1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Deccan Traps large igneous province (LIP) comprises one of the largest continental flood basalt provinces on Earth with the main phase of volcanism spanning the Cretaceous‐Palaeogene boundary. The oldest volcanism of the province is encountered in the northwest of modern‐day India where Deccan stratigraphy is often buried beneath thick Cenozoic sedimentary sequences. The Raageshwari Deep Gas (RDG) Field, located onshore in the central Barmer Basin, NW India, produces gas from the early Deccan Raageshwari Volcanics which are subdivided into two members, the Agni Member and the overlying Prithvi Member. The RDG comprises a globally important example of a producing volcanic reservoir whilst also offering unique insights into the early volcanism of the Deccan with the aid of extensive high quality sub‐surface data. Within this study, the volcanic facies of the RDG sequences are investigated from five cored intervals (total 160 m). Core‐based facies determinations are compared with geochemical analyses, petrophysical analyses of the cores (density, porosity and permeability), and wireline data including micro‐resistivity borehole images (FMI) and Nuclear Magnetic Resonance (NMR) data. A wireline based volcanic lithofacies scheme is developed and applied to the uncored parts of the sequence which in turn is compared to 3D seismic data. Results of the study reveal the Agni Member to comprise a compositionally bimodal (basalt through to trachyte), dominantly alkaline series with mixed volcanic facies including spectacular felsic ignimbrites, basic‐intermediate simple lava flows, volcaniclastic units and newly identified shallow intrusions. The Prithvi Member in contrast is dominated by tholeiitic basalt compositions with less common basic‐intermediate alkaline compositions and comprises a sequence dominated by classic tabular lava flow facies inter‐digitated with boles, volcaniclastic units, rare compound braided lava facies and evolved tuffaceous ash layers. In one interval of the Prithvi Member, evidence for agglutinated spatter is recorded inferring potential proximity to a palaeo‐eruption site within the area. Comparison between core data and volcanic facies reveals a first order control of volcanic facies on reservoir properties highlighting the importance of volcanic facies appraisal in the development of volcanic reservoirs.

,

Summary conceptual model, graphic facies logs and core examples from the mixed basic and felsic volcanic reservoirs of the Raageshwari Deep Gas Field, NW India.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12605
2021-11-11
2021-12-04
Loading full text...

Full text loading...

References

  1. Abdelaziz, S., Leem, J., Praptono, A. S., Shankar, P., Mund, B., Gupta, A. K., Goyal, R., & Sidharth, P. (2016). An integrated workflow to the success of complex tight‐gas reservoirs development north of India: Case study. Presented at the Society of Petroleum Engineers Asia Pacific Drilling Technology Conference and Exhibition, Singapore. https://doi.org/10.2118/180586‐MS
    [Google Scholar]
  2. Basu, A. R., Renne, P. R., DasGupta, D. K., Teichmann, F., & Poreda, R. J. (1993). Early and late alkali igneous pulses and a high‐3He plume origin for the Deccan flood basalts. Science, 261(5123), 902–906.
    [Google Scholar]
  3. Beane, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V., & Walsh, J. N. (1986). Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bulletin of Volcanology, 48(1), 61–83. https://doi.org/10.1007/BF01073513
    [Google Scholar]
  4. Bhattacharji, S., Sharma, R., & Chatterjee, N. (2004). Two‐ and three dimensional gravity modelling along west continental margin and intraplate Narmada‐Tapi rifts: Its relevance to Deccan flood basalt volcanism. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 113, 771–784.
    [Google Scholar]
  5. Bhushan, Y. (2008). Well test analysis in a tight lean gas condensate reservoir. Paper presented at the Society of Petroleum Engineers Oil and Gas India Conference and Exhibition Mumbai, India. https://doi.org/10.2118/113121‐MS
    [Google Scholar]
  6. Bischoff, A., Planke, S., Holford, S., & Nicol, A. (2021). Seismic geomorphology, architecture and stratigraphy of volcanoes buried in sedimentary basins. In K.Németh (Ed.), Volcanoes‐Updates in volcanology (pp. 1–34). IntechOpen.
