1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Widespread flooding of the Australian continent during the Early Cretaceous, referred to as the Eromanga Sea, deposited extensive shallow marine sediments throughout the Great Artesian Basin (GAB). This event had been considered ‘out of sync’ with eustatic sea level and was instead solely attributed to dynamic subsidence associated with Australia's passage over eastern Gondwanan subducted material. However, mantle convection models previously used to explain this event have since been shown to overestimate dynamic topography amplitude by a factor of two compared with residual topography estimates. Previous models were also based on a Cretaceous eustatic sea level peak at ca. 90 Ma in conventional eustatic sea level curves; however, more recent estimates of global sea level from ocean basin volume (OBV) suggest this peak may have occurred earlier at ca. 120 Ma. Our work links time‐dependent erosion and deposition with dynamic topography and eustasy to test their contribution to basin development using the landscape evolution code pyBadlands. Our results show that the lower amplitude estimates of dynamic topography derived from pseudo‐compressible mantle flow models better reflect the Cretaceous vertical motions of the Australian continent (ca. 100 m) compared with their incompressible counterparts (ca. 200–400 m). Additionally, our models include the Neogene north‐eastward tilting of Australia, elusive in most previously published geodynamic models. In conjunction with an OBV‐derived sea level curve, our preferred landscape evolution model broadly matches the Cretaceous inundation patterns and first‐order sedimentary sequences in the GAB. The results highlight that the Early Cretaceous inundation of the Australian continent is likely a combination of high global sea levels and the regional effects of dynamic subsidence. Our work provides a framework for a new generation of evolving paleogeographic models at continental scales, while also providing key insights into the viability of existing sea level curves and dynamic topography estimates for reproducing topographic and basin evolution.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12606
2021-11-11
2024-04-19
Loading full text...

Full text loading...

References

  1. Alexander, E. M., Sansome, A., & Cotton, T. B. (2006). Chapter 5: Lithostratigraphy and environments of deposition. In T.Cotton, M.Scardigno & J.Hibburt (Eds.), The petroleum geology of South Australia. Vol. 2: Eromanga Basin. South Australia Dept. of Primary Industries and Resources.
    [Google Scholar]
  2. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  3. Barnett‐Moore, N., Hassan, R., Müller, R. D., Williams, S. E., & Flament, N. (2017). Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid‐Cretaceous. Tectonics, 36, 929–944.
    [Google Scholar]
  4. Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  5. Boult, P. J., Theologou, P. N., & Foden, J. (1997). Capillary Seals Within the Eromanga Basin, Australia: Implications for Exploration and Production. R. C.Surdam, Seals, Traps and the Petroleum System (67, 143–167). Tulsa, Oklahoma: American Association of Petroleum Geologists. https://doi.org/10.1306/M67611C10
    [Google Scholar]
  6. Braun, J., Robert, X., & Simon‐Labric, T. (2013). Eroding dynamic topography. Geophysical Research Letters, 40, 1494–1499.
    [Google Scholar]
  7. BryanS. E, ConstantineA. E, StephensC. J, EwartA, SchönR. W, ParianosJ. (1997). Early Cretaceous volcano‐sedimentary successions along the eastern Australian continental margin: Implications for the break‐up of eastern Gondwana. Earth and Planetary Science Letters, 153(1‐2), 85–102. http://doi.org/10.1016/s0012‐821x(97)00124‐6
    [Google Scholar]
  8. Bryan, S. E., Cook, A. G., Allen, C. M., Siegel, C., Purdy, D. J., Greentree, J. S., & Uysal, I. T. (2012). Early‐mid Cretaceous tectonic evolution of eastern Gondwana: From silicic LIP magmatism to continental rupture. Episodes, 35(1), 142–152.
    [Google Scholar]
  9. Burger, D. (1989). Australian phanerozoic timescales. 9. Cretaceous. Biostratigraphic charts and explanatory notes.
    [Google Scholar]
  10. Cao, W., Flament, N., Zahirovic, S., Williams, S., & Müller, R. D. (2019). The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics, 761, 108–121.
    [Google Scholar]
  11. Chang, C., & Liu, L. (2019). Distinct responses of intraplate sedimentation to different subsidence mechanisms: Insights from forward landscape evolution simulations. Journal of Geophysical Research: Earth Surface, 124, 1139–1159.
