1887
Volume 33, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[

The Andean cordillera, the Himalayan collisionorogen, and the Apennine thrust belt are archetypes of different orogens associatedwith different sedimentary basins. Sediment storage capacity, maximum inforedeeps where slab retreat induces rapid subsidence of the downgoing plate, isminimum in broken retroarc basins where flat‐slab subduction leads to basininversion and uplift of basement blocks on the overriding plate.

, Abstract

Central Argentina from the Pampean flat‐slab segment to northern Patagonia (27°–41°S) represents a classic example of a broken retroarc basin with strong tectonic and climatic control on fluvial sediment transport. Combined with previous research focused on coastal sediments, this actualistic provenance study uses framework petrography and heavy‐mineral data to trace multistep dispersal of volcaniclastic detritus first eastwards across central Argentina for up to ca. 1,500 km and next northwards for another 760 km along the Atlantic coast. Although detritus generated in the Andes is largely derived from mesosilicic volcanic rocks of the cordillera, its compositional signatures reflect different tectono‐stratigraphic levels of the orogen uplifted along strike in response to varying subduction geometry as well as different character and crystallization condition of arc magmas through time and space. River sand, thus, changes from feldspatho‐litho‐quartzose or litho‐feldspatho‐quartzose in the north, where sedimentary detritus is more common, to mostly quartzo‐feldspatho‐lithic in the centre and to feldspatho‐lithic in the south, where volcanic detritus is dominant. The transparent‐heavy‐mineral suite changes markedly from amphibole ≫ clinopyroxene > orthopyroxene in the north, to amphibole ≈ clinopyroxene ≈ orthopyroxene in the centre and to orthopyroxene ≥ clinopyroxene ≫ amphibole in the south. In the presently dry climate, fluvial discharge is drastically reduced to the point that even the Desaguadero trunk river has become endorheic and orogenic detritus is dumped in the retroarc basin, reworked by winds and temporarily accumulated in dune fields. During the Quaternary, instead, much larger amounts of water were released by melting of the Cordilleran ice sheet or during pluvial events. The sediment‐laden waters of the Desaguadero and Colorado rivers then rushed from the tract of the Andes with greatest topographic and structural elevation, fostering alluvial fans inland and flowing in much larger valleys than today towards the Atlantic Ocean. Sand and gravel supply to the coast was high enough not only to promote rapid progradation of large deltaic lobes but also to feed a cell of littoral sediment transport extending as far north as the Río de la Plata estuary.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12607
2021-11-11
2021-12-04
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12607.html?itemId=/content/journals/10.1111/bre.12607&mimeType=html&fmt=ahah