    [Google Scholar]
  7. Biswas, S. K. (2003). Regional tectonic framework of the Pranhita‐Godavari basin, India. Journal of Asian Earth Sciences, 21(6), 543–551. https://doi.org/10.1016/S1367‐9120(02)00145‐1
    [Google Scholar]
  8. Bladon, A. J., Clarke, S. M., & Burley, S. D. (2015). Complex rift geometries resulting from inheritance of pre‐existing structures: Insights and regional implications from the Barmer Basin rift. Journal of Structural Geology, 71, 136–154. https://doi.org/10.1016/j.jsg.2014.09.017
    [Google Scholar]
  9. Bond, D. P., & Wignall, P. B. (2014). Large igneous provinces and mass extinctions: An update. In G.Keller & A.Kerr (Eds.), Volcanism, impacts, and mass extinctions: Causes and effects (Vol. 505, pp. 29–55). Special paper 505, The Geological Society of America.
    [Google Scholar]
  10. Branney, M. J., & Kokelaar, P. (1992). A reappraisal of ignimbrite emplacement: Progressive aggradation and changes from particulate to non‐particulate flow during emplacement of high‐grade ignimbrite. Bulletin of Volcanology, 54(6), 504–520. https://doi.org/10.1007/BF00301396
    [Google Scholar]
  11. Broglia, C., & Ellis, D. (1990). Effect of alteration, formation absorption, and standoff on the response of the thermal neutron porosity log in gabbros and basalts: Examples from Deep Sea Drilling Project‐Ocean Drilling Program Sites. Journal of Geophysical Research: Solid Earth, 95(B6), 9171–9188. https://doi.org/10.1029/JB095iB06p09171
    [Google Scholar]
  12. Brown, R. J., Blake, S., Bondre, N. R., Phadnis, V. M., & Self, S. (2011). ´A´ ā lava flows in the Deccan Volcanic Province, India, and their significance for the nature of continental flood basalt eruptions. Bulletin of Volcanology, 73(6), 737–752. https://doi.org/10.1007/s00445‐011‐0450‐7
    [Google Scholar]
  13. Bryan, S. E., Peate, I. U., Peate, D. W., Self, S., Jerram, D. A., Mawby, M. R., Marsh, J. G., & Miller, J. A. (2010). The largest volcanic eruptions on Earth. Earth‐Science Reviews, 102(3–4), 207–229.
    [Google Scholar]
  14. Bryan, S. E., Riley, T. R., Jerram, D. A., Leat, P. T., & Stephens, C. J. (2002). Silicic volcanism: An under valued component of large igneous provinces/volcanic rifted margins. In M. A.Menzies, S. L.Klemperer, C. J.Ebinger, & J.Baker (Eds.), Volcanic rifted margins (Vol. 362, pp. 99–120). Geological Society of America Special Paper.
    [Google Scholar]
  15. Buckley, D. K., & Oliver, D. (1990). Geophysical logging of water exploration boreholes in the Deccan Traps, Central India. Geological Society, London, Special Publications, 48(1), 153–161. https://doi.org/10.1144/GSL.SP.1990.048.01.13
    [Google Scholar]
  16. Burns, E. R., Snyder, D. T., Haynes, J. V., & Waibel, M. S. (2012). Groundwater status and trends for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho (p. 52). US Department of the Interior, US Geological Survey.