    [Google Scholar]
  12. Cockbain, A. E. (2014). Australia goes it alone — The emerging island continent 100 Ma to present. Geological Survey of Western Australia.
    [Google Scholar]
  13. Czarnota, K., Hoggard, M., White, N., & Winterbourne, J. (2013). Spatial and temporal patterns of Cenozoic dynamic topography around Australia. Geochemistry, Geophysics, Geosystems, 14, 634–658.
    [Google Scholar]
  14. Czarnota, K., Roberts, G. G., White, N. J., & Fishwick, S. (2014). Spatial and temporal patterns of Australian dynamic topography from River Profile Modeling. Journal of Geophysical Research: Solid Earth, 119, 1384–1424.
    [Google Scholar]
  15. Davies, D. R., Valentine, A. P., Kramer, S. C., Rawlinson, N., Hoggard, M. J., Eakin, C. M., & Wilson, C. R. (2019). Earth’s multi‐scale topographic response to global mantle flow. Nature Geoscience, 12, 845–850.
    [Google Scholar]
  16. Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., & Dunne, K. (2006). GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19, 643–674.
    [Google Scholar]
  17. Dicaprio, L., Gurnis, M., & Müller, R. D. (2009). Long‐wavelength tilting of the Australian continent since the Late Cretaceous. Earth and Planetary Science Letters, 278(3–4), 175–185.
    [Google Scholar]
  18. Dicaprio, L., Gurnis, M., Müller, R. D., & Tan, E. (2011). Mantle dynamics of continentwide Cenozoic subsidence and tilting of Australia. Lithosphere, 3, 311–316.
    [Google Scholar]
  19. Draper, J. (2002). Geology of the Cooper and Eromanga basins. Department of Natural Resources and Mines.
    [Google Scholar]
  20. Exon, N. F., & Senior, B. R. (1976). The Cretaceous of the Eromanga and Surat Basins. BMR Journal of Australian Geology and Geophysics, 1, 33–50.
    [Google Scholar]
  21. Faiz, M., Saghafi, A., Sherwood, N., & Wang, I. (2007). The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia. International Journal of Coal Geology, 70, 193–208.
    [Google Scholar]
  22. FlamentNicolas, GurnisMichael, MüllerR. Dietmar. (2013). A review of observations and models of dynamic topography. Lithosphere, 5(2), 189–210. http://doi.org/10.1130/l245.1
    [Google Scholar]
  23. Flament, N. (2018). Present‐day dynamic topography and lower‐mantle structure from palaeogeographically constrained mantle flow models. Geophysical Journal International, 216, 2158–2182.
    [Google Scholar]
  24. Flament, N., Gurnis, M., & Müller, R. D. (2013). A review of observations and models of dynamic topography. Lithosphere, 5, 189–210.
    [Google Scholar]
  25. Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J., Heine, C., & Dietmar Müller, R. (2014). Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters, 387, 107–119.
    [Google Scholar]
  26. Fletcher, T. L., Greenwood, D. R., Moss, P. T., & Salisbury, S. W. (2014). Palaeoclimate ofthe Late Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, central‐western Queensland, Australia: New observations based on CLAMP and bioclimatic analysis. Palaios, 29, 121–128.
    [Google Scholar]
  27. Fletcher, T. L., Moss, P. T., & Salisbury, S. W. (2013). Foliar physiognomic climate estimates for the Late Cretaceous (Cenomanian‐Turonian) Lark Quarry fossil flora, central‐western Queensland, Australia. Australian Journal of Botany, 61, 575–582.
    [Google Scholar]
  28. Forsyth, D. W. (1985). Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research, 90, 12623.
    [Google Scholar]
  29. Frakes, L., Burger, D., Apthorpe, M., Wiseman, J., Dettmann, M., Alley, N., Flint, R., Gravestock, D., Ludbrook, N., & Backhouse, J. (1987). Australian Cretaceous shorelines, stage by stage. Palaeogeography, Palaeoclimatology, Palaeoecology, 59, 31–48.
    [Google Scholar]
  30. Gallagher, K., Dumitru, T. A., & Gleadow, A. J. W. (1994). Constraints on the vertical motion of eastern Australia during the Mesozoic. Basin Research, 6, 77–94.
    [Google Scholar]
  31. Gallagher, K., & Lambeck, K. (1989). Subsidence, sedimentation and sea‐level changes in the Eromanga Basin, Australia. Basin Research, 2, 115–131.
