross, T. A., & Lessenger, M. A. (1988). Seismic stratigraphy. Annual Review of Earth and Planetary Sciences, 16, 319–354.
    [Google Scholar]
  22. Da Silva, B., & Ribeiro, H. J. P. S. (2018). Exploratory plays of Pará‐Maranhão and Barreirinhas basins in deep and ultra‐deep waters, Brazilian Equatorial Margin. Brazilian Journal of Geology, 48, 485–502.
    [Google Scholar]
  23. Da Silva, C. P. (2007). Estudo Sobre Foraminíferos e Radiolários do Cretáceo, Bacia Pará‐Maranhão, Margem Equatorial Brasileira. Universidade Federal do Rio Grande do Sul.
    [Google Scholar]
  24. de Morais, J. O., Ximenes Neto, A. R., Pessoa, P. R. S., & de Souza Pinheiro, L. (2019). Morphological and sedimentary patterns of a semi‐arid shelf, Northeast Brazil. Geo‐Marine Letters, 40, 1–8.
    [Google Scholar]
  25. De Souza, V. (2006). Radiolários Do Cretáceo Médio Das Bacias Do Pará‐Maranhão E Barreirinhas, Margem Equatorial Brasileira Vladimir. Universidade Federal do Rio Grande do Sul.
    [Google Scholar]
  26. Dias, F. J. S., Castro, B. M., & Lacerda, L. D. (2013). Continental shelf water masses off the Jaguaribe River (4S), northeastern Brazil. Continental Shelf Research, 66, 123–135.
    [Google Scholar]
  27. Ditty, P. S., Harmon, C. J., Pilkey, O. H., Ball, M. M., & Richardson, E. S. (1977). Mixed terrigenous‐Carbonate sedimentation in the Hispaniola‐Caicos turbidite basin. Marine Geology, 24, 1–20.
    [Google Scholar]
  28. Droxler, A. W., & Schlager, W. (1985). Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13, 799–802.
    [Google Scholar]
  29. Dunlap, D., Janson, X., Sanchez Phelps, C., & Covault, J. (2018). Carbonate channel‐levee systems influenced by mass‐transport complexes, Browse Basin, Western Australia (p. 2018). AAPG ACE.
    [Google Scholar]
  30. Eberli, G. P., Anselmetti, F. S., Betzler, C., Van Konijnenburg, J. H., & Bernoulli, D. (2005). Carbonate platform to basin transitions on seismic data and in outcrops: Great Bahama Bank and the Maiella Platform margin, Italy. AAPG Memoir, 207–250.
  31. Eberli, G. P., Swart, P. K., McNeill, D. F., Kenter, J. A. M., Anselmetti, F. S., Melim, L. A., & Ginsburg, R. N. (1997). A synopsis of the Bahamas Drilling Project: results from two deep core borings drilled on the Great Bahama Bank. In J. A.Marin (Ed.), Proceedings of the Ocean Drilling Program, Initial Reports (pp. 23–41). Ocean Drilling Program, Texas A&M University.
    [Google Scholar]
  32. Fabianovicz, R. (2013). Pará‐Maranhão Basin. Brasil 11th Round ‐ Oil & Gas Bidding Rounds. National Agency of Petroleum, Natural Gas and Biofuels, Rio de Janeiro.
    [Google Scholar]
  33. Figueiredo, J. D. J. P. D., Zalán, P. V., & Soares, E. F. (2007). Bacia da Foz do Amazonas. Boletim De Geociencias ‐ Petrobras, 15, 299–309.