    [Google Scholar]
  17. Calvès, G., Schwab, A. M., Huuse, M., Clift, P. D., Gaina, C., Jolley, D., Tabrez, A. R., & Inam, A. (2011). Seismic volcanostratigraphy of the western Indian rifted margin: The pre‐Deccan igneous province. Journal of Geophysical Research: Solid Earth, 116(B1). https://doi.org/10.1029/2010JB000862
    [Google Scholar]
  18. Chatterjee, N., & Bhattacharji, S. (2001). Origin of the felsic and basaltic dikes and flows in the Rajula‐Palitana‐Sihor area of the Deccan Traps, Saurashtra, India: A geochemical and geochronological study. International Geology Review, 43(12), 1094–1116. https://doi.org/10.1080/00206810109465063
    [Google Scholar]
  19. Chowdhury, M., Guha, R., Singh, S., Verma, S. K., Tandon, R., Gould, T., Taylor, A., & Goodall, I. (2014). Characterization of volcanic reservoir‐ New integrated approach: A case study from Raageshwari Deep Gas Field, Rajasthan, India. International Petroleum Technology Conference. https://doi.org/10.2523/IPTC‐17971‐MS
    [Google Scholar]
  20. Courtillot, V., Féraud, G., Maluski, H., Vandamme, D., Moreau, M. G., & Besse, J. (1988). Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333, 843–846. https://doi.org/10.1038/333843a0
    [Google Scholar]
  21. Cucciniello, C., Sheth, H., Duraiswami, R. A., Wegner, W., Koeberl, C., Das, T., & Ghule, V. (2020). The Southeastern Saurashtra dyke swarm, Deccan Traps: Magmatic evolution of a tholeiitic basalt–basaltic andesite–andesite–rhyolite suite. Lithos, 376, 105759. https://doi.org/10.1016/j.lithos.2020.105759
    [Google Scholar]
  22. Dolson, J., Burley, S. D., Sunder, V. R., Kothari, V., Naidu, B., Whiteley, N. P., Farrimond, P., Taylor, A., Direen, N., & Ananthakrishnan, B. (2015). The discovery of the Barmer Basin, Rajasthan, India, and its petroleum geology. AAPG Bulletin, 99(3), 433–465. https://doi.org/10.1306/10021414045
    [Google Scholar]
  23. Duncan, R., & Pyle, D. (1988). Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333, 841–843. https://doi.org/10.1038/333841a0
    [Google Scholar]
  24. Duraiswami, R. A., Bondre, N. R., & Managave, S. (2008). Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: Implications for style of emplacement. Journal of Volcanology and Geothermal Research, 177, 822–836. https://doi.org/10.1016/j.jvolgeores.2008.01.048
    [Google Scholar]
  25. Duraiswami, R. A., Gadpallu, P., Shaikh, T. N., & Cardin, N. (2014). Pahoehoe–a′ a transitions in the lava flow fields of the western Deccan Traps, India‐implications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy. Journal of Asian Earth Sciences, 84, 146–166. https://doi.org/10.1016/j.jseaes.2013.08.025
    [Google Scholar]
  26. Duraiswami, R. A., Sheth, H., Gadpallu, R. A., Youbi, N., & Chellai, E. H. (2020). A simple recipe for red bole formation in continental flood basalt provinces: Weathering of flow‐top and flow‐bottom breccias. Arabian Journal of Geosciences, 13(18), 1–14. https://doi.org/10.1007/s12517‐020‐05973‐9
    [Google Scholar]
  27. Ebinghaus, A., Adrian, J. H., Jolley, D. W., Hole, M. J., & Millett, J. M. (2014). Lava–sediment interaction and drainage‐system development in a Large Igneous Province: Columbia River Flood Basalt Province, Washington State, USA. Journal of Sedimentary Research, 84, 1041–1063.
    [Google Scholar]
  28. Greenfield, L., Millett, J. M., Howell, J., Jerram, D. A., Watton, T., Healy, D., Hole, M. J., & Planke, S. (2020). The 3D facies architecture and petrophysical properties of hyaloclastite delta deposits: An integrated photogrammetry and petrophysical study from southern Iceland. Basin Research, 32(5), 1091–1114. https://doi.org/10.1111/bre.12415
    [Google Scholar]
  29. Gupta, A. K., Shankar, P., Saurav, S., Verma, S. K., & Mund, B. (2015). Optimization of hydraulic fracturing technology application for value enhancement: A case study from Raageshwari Deep Gas Field. Paper presented at the Society of Petroleum Engineers Oil and Gas India Conference and Exhibition Mumbai, India. https://doi.org/10.2118/178135‐MS
    [Google Scholar]
  30. Hildreth, W., & Fierstein, J. (2012). The Novarupta‐Katmai eruption of 1912: Largest eruption of the twentieth century: Centennial perspectives (No. 1791). Geological Survey (USGS).