    [Google Scholar]
  32. Geoscience Australia . (2013a). Layer 02 Base of Cenozoic surface. Great Artesian Water Resource Assessment, https://researchdata.edu.au/layer‐02‐great‐cenozoic‐surface/1303753
    [Google Scholar]
  33. Geoscience Australia . (2013b). Layer 03 Base of Mackunda Formation and equivalents surface. Great Artesian Water Resource Assessment, https://researchdata.edu.au/layer‐03‐great‐equivalents‐surface/1251043/
    [Google Scholar]
  34. Geoscience Australia . (2013c). Layer 04 Great Artesian Basin base of Rolling Downs Group surface. Great Artesian Water Resource Assessment, https://researchdata.edu.au/layer‐04‐great‐group‐surface/1273129
    [Google Scholar]
  35. Geoscience Australia . (2013d). Layer 05 Great Artesian Basin base of Hooray Sandstone and equivalents surface. Great Artesian Water Resource Assessment, https://researchdata.edu.au/layer‐05‐great‐equivalents‐surface/1299940/
    [Google Scholar]
  36. Gregory‐Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: A review. GSA Bulletin, 112, 1091–1105.
    [Google Scholar]
  37. Gurnis, M., Muller, R. D., & Moresi, L. (1998). Cretaceous vertical motion of Australia and the Australian‐Antarctic discordance. Science (New York, NY), 279, 1499–1504.
    [Google Scholar]
  38. Haig, D. W., & Lynch, D. A. (1993). A late early Albian marine transgressive pulse over northeastern Australia, precursor to epeiric basin anoxia: Foraminiferal evidence. Marine Micropaleontology, 22, 311–362. https://doi.org/10.1016/0377‐8398(93)90020‐X
    [Google Scholar]
  39. Hall, L., Hill, A., Troup, A., Korsch, R., Radke, B., Nicoll, R., Palu, T., Wang, L., & Stacey, A. (2015). Cooper Basin architecture and lithofacies: Regional hydrocarbon prospectivity of the Cooper Basin: Part 1: Canberra. Australia, Geoscience Australia Record, 31, 97.
    [Google Scholar]
  40. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.
    [Google Scholar]
  41. Haq, B. U. (2017). Jurassic sea‐level variations: A reappraisal. GSA Today, 28, 4–10.
    [Google Scholar]
  42. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  43. HassanRakib, FlamentNicolas, GurnisMichael, BowerDan J., MüllerDietmar. (2015). Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems, 16(5), 1465–1489. http://doi.org/10.1002/2015gc005751
    [Google Scholar]
  44. Harrington, L., Zahirovic, S., Salles, T., Braz, C., & Müller, R. D. (2019). Tectonic, geodynamic and surface process driving forces of Australia’s paleogeography since the Jurassic. In M.Keep & S. J.Moss (Eds.), The sedimentary basins of Western Australia V: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA. 29.
    [Google Scholar]
  45. Herold, N., Huber, M., & Müller, R. (2011). Modeling the Miocene climatic optimum. Part I: Land and atmosphere. Journal of Climate, 24, 6353–6372.
    [Google Scholar]
  46. Hill, K. C., & Gleadow, A. J. W. (1989). Uplift and thermal history of the Papuan Fold Belt, Papua New Guinea: Apatite fission track analysis. Australian Journal of Earth Sciences, 36, 515–539.
    [Google Scholar]
  47. Hoffmann, K. (1989). The influence of pre‐Jurassic tectonic regimes on the structural development of the southern Eromanga Basin, Queensland. In Proceedings of Petroleum Exploration Society of Australia (pp. 315–328). Society of Petroleum Engineers, Australian Society of Exploration Geophysicists (SA Branches).
    [Google Scholar]
  48. Hoggard, M. J., White, N., & Al‐Attar, D. (2016). Global dynamic topography observations reveal limited influence of large‐scale mantle flow. Nature Geoscience, 9, 456–463.
    [Google Scholar]
  49. Hoggard, M. J., Winterbourne, J., Czarnota, K., & White, N. (2017). Oceanic residual depth measurements, the plate cooling model, and global dynamic topography. Journal of Geophysical Research: Solid Earth, 122, 2328–2372.