References

  1. Affolter, M. D., & Ingersoll, R. V. (2019). Quantitative analysis of volcanic lithic fragments. Journal of Sedimentary Research, 89(6), 479–486. https://doi.org/10.2110/jsr.2019.30
    [Google Scholar]
  2. Allen, P. A., Burgess, P. M., Galewsky, J., & Sinclair, H. D. (2001). Flexural‐eustatic numerical model for drowning of the Eocene perialpine carbonate ramp and implications for Alpine geodynamics. Geological Society of America Bulletin, 113(8), 1052–1066. https://doi.org/10.1130/0016‐7606(2001)113<1052:FENMFD>2.0.CO;2
    [Google Scholar]
  3. Allmendinger, R. W., & Judge, P. A. (2014). The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate. Geosphere, 10(6), 1203–1218. https://doi.org/10.1130/GES01062.1
    [Google Scholar]
  4. Alvarado, P., Pardo, M., Gilbert, H., Miranda, S., Anderson, M., Saez, M., & Beck, S. (2009). Flat‐slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In S. M.Kay, V. A.Ramos, & W. R.Dickinson (Eds.), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision (Vol. 204, pp. 261–278). Geological Society of America, Memoir.
    [Google Scholar]
  5. Amadori, C., Toscani, G., Di Giulio, A., Maesano, F. E., D’Ambrogi, C., Ghielmi, M., & Fantoni, R. (2019). From cylindrical to non‐cylindrical foreland basin: Pliocene‐Pleistocene evolution of the Po Plain‐Northern Adriatic basin (Italy). Basin Research, 31(5), 991–1015. https://doi.org/10.1111/bre.12369
    [Google Scholar]
  6. Amsler, M. L., Drago, E. C., & Paira, A. R. (2007). Fluvial sediments: Main channel and floodplain interrelationships. In M. H.Iriondo, J. C.Paggi & M. J.Parma (Eds.), The Middle Paraná River: Limnology of a subtropical wetland (pp. 123–142). Springer.
    [Google Scholar]
  7. Andò, S., Morton, A., & Garzanti, E. (2014). Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. In R. A.Scott, H. R.Smyth, A. C.Morton & N.Richardson (Eds.), Sediment provenance studies in hydrocarbon exploration and production (Vol. 386, pp. 351–371). Geological Society of London, Special Publication.
    [Google Scholar]
  8. Aragón, E., Castro, A., Díaz‐Alvarado, J., & Liu, D. Y. (2011). The North Patagonian batholith at Paso Puyehue (Argentina‐Chile). SHRIMP ages and compositional features. Journal of South American Earth Sciences, 32(4), 547–554.
    [Google Scholar]
  9. Aragón, E., Fernando, D., Cuffaro, M., Doglioni, C., Ficini, E., Pinotti, L., Nacif, S., Demartis, M., Hernando, I., & Fuentes, T. (2020). The westward lithospheric drift, its role on the subduction and transform zones surrounding Americas: Andean to cordilleran orogenic types cyclicity. Geoscience Frontiers, 11(4), 1219–1229.
    [Google Scholar]
  10. Audley‐Charles, M. G., Curray, J. R., & Evans, G. (1977). Location of major deltas. Geology, 5(6), 341–344. https://doi.org/10.1130/0091‐7613(1977)5<341:LOMD>2.0.CO;2
    [Google Scholar]
  11. Bahlburg, H., Vervoort, J. D., Du Frane, S. A., Bock, B., Augustsson, C., & Reimann, C. (2009). Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. Earth‐Science Reviews, 97(1–4), 215–241. https://doi.org/10.1016/j.earscirev.2009.10.006
    [Google Scholar]
  12. Barazangi, M., & Isacks, B. L. (1976). Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4(11), 686–692. https://doi.org/10.1130/0091‐7613(1976)4<686:SDOEAS>2.0.CO;2
    [Google Scholar]
  13. Bianchi, A. R., & Cravero, S. A. C. (2010). Atlas climático digital de la República Argentina. Instituto Nacional de Tecnología Agropecuaria.
    [Google Scholar]
  14. Blasi, A. M. (1991). Sedimentología de las gravas del Río Colorado, Argentina. Revista Del Museo De La Plata, 10(93), 243–264.
    [Google Scholar]
  15. Blasi, A., & Manassero, M. J. (1990). The Colorado River of Argentina: Source, climate, and transport as controlling factors on sand composition. Journal of South American Earth Sciences, 3(1), 65–70. https://doi.org/10.1016/0895‐9811(90)90018‐V
    [Google Scholar]
  16. Bonetto, A. A., & Wais, I. R. (2006). Southern South American streams and rivers. In C. E.Cushing, K. W.Cummins & G. W.Minshall (Eds.), River and stream ecosystems of the world: With a new introduction (pp. 257–293). University of California Press.
    [Google Scholar]
  17. Brunet, F., Gaiero, D., Probst, J. L., Depetris, P. J., Gauthier Lafaye, F., & Stille, P. (2005). δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrological Processes, 19(17), 3321–3344.
    [Google Scholar]