    [Google Scholar]
  31. Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. https://doi.org/10.1139/e71‐055
    [Google Scholar]
  32. Jay, A. E., & Widdowson, M. (2008). Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes. Journal of the Geological Society, 165(1), 177–188. https://doi.org/10.1144/0016‐76492006‐062
    [Google Scholar]
  33. Jerram, D. A. (2002). Volcanology and facies architecture of flood basalts. In M. A.Menzies, S. L.Klemperer, C. J.Ebinger & J.Baker (Eds.), Volcanic rifted margins (Vol. 362, pp. 121–135). Special Paper 362, Geological Society of America.
    [Google Scholar]
  34. Jerram, D. A., Millett, J. M., Kück, J., Thomas, D., Planke, S., Haskins, E., Lautze, N., & Pierdominici, S. (2019). Understanding volcanic facies in the subsurface: A combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawai‘i. Scientific Drilling, 25, 15–33. https://doi.org/10.5194/sd‐25‐15‐2019
    [Google Scholar]
  35. Jerram, D. A., Mountney, N., Holzförster, F., & Stollhofen, H. (1999). Internal stratigraphic relationships in the Etendeka Group in the Huab Basin, NW Namibia: Understanding the onset of flood volcanism. Journal of Geodynamics, 28, 393–418. https://doi.org/10.1016/S0264‐3707(99)00018‐6
    [Google Scholar]
  36. Jerram, D. A., Single, R. T., Hobbs, R. W., & Nelson, C. E. (2009). Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: An example from the Faroe‐Shetland basin. Geological Magazine, 146(3), 353–367. https://doi.org/10.1017/S0016756809005974
    [Google Scholar]
  37. Jerram, D. A., & Widdowson, M. (2005). The anatomy of Continental Flood Basalt Provinces: Geological constraints on the processes and products of flood volcanism. Lithos, 79, 385–405. https://doi.org/10.1016/j.lithos.2004.09.009
    [Google Scholar]
  38. Jolley, D. W., Passey, S. R., Hole, M., & Millett, J. (2012). Large‐scale magmatic pulses drive plant ecosystem dynamics. Journal of the Geological Society, 169(6), 703–711.
    [Google Scholar]
  39. Jones, T. J., Houghton, B. F., Llewellin, E. W., Parcheta, C. E., & Hoeltgen, L. (2018). Spatter matters–Distinguishing primary (eruptive) and secondary (non‐eruptive) spatter deposits. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598‐018‐27065‐1
    [Google Scholar]
  40. Kale, V. S., Dole, G., Shandilya, P., & Pande, K. (2020). Stratigraphy and correlations in Deccan Volcanic Province, India: Quo vadis?. GSA Bulletin, 132(3–4), 588–607. https://doi.org/10.1130/B35018.1
    [Google Scholar]
  41. Karmalkar, N. R., Duraiswami, R. A., Jonnalagadda, M. K., Griffin, W. L., Gregoire, M., Benoit, M., & Delpech, G. (2016). Magma types and source characterization of the early Deccan magmatism, Kutch Region, NW India: Insights from Geochemistry of Igneous Intrusions. Journal of the Geological Society of India Special Publications, 6, 193–208.
    [Google Scholar]
  42. Karmalkar, N. R., Kale, M. G., Duraiswami, R. A., & Jonalgadda, M. (2008). Magma underplating and storage in the crust‐building process beneath the Kutch region, NW India. Current Science, 94(12), 1582–1588.
    [Google Scholar]
  43. Kshirsagar, P. V., Sheth, H. C., & Shaikh, B. (2011). Mafic alkalic magmatism in central Kachchh, India: A monogenetic volcanic field in the northwestern Deccan Traps. Bulletin of Volcanology, 73(5), 595–612. https://doi.org/10.1007/s00445‐010‐0429‐9
    [Google Scholar]
  44. Kumar, A. (2009). Reservoir nature and evaluation of Deccan Trap basement, Cambay Basin, India. Presented at the 2nd SPWLA‐India Symposium.
    [Google Scholar]
  45. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.). (2002). Igneous rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.