    [Google Scholar]
  50. Hooke, R. L., & Rohrer, W. L. (1977). Relative erodibility of source‐area rock types, as determined from second‐order variations in alluvial‐fan size. Geological Society of America Bulletin, 88, 1177–1182.
    [Google Scholar]
  51. Howard, A. D., Dietrich, W. E., & Seidl, M. A. (1994). Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research: Solid Earth, 99, 13971–13986.
    [Google Scholar]
  52. Howard, A. D., & Kerby, G. (1983). Channel changes in badlands. GSA Bulletin, 94, 739–752.
    [Google Scholar]
  53. Immenhauser, A. (2005). High‐rate sea‐level change during the Mesozoic: New approaches to an old problem. Sedimentary Geology, 175, 277–296.
    [Google Scholar]
  54. Jones, J. G., & Veevers, J. J. (1983). Mesozoic origins and antecedents of Australia's Eastern Highlands. Journal of the Geological Society of Australia, 30, 305–322.
    [Google Scholar]
  55. Kohn, B. P., Gleadow, A. J. W., Brown, R. W., Gallagher, K., O'Sullivan, P. B., & Foster, D. A. (2002). Shaping the Australian crust over the last 300 million years: Insights from fission track thermotectonic imaging and denudation studies of key terranes. Australian Journal of Earth Sciences, 49, 697–717.
    [Google Scholar]
  56. Korsch, R. J., & Totterdell, J. M. (2009). Subsidence history and basin phases of the Bowen, Gunnedah and Surat Basins, eastern Australia. Australian Journal of Earth Sciences, 56, 335–353.
    [Google Scholar]
  57. Lee, C., & King, S. D. (2009). Effect of mantle compressibility on the thermal and flow structures of the subduction zones. Geochemistry, Geophysics, Geosystems, 10(1). http://doi.org/10.1029/2008gc002151
    [Google Scholar]
  58. Lithgow‐Bertelloni, C., & Silver, P. G. (1998). Dynamic topography, plate driving forces and the African superswell. Nature, 395, 269–272.
    [Google Scholar]
  59. Lloyd, J., Collins, A. S., Payne, J. L., Glorie, S., Holford, S., & Reid, A. J. (2016). Tracking the Cretaceous transcontinental Ceduna River through Australia: The hafnium isotope record of detrital zircons from offshore southern Australia. Geoscience Frontiers, 7, 237–244. https://doi.org/10.1016/j.gsf.2015.06.001
    [Google Scholar]
  60. Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66, 533–563.
    [Google Scholar]
  61. Matthews, K. J., Hale, A. J., Gurnis, M., Müller, R. D., & Dicaprio, L. (2011). Dynamic subsidence of Eastern Australia during the Cretaceous. Gondwana Research, 19, 372–383.
    [Google Scholar]
  62. Milan, L. A., Daczko, N. R., & Clarke, G. L. (2017). Cordillera Zealandia: A Mesozoic arc flare‐up on the palaeo‐Pacific Gondwana Margin. Scientific Reports, 7, 261.
    [Google Scholar]
  63. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  64. Moore, P., & Pitt, G. (1984). Cretaceous of the Eromanga Basin—Implications for hydrocarbon exploration. The APPEA Journal, 24, 358–376.
    [Google Scholar]
  65. Moosdorf, N., Cohen, S., & von Hagke, C. (2018). A global erodibility index to represent sediment production potential of different rock types. Applied Geography, 101, 36–44.
    [Google Scholar]
  66. Müller, R. D., Cannon, J., Williams, S., & Dutkiewicz, A. (2018). PyBacktrack 1.0: A tool for reconstructing paleobathymetry on oceanic and continental crust. Geochemistry, Geophysics, Geosystems, 19, 1898–1909.
    [Google Scholar]
  67. Müller, R. D., Flament, N., Matthews, K. J., Williams, S. E., & Gurnis, M. (2016). Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 441, 60–70.
    [Google Scholar]
  68. Müller, R. D., Hassan, R., Gurnis, M., Flament, N., & Williams, S. E. (2018). Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research, 53, 225–251. http://doi.org/10.1016/j.gr.2017.04.028
    [Google Scholar]
  69. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., & Heine, C. (2008). Long‐term sea‐level fluctuations driven by ocean basin dynamics. Science, 319, 1357–1362.
    [Google Scholar]
  70. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38, 1884–1907.