  34. Francis, J. M., Daniell, J. J., Droxler, A. W., Dickens, G. R., Bentley, S. J., Peterson, L. C., Opdyke, B. N., & Beaufort, L. (2008). Deep water geomorphology of the mixed siliciclastic‐carbonate system, Gulf of Papua. Journal of Geophysical Research: Earth Surface, 113, 1–22. https://doi.org/10.1029/2007JF000851
    [Google Scholar]
  35. Gallagher, S. J., Smith, A. J., Jonasson, K., Wallace, M. W., Holdgate, G. R., Daniels, J., & Taylor, D. (2001). The miocene palaeoenvironmental and palaeoceanographic evolution of the gippsland basin, southeast australia: A record of southern ocean change. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 53–80. https://doi.org/10.1016/S0031‐0182(01)00271‐1
    [Google Scholar]
  36. Gee, M. J. R., Gawthorpe, R. L., Bakke, K., & Friedmann, S. J. (2007). Seismic geomorphology and evolution of submarine channels from the Angolan continental margin. Journal of Sedimentary Research, 77, 433–446. https://doi.org/10.2110/jsr.2007.042
    [Google Scholar]
  37. Glaser, K. S., & Droxler, A. W. (1993). Controls and development of late Quaternary periplatform carbonate stratigraphy in Walton Basin (northeastern Nicaragua Rise, Caribbean Sea). Paleoceanography, 8, 243–274. https://doi.org/10.1029/92PA02876
    [Google Scholar]
  38. Gradstein, F. M., Ogg, J. G., & Smith, A. G. (2005). A geologic time scale 2004. Cambridge University Press.
    [Google Scholar]
  39. Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C., Kutser, T., Phinn, S., Mumby, P. J., Barrilero, O., Laporte, J., & Koetz, B. (2018). Coral reef applications of Sentinel‐2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sensing of Environment, 216, 598–614. https://doi.org/10.1016/j.rse.2018.07.014
    [Google Scholar]
  40. Held, A. (2011). Apport de la paléohydrologie dans la quantification des rôles respectifs du climat et de la tectonique des systèmes fluviatiles méandriformes fossiles: application à des systèmes oligo‐miocènes d ’ Europe occidentale To cite this version: HAL Id: paste. http://www.theses.fr. Paris, ENMP
  41. Henry, S., Kumar, N., Danforth, A., Nuttall, P., & Venkatraman, S. (2011). Ghana‐Sierra Leone lookalike plays in northern Brazil. GeoExPro, 8, 36–41.
    [Google Scholar]
  42. James, N. P., & Mountjoy, E. W. (1983). Shelf‐slope break in fossil carbonate platforms: An overview. In D. J.Stanley & G. T.Moore (Eds.), The shelfbreak: Critical interface on continental margins (pp. 189–206). SEPM Special Publication, 33. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  43. Janson, X., Dunlap, D., Zeng, L., Sanchez Phelps, C., & Covault, J. (2018). Carbonate Shelf to Basin Architecture and Slope Seismic Geomorphology, Lower Miocene, Browse Basin, Northwest Shelf of Australia (p. 2018). AAPG ACE.
    [Google Scholar]
  44. Jorry, S. J., Droxler, A. W., Mallarino, G., Dickens, G. R., Bentley, S. J., Beaufort, L., Peterson, L. C., & Opdyke, B. N. (2008). Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale. Journal of Geophysical Research: Earth Surface, 113, 1–15. https://doi.org/10.1029/2006JF000649
    [Google Scholar]
  45. Jorry, S. J., Jouet, G., Edinger, E. N., Toucanne, S., Counts, J. W., Miramontes, E., Courgeon, S., Riveiros, N. V., Le Roy, P., & Camoin, G. F. (2020). From platform top to adjacent deep sea: New source‐to‐sink insights into carbonate sediment production and transfer in the SW Indian Ocean (Glorieuses archipelago). Marine Geology, 423, 106144. https://doi.org/10.1016/j.margeo.2020.106144
    [Google Scholar]
  46. Kang, H., Meng, J., Cheng, T., Jia, H., Bai, B., & Li, M. (2018). Characteristics of deep water depositional system in Campos basin, Brazil. Petroleum Exploration and Development, 45, 99–110. https://doi.org/10.1016/S1876‐3804(18)30009‐0
    [Google Scholar]
  47. Kendall, C. G. S. C., & Schlager, W. (1981). Carbonates and relative changes in sea level. Marine Geology, 44, 181–212. https://doi.org/10.1016/0025‐3227(81)90118‐3
    [Google Scholar]