    [Google Scholar]
  46. Lightfoot, P. C., Hawkesworth, C. J., & Sethna, S. F. (1987). Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd and Pb isotope and trace element evidence. Contributions to Mineralogy and Petrology, 95(1), 44–54. https://doi.org/10.1007/BF00518029
    [Google Scholar]
  47. Mahoney, J. J., Sheth, H. C., Chandrasekharam, D., & Peng, Z. X. (2000). Geochemistry of flood basalts of the Toranmal section, northern Deccan Traps, India: Implications for regional Deccan stratigraphy. Journal of Petrology, 41(7), 1099–1120. https://doi.org/10.1093/petrology/41.7.1099
    [Google Scholar]
  48. McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009‐2541(94)00140‐4
    [Google Scholar]
  49. McGrail, B. P., Spane, F. A., Sullivan, E. C., Bacon, D. H., & Hund, G. (2011). The Wallula basalt sequestration pilot project. Energy Procedia, 4, 5653–5660.
    [Google Scholar]
  50. Melluso, L., Beccaluva, L., Brotzu, P., Gregnanin, A., Gupta, A. K., Morbidelli, L., & Traversa, G. (1995). Constraints on the mantle sources of the Deccan Traps from the petrology and geochemistry of the basalts of Gujarat State (Western India). Journal of Petrology, 36(5), 1393–1432. https://doi.org/10.1093/petrology/36.5.1393
    [Google Scholar]
  51. Millett, J. M., Hole, M. J., Jolley, D. W., & Passey, S. R. (2017). Geochemical stratigraphy and correlation within large igneous provinces: The final preserved stages of the Faroe Islands Basalt Group. Lithos, 286, 1–15. https://doi.org/10.1016/j.lithos.2017.05.011
    [Google Scholar]
  52. Millett, J. M., Hole, M. J., Jolley, D. W., Passey, S. R., & Rossetti, L. (2020). Transient mantle cooling linked to regional volcanic shut‐down and early rifting in the North Atlantic Igneous Province. Bulletin of Volcanology, 82(8), 1–27.
    [Google Scholar]
  53. Millett, J. M., Hole, M. J., Jolley, D. W., Schofield, N., & Campbell, E. (2015). Frontier exploration and the North Atlantic Igneous Province: New insights from a 2.6 km offshore volcanic sequence in the NE Faroe‐Shetland Basin. Journal of the Geological Society, 173(2), 320–336.
    [Google Scholar]
  54. Millett, J. M., Jerram, D. A., Manton, B., Planke, S., Ablard, P., Wallis, D., Hole, M. J., Brandsen, H., Jolley, D. W., & Dennehy, D. (2021). The Rosebank Field, NE Atlantic: Volcanic characterization of an inter‐lava hydrocarbon discovery. Basin Research. https://doi.org/10.1111/bre.12585
    [Google Scholar]
  55. Millett, J. M., Manton, B. M., Zastrozhnov, D., Planke, S., Maharjan, D., Bellwald, B., Gernigon, L., Faleide, J. I., Jolley, D. W., Walker, F., Abdelmalak, M., Jerram, D. A., Myklebust, R., Kjølhamar, B. E., Halliday, J., & Birch‐Hawkins, A. (2020). Basin structure and prospectivity of the NE Atlantic volcanic rifted margin: Cross‐border examples from the Faroe‐Shetland, Møre and Southern Vøring basins. Geological Society, London, Special Publications, 495. https://doi.org/10.1144/SP495‐2019‐12
    [Google Scholar]
  56. Mishra, S., Gupta, A., Mathur, M., Purusarthy, N., & Wenk, A. (2011). A new dimension added to the hydraulic fracture stimulation for a volcanic reservoir based on microseismic monitoring. Paper presented at the Society of Petroleum Engineers Annual Conference and Exhibition, Vienna, Austria. https://doi.org/10.2118/143524‐MS
    [Google Scholar]
  57. Mund, B., Das, A., Sharda, S., Bhat, S., Kumar, R., Gupta, A. K., & Shankar, P. (2017). Unravelling potential of a volcanic reservoir through enhanced facies understanding ‐ A case study from Barmer Basin, India. Paper presented at the Society of Petroleum Engineers Oil and Gas India Conference and Exhibition Mumbai, India. https://doi.org/10.2118/185413‐MS
    [Google Scholar]
  58. Nelson, C. E., Jerram, D. A., & Hobbs, R. W. (2009). Flood basalt facies from borehole data: Implications for prospectivity and volcanology in volcanic rifted margins. Petroleum Geoscience, 15(4), 313–324. https://doi.org/10.1144/1354‐079309‐842
    [Google Scholar]
  59. Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans, 87(C2), 1231–1238. https://doi.org/10.1029/JC087iC02p01231
    [Google Scholar]
  60. Paul, D. K., Ray, A., Das, B., Patil, S. K., & Biswas, S. K. (2008). Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, 102(1–2), 237–259. https://doi.org/10.1016/j.lithos.2007.08.005
    [Google Scholar]
  61. Planke, S. (1994). Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, Vøring volcanic margin. Journal of Geophysical Research, 99(B5), 9279–9296.