    [Google Scholar]
  71. Norvick, M. S. (2003). New paleographic maps of the northern margins of the Australian plate: Updated report. Unpublished report for Geoscience Australia.
    [Google Scholar]
  72. Norvick, M. S. (2005). Plate tectonic reconstructions of Australia's southern margins. Geoscience Australia, Record 2005/007.
    [Google Scholar]
  73. O’Sullivan, P. B., Kohn, B. P., Foster, D. A., & Gleadow, A. J. W. (1995). Fission track data from the Bathurst Batholith: Evidence for rapid mid‐Cretaceous uplift and erosion within the eastern highlands of Australia. Australian Journal of Earth Sciences, 42, 597–607.
    [Google Scholar]
  74. O’Sullivan, P. B., Mitchell, M. M., O’Sullivan, A. J., Kohn, B. P., & Gleadow, A. J. W. (2000). Thermotectonic history of the Bassian Rise, Australia: Implications for the breakup of eastern Gondwana along Australia’s southeastern margins. Earth and Planetary Science Letters, 182, 31–47.
    [Google Scholar]
  75. Planchon, O., & Darboux, F. (2002). A fast, simple and versatile algorithm to fill the depressions of digital elevation models. CATENA, 46(2‐3), 159–176. http://doi.org/10.1016/s0341‐8162(01)00164‐3
    [Google Scholar]
  76. Ransley, T., & Smerdon, B. (2012). Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. In A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship Australia.
    [Google Scholar]
  77. Raza, A., Hill, K. C., & Korsch, R. J. (2009). Mid‐Cretaceous uplift and denudation of the Bowen and Surat Basins, eastern Australia: Relationship to Tasman Sea rifting from apatite fission‐track and vitrinite‐reflectance data. Australian Journal of Earth Sciences, 56(3), 501–531.
    [Google Scholar]
  78. Ruetenik, G. A., Moucha, R., & Hoke, G. D. (2016). Landscape response to changes in dynamic topography. Terra Nova, 28, 289–296.
    [Google Scholar]
  79. Russell, M., & Gurnis, M. (1994). The planform of epeirogeny: Vertical motions of Australia during the Cretaceous. Basin Research, 6, 63–76.
    [Google Scholar]
  80. Sacek, V. (2017). Post‐rift influence of small‐scale convection on the landscape evolution at divergent continental margins. Earth and Planetary Science Letters, 459, 48–57.
    [Google Scholar]
  81. Salles, T. (2016). Badlands: A parallel basin and landscape dynamics model. SoftwareX, 5, 195–202. https://doi.org/10.1016/j.softx.2016.08.005
    [Google Scholar]
  82. Salles, T., Ding, X., & Brocard, G. (2018). pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time. PLoS One, 13, e0195557. https://doi.org/10.1371/journal.pone.0195557
    [Google Scholar]
  83. Salles, T., Flament, N., & Müller, D. (2017). Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period. Geochemistry, Geophysics, Geosystems, 18, 280–305. https://doi.org/10.1002/2016GC006617
    [Google Scholar]
  84. Sandiford, M. (2007). The tilting continent: A new constraint on the dynamic topographic field from Australia. Earth and Planetary Science Letters, 261, 152–163.
    [Google Scholar]
  85. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐mid‐Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739.
    [Google Scholar]
  86. Senior, B., Mond, A., & Harrison, P. (1978). Geology of the Eromanga Basin. Australian Government Pub. Service.
    [Google Scholar]
  87. ShephardGrace E., MüllerR. Dietmar, & SetonMaria. (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth‐Science Reviews, 124, 148–183. http://doi.org/10.1016/j.earscirev.2013.05.012
    [Google Scholar]
  88. ShephardG. E., FlamentN., WilliamsS., SetonM., GurnisM., MüllerR. D. (2014). Circum‐Arctic mantle structure and long‐wavelength topography since the Jurassic. Journal of Geophysical Research: Solid Earth, 119(10), 7889–7908. http://doi.org/10.1002/2014jb011078
    [Google Scholar]
  89. Smart, J., & Senior, B. (1980). Jurassic‐Cretaceous basins of northeastern Australia. In R. A.Henderson & P. J.Stephenson (Eds.), The geology and geophysics of northeastern Australia (pp. 315–328). Brisbane: Geological Society of Australia, Queensland Division.