  48. Kenter, J. A. M. (1990). Carbonate platform flanks: Slope angle and sediment fabric. Sedimentology, 37, 777–794.
    [Google Scholar]
  49. Lemay, M., Grimaud, J. L., Cojan, I., Rivoirard, J., & Ors, F. (2020). Geomorphic variability of submarine channelized systems along continental margins: Comparison with fluvial meandering channels. Marine and Petroleum Geology, 115, 104295. https://doi.org/10.1016/j.marpetgeo.2020.104295
    [Google Scholar]
  50. Ma, B., Wu, S., Mi, L., Lüdmann, T., Gao, J., & Gao, W. (2018). Mixed carbonate‐siliciclastic deposits in a channel complex in the Northern South China Sea. Journal of Earth Science, 29, 707–720. https://doi.org/10.1007/s12583‐018‐0830‐4
    [Google Scholar]
  51. Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochemical Cycles, 7, 927–957.
    [Google Scholar]
  52. Moscardelli, L., Ochoa, J., Hunt, I., & Zahm, L. (2019). Mixed siliciclastic–carbonate systems and their impact for the development of deep‐water turbidites in continental margins: A case study from the Late Jurassic to Early Cretaceous Shelburne subbasin in offshore Nova Scotia. AAPG Bulletin, 103, 2487–2520.
    [Google Scholar]
  53. Mulder, T., Ducassou, E., Gillet, H., Hanquiez, V., Principaud, M., Chabaud, L., Eberli, G. P., Kindler, P., Billeaud, I., Gonthier, E., Fournier, F., Leonide, P., & Borgomano, J. (2014). First discovery of channel‐levee complexes in a modern deep‐water carbonate slope environment. Journal of Sedimentary Research, 84, 1139–1146. https://doi.org/10.2110/jsr.2014.90
    [Google Scholar]
  54. Mulder, T., Ducassou, E., Gillet, H., Hanquiez, V., Tournadour, E., Combes, J., Eberli, G. P., Kindler, P., Gonthier, E., Conesa, G., Robin, C., Sianipar, R., Reijmer, J. J. G., & François, A. (2012). Canyon morphology on a modern carbonate slope of the bahamas: Evidence of regional tectonic tilting. Geology, 40, 771–774. https://doi.org/10.1130/G33327.1
    [Google Scholar]
  55. Nemčok, M., Henk, A., Allen, R., Sikora, P. J., & Stuart, C. (2013). Continental break‐up along strike‐slip fault zones; observations from the equatorial Atlantic. Geological Society Special Publication, 369, 537–556. https://doi.org/10.1144/SP369.8
    [Google Scholar]
  56. Oliveira, M. J. R., Santarem, P., Moraes, A., Zalán, P. V., Caldeira, J. L., Tanaka, A., & Trosdtorf, I. (2012). Linked extensional‐compressional tectonics in gravitational systems in the equatorial margin of Brazil. AAPG Memoir, 159–178.
  57. Payros, A., & Pujalte, V. (2008). Calciclastic submarine fans: An integrated overview. Earth‐Science Reviews, 86(1–4), 203–246. https://doi.org/10.1016/j.earscirev.2007.09.001
    [Google Scholar]
  58. Payros, A., Pujalte, V., & Orue‐Etxebarria, X. (2007). A point‐sourced calciclastic submarine fan complex (Eocene Anotz Formation, western Pyrenees): Facies architecture, evolution and controlling factors. Sedimentology, 54, 137–168. https://doi.org/10.1111/j.1365‐3091.2006.00823.x
    [Google Scholar]
  59. Pettingill, H. S. (2006). Global overview of deepwater exploration and production. In P.Weimer, R. M.Slatt, R.Bouroullec, R.Fillon, H.Pettingill, M.Pranter & G.Tari (Eds.), Introduction to the petroleum geology of deepwater setting. American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  60. Piovesan, E. K. (2008). Ostracodes Cretáceos (Turoniano‐Maastrichtiano) Da Bacia Do Pará‐Maranhão: Aspectos Taxonômicos, Paleoecológicos E Paleobiogeográficos. Universidade do Vale do Rio dos Sinos.