    [Google Scholar]
  62. Planke, S., Millett, J. M., Maharjan, D., Jerram, D. A., Abdelmalak, M. M., Groth, A., Hoffmann, J., Berdnt, C., & Myklebust, R. (2017). Igneous seismic geomorphology of buried lava fields and coastal escarpments on the Vøring volcanic rifted margin. Interpretation, 5(3), 1–42. https://doi.org/10.1190/INT‐2016‐0164.1
    [Google Scholar]
  63. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Geological Society London: Petroleum Geology Conference Series, 6, 833–844. https://doi.org/10.1144/0060833
    [Google Scholar]
  64. Planke, S., Symonds, P. A., Avelstad, E., & Skogseid, J. (2000). Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research: Solid Earth, 105, 19333–19351. https://doi.org/10.1029/1999JB900005
    [Google Scholar]
  65. Ross, P. S., Peate, I. U., McClintock, M. K., Xu, Y. G., Skilling, I. P., White, J. D., & Houghton, B. F. (2005). Mafic volcaniclastic deposits in flood basalt provinces: A review. Journal of Volcanology and Geothermal Research, 145(3–4), 281–314. https://doi.org/10.1016/j.jvolgeores.2005.02.003
    [Google Scholar]
  66. Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., & Khadri, S. F. (2019). U‐Pb constraints on pulsed eruption of the Deccan Traps across the end‐Cretaceous mass extinction. Science, 363(6429), 862–866.
    [Google Scholar]
  67. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., Muirhead, D., Grove, C., Magee, C., Murray, J., Hole, M., Jackson, C.‐L., & Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41–63. https://doi.org/10.1111/bre.12164
    [Google Scholar]
  68. Schofield, N., & Jolley, D. W. (2013). Development of intra‐basaltic lava‐field drainage systems within the Faroe‐Shetland Basin. Petroleum Geoscience, 19, 273–288.
    [Google Scholar]
  69. Schutter, S. R. (2003). Occurrences of hydrocarbons in and around igneous rocks. Geological Society, London, Special Publications, 214(1), 35–68. https://doi.org/10.1144/GSL.SP.2003.214.01.03
    [Google Scholar]
  70. Self, S., Jay, A. E., Widdowson, M., & Keszthelyi, L. P. (2008). Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?Journal of Volcanology and Geothermal Research, 172(1–2), 3–19. https://doi.org/10.1016/j.jvolgeores.2006.11.012
    [Google Scholar]
  71. Self, S., Mittal, T., & Jay, A. E. (2021). Thickness characteristics of pāhoehoe lavas in the Deccan province, Western Ghats, India, and in continental flood basalt provinces elsewhere. Frontiers in Earth Science, 8, 720. https://doi.org/10.3389/feart.2020.630604
    [Google Scholar]
  72. Self, S., Widdowson, M., Thordarson, T., & Jay, A. E. (2006). Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 248(1–2), 518–532. https://doi.org/10.1016/j.epsl.2006.05.041
    [Google Scholar]
  73. Sen, A., Pande, K., Hegner, E., Sharma, K. K., Dayal, A. M., Sheth, H. C., & Mistry, H. (2012). Deccan volcanism in Rajasthan: 40Ar–39Ar geochronology and geochemistry of the Tavidar volcanic suite. Journal of Asian Earth Sciences, 59, 127–140. https://doi.org/10.1016/j.jseaes.2012.07.021
    [Google Scholar]
  74. Sen, G., & Chandrasekharam, D. (2011). Deccan Traps flood basalt province: An evaluation of the thermochemical plume model. In J.Ray, G.Sen & B.Gosh (Eds.), Topics in igneous petrology (pp. 29–53). Springer.