    [Google Scholar]
  90. Steinberger, B., Conrad, C. P., Osei Tutu, A., & Hoggard, M. J. (2019). On the amplitude of dynamic topography at spherical harmonic degree two. Tectonophysics, 760, 221–228.
    [Google Scholar]
  91. Struckmeyer, H. I. M., & Totterdell, J. M. (1990). Australia: Evolution of a continent. Bureau of Mineral Resources, Geology and Geophysics, Australian Government Publishing Service.
    [Google Scholar]
  92. Swain, C. J., & Kirby, J. F. (2006). An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth's method. Geophysical Research Letters, 33, 2–5.
    [Google Scholar]
  93. Taylor, G., Truswell, E. M., McQueen, K. G., & Brown, M. C. (1990). Early Tertiary palaeogeography, landform evolution, and palaeoclimates of the Southern Monaro, NSW, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 109–134.
    [Google Scholar]
  94. Tucker, G. E., & Hancock, G. R. (2010). Modelling landscape evolution. Earth Surface Processes and Landforms, 35, 28–50.
    [Google Scholar]
  95. Tucker, R. T., Roberts, E. M., Henderson, R. A., & Kemp, A. I. S. (2016). Large igneous province or long‐lived magmatic arc along the eastern margin of Australia during the Cretaceous? Insights from the sedimentary record. Geological Society of America Bulletin, 128, 1461–1480.
    [Google Scholar]
  96. Tucker, R. T., Roberts, E. M., Hu, Y., Kemp, A. I. S., & Salisbury, S. W. (2013). Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas. Gondwana Research, 24, 767–779. https://doi.org/10.1016/j.gr.2012.12.009
    [Google Scholar]
  97. Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J. J., Amaru, M. L., & Torsvik, T. H. (2010). Towards absolute plate motions constrained by lower‐mantle slab remnants. Nature Geoscience, 3, 36–40. https://doi.org/10.1038/ngeo708
    [Google Scholar]
  98. Van Der Meer, D. G., Van Den Berg Van Saparoea, A. P. H., Van Hinsbergen, D. J. J., Van De Weg, R. M. B., Godderis, Y., Le Hir, G., & Donnadieu, Y. (2017). Reconstructing first‐order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes. Gondwana Research, 44, 22–34. https://doi.org/10.1016/j.gr.2016.11.002
    [Google Scholar]
  99. Veevers, J. (2006). Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Research, 9, 231–260.
    [Google Scholar]
  100. Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., & Liu, M. (2015). 3D palaeogeographic reconstructions of the Phanerozoic versus sea‐level and Sr‐ratio variations. Journal of Palaeogeography, 4, 64–84.
    [Google Scholar]
  101. Wainman, C. C., Reynolds, P., Hall, T., McCabe, P. J., & Holford, S. P. (2019). Nature and origin of tuff beds in Jurassic strata of the Surat Basin, Australia: Implications on the evolution of the eastern margin of Gondwana during the Mesozoic. Journal of Volcanology and Geothermal Research, 377, 103–116. https://doi.org/10.1016/j.jvolgeores.2019.03.012
    [Google Scholar]
  102. Wang, H., Gurnis, M., & Skogseid, J. (2020). Continent‐wide drainage reorganization in North America driven by mantle flow. Earth and Planetary Science Letters, 530, 115910.
    [Google Scholar]
  103. Waschbusch, P., Korsch, R. J., & Beaumont, C. (2009). Geodynamic modelling of aspects of the Bowen, Gunnedah, Surat and Eromanga Basins from the perspective of convergent margin processes. Australian Journal of Earth Sciences, 56, 309–334. https://doi.org/10.1080/08120090802698661
    [Google Scholar]
  104. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104, 17661–17674.
    [Google Scholar]
  105. Zahirovic, S., Flament, N., Dietmar Müller, R., Seton, M., & Gurnis, M. (2016). Large fluctuations of shallow seas in low‐lying Southeast Asia driven by mantle flow. Geochemistry, Geophysics, Geosystems, 17, 3589–3607.
    [Google Scholar]
  106. Zahirovic, S., Seton, M., & Müller, R. D. (2014). The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5, 227–273.
    [Google Scholar]
  107. ZhongShijie, McNamaraAllen, TanEh, MoresiLouis, GurnisMichael (2008). A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9(10). http://doi.org/10.1029/2008gc002048
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12606
Loading
/content/journals/10.1111/bre.12606
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error