    [Google Scholar]
  61. Playton, T. E., Janson, X., & Kerans, C. (2010). Carbonate Slopes. In N.James & R. W.Dalrymple (Eds.), Facies Models 4 (pp. 449–476). Geological Association of Canada.
    [Google Scholar]
  62. Puga‐Bernabéu, Á., Webster, J. M., Beaman, R. J., Reimer, P. J., & Renema, W. (2014). Filling the gap: A 60 ky record of mixed carbonate‐siliciclastic turbidite deposition from the Great Barrier Reef. Marine and Petroleum Geology, 50, 40–50.
    [Google Scholar]
  63. Rankey, E. C. (2017). Seismic architecture and seismic geomorphology of heterozoan carbonates: Eocene‐Oligocene, Browse Basin, Northwest Shelf, Australia. Marine and Petroleum Geology, 82, 424–443.
    [Google Scholar]
  64. Ravenne, C., Vially, R., Francaise, C., & Valery, P. (1985). Deep Clastic Carbonate Deposits of the Bahamas — Comparison With Mesozoic Outcrops of the Vercors and Vocontian Trough.
  65. Reijmer, J. J. G., & Andresen, N. (2007). Mineralogy and grain size variations along two carbonate margin‐to‐basin transects (Pedro Bank, Northern Nicaragua Rise). Sedimentary Geology, 198, 327–350.
    [Google Scholar]
  66. Reijmer, J. J. G., Mulder, T., & Borgomano, J. (2015). Carbonate slopes and gravity deposits. Sedimentary Geology, 317, 1–8. https://doi.org/10.1016/j.sedgeo.2014.12.001
    [Google Scholar]
  67. Reijmer, J. J. G., Palmieri, P., & Groen, R. (2012). Compositional variations in calciturbidites and calcidebrites in response to sea‐level fluctuations (Exuma Sound, Bahamas). Facies, 58, 493–507.
    [Google Scholar]
  68. Reijmer, J. J. G., Palmieri, P., Groen, R., & Floquet, M. (2015). Calciturbidites and calcidebrites: Sea‐level variations or tectonic processes?Sedimentary Geology, 317, 53–70.
    [Google Scholar]
  69. Rinke‐Hardekopf, L., Reuning, L., Bourget, J., & Back, S. (2018). Syn‐sedimentary deformation as a mechanism for the initiation of submarine gullies on a carbonate platform to slope transition, Browse Basin, Australian North West Shelf. Marine and Petroleum Geology, 91, 622–630. https://doi.org/10.1016/j.marpetgeo.2017.12.034
    [Google Scholar]
  70. Rossetti, D. F., Bezerra, F. H. R., & Dominguez, J. M. L. (2013). Late oligocene‐miocene transgressions along the equatorial and eastern margins of brazil. Earth‐Science Reviews, 123, 87–112. https://doi.org/10.1016/j.earscirev.2013.04.005
    [Google Scholar]
  71. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639. https://doi.org/10.1021/ac60214a047
    [Google Scholar]
  72. Schneider, J. A., & Senders, M. (2010). Foundation design: A comparison of oil and gas platforms with offshore wind turbines. Marine Technology Society Journal, 44, 32–51.
    [Google Scholar]
  73. Soares, D. M., Alves, T. M., & Terrinha, P. (2012). The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic). Earth and Planetary Science Letters, 355–356, 311–326.