    [Google Scholar]
  75. Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C. H., Festøy, M., Galland, O., & Jerram, D. A. (2017). Effects of igneous intrusions on the petroleum system: A review. First Break, 35(6), 47–56. https://doi.org/10.3997/1365‐2397.2017011
    [Google Scholar]
  76. Shaoul, J. R., Ross, J. M., Spitzer, W. J., Wheaton, S. R., Mayland, P. J., & Singh, A. P. (2007). Massive hydraulic fracturing unlocks deep tight gas reserves in India. Paper presented at the Society of Petroleum Engineers European Formation Damage Conference, Scheveningen, Netherlands. https://doi.org/10.2118/107337‐MS
    [Google Scholar]
  77. Sharma, K. K. (2004). The Neoproterozoic Malani magmatism of the northwestern Indian shield: Implications for crust‐building processes. Proceeding of the Indian Academy of Sciences (Earth Planetary Sciences), 113, 795–807. https://doi.org/10.1007/BF02704038
    [Google Scholar]
  78. Sheikh, J. M., Sheth, H., Naik, A., & Keluskar, T. (2020a). Physical volcanology of the Pavagadh rhyolites, northern Deccan Traps: Stratigraphic, structural, and textural record of explosive and effusive eruptions. Journal of Volcanology and Geothermal Research, 404, 107024. https://doi.org/10.1016/j.jvolgeores.2020.107024
    [Google Scholar]
  79. Sheikh, J. M., Sheth, H., Naik, A., & Keluskar, T. (2020b). Widespread rheomorphic and lava‐like silicic ignimbrites overlying flood basalts in the northwestern and northern Deccan Traps. Bulletin of Volcanology, 82, 1–13. https://doi.org/10.1007/s00445‐020‐01381‐9
    [Google Scholar]
  80. Sheth, H. (2005). From Deccan to Réunion: No trace of a mantle plume. In G. R.Foulger, J. H.Natland, D. C.Presnall, & D. L.Anderson (Eds.), Plates, plumes, and paradigms (Vol. 388, pp. 477–502). Geological Society of America Special Paper.
    [Google Scholar]
  81. Sheth, H. C., Choudhary, A. K., Bhattacharyya, S., Cucciniello, C., Laishram, R., & Gurav, T. (2011). The Chogat‐Chamardi subvolcanic complex, Saurashtra, northwestern Deccan Traps: Geology, petrochemistry, and petrogenetic evolution. Journal of Asian Earth Sciences, 41(3), 307–324. https://doi.org/10.1016/j.jseaes.2011.02.012
    [Google Scholar]
  82. Sheth, H. C., Choudhary, A. K., Cucciniello, C., Bhattacharyya, S., Laishram, R., & Gurav, T. (2012). Geology, petrochemistry, and genesis of the bimodal lavas of Osham Hill, Saurashtra, northwestern Deccan Traps. Journal of Asian Earth Sciences, 43(1), 176–192. https://doi.org/10.1016/j.jseaes.2011.09.008
    [Google Scholar]
  83. Sheth, H. C., & Melluso, L. (2008). The Mount Pavagadh volcanic suite, Deccan Traps: Geochemical stratigraphy and magmatic evolution. Journal of Asian Earth Sciences, 32(1), 5–21. https://doi.org/10.1016/j.jseaes.2007.10.001
    [Google Scholar]
  84. Sheth, H. A., Pande, K. A., Vijayan, A. A., Sharma, K. K., & Cucciniello, C. (2017). Recurrent Early Cretaceous, Indo‐Madagascar (89–86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu‐Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance. Lithos, 284, 512–524. https://doi.org/10.1016/j.lithos.2017.05.005
    [Google Scholar]
  85. Single, R. T., & Jerram, D. A. (2004). The 3D facies architecture of flood basalt provinces and their internal heterogeneity: Examples from the Palaeogene Skye Lava Field. Journal of the Geological Society, 161, 911–926.
    [Google Scholar]
  86. Skilling, I. P., White, J. D. L., & Mcphie, J. (2002). Peperite: A review of magma–sediment mingling. Journal of Volcanology and Geothermal Research, 114(1–2), 1–17.
    [Google Scholar]
  87. Somasundaram, S., Bhat, S., Das, A., Sharda, S., Mund, B., Beohar, A., & Shankar, P. (2017). Seismic curvature attributes for subtle fault detection in tight volcanic reservoirs from Barmer Basin, India. Paper presented at the Society of Petroleum Engineers Oil and Gas India Conference and Exhibition Mumbai, India. https://doi.org/10.2118/185384‐MS
    [Google Scholar]
  88. Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. (2019). The eruptive tempo of Deccan volcanism in relation to the Cretaceous‐Paleogene boundary. Science, 363(6429), 866–870.
    [Google Scholar]
  89. Sumner, J. M., Blake, S., Matela, R. J., & Wolff, J. A. (2005). Spatter. Journal of Volcanology and Geothermal Research, 142(1–2), 49–65. https://doi.org/10.1016/j.jvolgeores.2004.10.013
    [Google Scholar]
  90. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.
    [Google Scholar]
  91. Ukstins Peate, I., Baker, J. A., Al‐Kadasi, M., Al‐Subbary, A., Knight, K. B., Riisager, P., Thirlwall, M. F., Peate, D. W., Renne, P. R., & Menzies, M. A. (2005). Volcanic stratigraphy of large‐volume silicic pyroclastic eruptions during Oligocene Afro‐Arabian flood volcanism in Yemen. Bulletin of Volcanology, 68, 135–156. https://doi.org/10.1007/s00445‐005‐0428‐4
    [Google Scholar]
  92. Vermani, S., Gupta, A., Purusharthy, N. K., Stolyarov, S., Arora, G., & Dean, G. D. (2010). Fracturing deep nonconventional volcanic reservoir: A case history Raageshwari Gas Field onshore India. Paper presented at the Society of Petroleum Engineers Annual Technical Conference and Exhibition, Florence, Italy. https://doi.org/10.2118/132932‐MS
    [Google Scholar]
  93. Vijayan, A., Sheth, H., & Sharma, K. K. (2016). Tectonic significance of dykes in the Sarnu‐Dandali alkaline complex, Rajasthan, northwestern Deccan Traps. Geoscience Frontiers, 7(5), 783–791. https://doi.org/10.1016/j.gsf.2015.09.004
    [Google Scholar]
  94. Walker, F., Schofield, N., Millett, J., Jolley, D., Holford, S., Planke, S., Jerram, D. A., & Myklebust, R. (2021). Inside the volcano: Three‐dimensional magmatic architecture of a buried shield volcano. Geology, 49(3), 243–247. https://doi.org/10.1130/G47941.1
    [Google Scholar]
  95. Watton, T. J., Jerram, D. A., Thordarson, T., & Davies, R. J. (2013). Three‐dimensional lithofacies variations in hyaloclastite deposits. Journal of Volcanology and Geothermal Research, 250, 19–33. https://doi.org/10.1016/j.jvolgeores.2012.10.011
    [Google Scholar]
  96. Widdowson, M., Pringle, M. S., & Fernandez, O. A. (2000). A post K – T boundary (Early Palaeocene) age for Deccan‐type feeder dykes. Journal of Petrology, 41, 1177–1194.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12605
Loading
/content/journals/10.1111/bre.12605
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Barmer Basin , Deccan Traps , LIP , Raageshwari , volcanic facies and volcanic reservoir
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error