    [Google Scholar]
  74. Soares, E. F., Zalán, P. V., Figueiredo, J. J. P., & Trosdtorf, I.Jr. (2007). Bacia do Pará‐Maranhão. Boletim De Geociências Da Petrobras, 15, 321–330.
    [Google Scholar]
  75. Soares Júnior, A. V. (2002). Paleografia e evolução da paisagem do nordeste do estado do Pará e noroeste do Maranhão: cretáceo ao holoceno, Arsyad, Azhar. Universidade Federal do Pará.
    [Google Scholar]
  76. Soares Júnior, A. V., Hasui, Y., Costa, J. B. S., & Machado, F. B. (2011). Evolução do rifteamento e paleogeografia da margem Atlântica Equatorial do Brasil: Triássico ao Holoceno. Geociencias, 30, 669–692.
    [Google Scholar]
  77. Sylvester, Z., & Pirmez, C. (2017). Latitudinal changes in the morphology of submarine channels: Reevaluating the evidence for the influence of the coriolis force. SEPM Special Publications, 108, 82–92.
    [Google Scholar]
  78. Tesch, P., Reece, R. S., Pope, M. C., & Markello, J. R. (2018). Quantification of architectural variability and controls in an Upper Oligocene to Lower Miocene carbonate ramp, Browse Basin, Australia. Marine and Petroleum Geology, 91, 432–454. https://doi.org/10.1016/j.marpetgeo.2018.01.022
    [Google Scholar]
  79. Tournadour, E., Mulder, T., Borgomano, J., Gillet, H., Chabaud, L., Ducassou, E., Hanquiez, V., & Etienne, S. (2017). Submarine canyon morphologies and evolution in modern carbonate settings: The northern slope of Little Bahama Bank, Bahamas. Marine Geology, 391, 76–97. https://doi.org/10.1016/j.margeo.2017.07.014
    [Google Scholar]
  80. Trosdtorf Junior, I., Zalán, P. V., de Figueiredo, J., De, J. P., & Soares, E. F. (2007). Bacia de Barreirinhas. Boletim De Geociencias ‐ Petrobras, 15, 331–339.
  81. Weimer, P., & Slatt, R. M. (2004). Deepwater reservoir elements: Channels and their sedimentary fill. In P.Weimer & R.Slatt (Eds.), Petroleum systems of deepwater settings. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers.
    [Google Scholar]
  82. Williams, G. P. (1986). River meanders and channel size. Journal of Hydrology, 88, 147–164.
    [Google Scholar]
  83. Wright, V. P., & Burchette, T. P. (1998). Carbonate ramps: An introduction. Geological Society Special Publication, 149, 1–5. https://doi.org/10.1144/GSL.SP.1999.149.01.01
    [Google Scholar]
  84. Wunsch, M., Betzler, C., Lindhorst, S., Lüudmann, T., & Eberli, G. P. (2017). Sedimentary dynamics along carbonate slopes (Bahamas archipelago). Sedimentology, 64, 631–657. https://doi.org/10.1111/sed.12317
    [Google Scholar]
  85. Zalán, P. V. (2001). Growth folding in gravitational fold‐and‐thrust belts in the deep waters of the Equatorial Atlantic, Northeastern Brazil. In Seventh International Congress of the Brazilian Geophysical Society. AAPG Datapages/Search and Discovery.
    [Google Scholar]
  86. Zalán, P. V. (2015). Re‐interpretation of an ultra‐deep seismic section in the Para‐Maranhao Basin ‐ Implications for the Petroleum Potential of the Ultra‐Deep Waters. OTC Brasil 2015: The Atlantic: From East to West ‐ An Ocean of innovation (pp. 662–672).
  87. Zeng, L. Y. (2020). Seismic‐based geomorphology of a mixed carbonate siliciclastic shelf‐to‐basin submarine drainage system, Miocene, Browse Basin, Northwest Shelf of Australia, Approved By Supervising Committee. The University of Texas at Austin.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12604
Loading
/content/journals/10.1111/bre.12604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error