  18. Burbank, D. W., Beck, R. A., & Mulder, T. (1996). The Himalayan foreland basin. In A.Yin & T. M.Harrison (Eds.), The tectonic evolution of Asia (pp. 149–188). Cambridge University Press.
    [Google Scholar]
  19. Butler, K. L., Horton, B. K., Echaurren, A., Folguera, A., & Fuentes, F. (2020). Cretaceous‐Cenozoic growth of the Patagonian broken foreland basin, Argentina: Chronostratigraphic framework and provenance variations during transitions in Andean subduction dynamics. Journal of South American Earth Sciences, 97, 102242. https://doi.org/10.1016/j.jsames.2019.102242
    [Google Scholar]
  20. Capaldi, T. N., George, S. M. W., Hirtz, J. A., Horton, B. K., & Stockli, D. F. (2019). Fluvial and eolian sediment mixing during changing climate conditions recorded in Holocene Andean foreland deposits from Argentina (31–33°S). Frontiers in Earth Science, 7, 298. https://doi.org/10.3389/feart.2019.00298
    [Google Scholar]
  21. Capaldi, T. N., Horton, B. K., McKenzie, N. R., Mackaman‐Lofland, C., Stockli, D. F., Ortiz, G., & Alvarado, P. (2020). Neogene retroarc foreland basin evolution, sediment provenance, and magmatism in response to flat slab subduction, western Argentina. Tectonics, 39(7), e2019TC005958.
    [Google Scholar]
  22. Capaldi, T. N., Horton, B. K., McKenzie, N. R., Stockli, D. F., & Odlum, M. L. (2017). Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold‐thrust belt and foreland basin of western Argentina. Earth and Planetary Science Letters, 479, 83–97. https://doi.org/10.1016/j.epsl.2017.09.001
    [Google Scholar]
  23. Capaldi, T. N., McKenzie, N. R., Horton, B. K., Mackaman‐Lofland, C., Colleps, C. L., & Stockli, D. F. (2021). Detrital zircon record of Phanerozoic magmatism in the southern Central Andes. Geosphere, 17, 876–897. https://doi.org/10.1130/GES02346.1
    [Google Scholar]
  24. Carminati, E., & Doglioni, C. (2012). Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth‐Science Reviews, 112(1–2), 67–96.
    [Google Scholar]
  25. Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M. A., Martinod, J., Guyot, J.‐L., Hérail, G., & Riquelme, R. (2018). Review of erosion dynamics along the major NS climatic gradient in Chile and perspectives. Geomorphology, 300, 45–68.
    [Google Scholar]
  26. Charrier, R., Baeza, O., Elgueta, S., Flynn, J. J., Gans, P., Kay, S. M., Muñoz, N., Wyss, A. R., & Zurita, E. (2002). Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat‐slab segment, southern Central Andes, Chile (33–36°S.L.). Journal of South American Earth Sciences, 15(1), 117–139.
    [Google Scholar]
  27. Charrier, R., Ramos, V. A., Tapia, F., & Sagripanti, L. (2015). Tectono‐stratigraphic evolution of the Andean Orogen between 31 and 37°S (Chile and Western Argentina). Geological Society of London, Special Publications, 399(1), 13–61. https://doi.org/10.1144/SP399.20
    [Google Scholar]
  28. Cibin, U., Spadafora, E., Zuffa, G. G., & Castellarin, A. (2001). Continental collision history from arenites of episutural basins in the Northern Apennines, Italy. Geological Society of America Bulletin, 113(1), 4–19. https://doi.org/10.1130/0016‐7606(2001)113<0004:CCHFAO>2.0.CO;2
    [Google Scholar]
  29. Cingolani, C. A., & Ramos, V. A. (2017). Pre‐Carboniferous tectonic evolution of the San Rafael block, Mendoza Province. In C. A.Cingolani, & C.Cingolani (Eds.), Pre‐Carboniferous evolution of the San Rafael Block, Argentina (pp. 239–255). Springer.
    [Google Scholar]
  30. Cingolani, C. A., Uriz, N., Chemale, F.Jr., & Varela, R. (2012). Las rocas monzoníticas del sector oriental del plutón de Cacheuta, Precordillera mendocina: Características geoquímicas y edad U/Pb (LA‐ICP‐MS). Revista De La Asociación Geológica Argentina, 69(2), 195–206.
    [Google Scholar]
  31. Clift, P. D., Shimizu, N., Layne, G. D., Blusztajn, J. S., Gaedicke, C., Schluter, H. U., Clark, M. K., & Amjad, S. (2001). Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geological Society of America Bulletin, 113(8), 1039–1051. https://doi.org/10.1130/0016‐7606(2001)113<1039:DOTIFA>2.0.CO;2
    [Google Scholar]
  32. Comas Cufí, M., & Thió i Fernández de Henestrosa, S. (2011). CoDaPack 2.0: A stand‐alone, multi‐platform compositional software.
  33. Cortizo, L., & Isla, F. I. (2012). Dinámica de la barrera medanosa e islas de barrera de Patagones (Buenos Aires, Argentina). Latin American Journal of Sedimentology and Basin Analysis, 19(1), 47–63.
    [Google Scholar]
  34. Cristallini, E. O., & Ramos, V. A. (2000). Thick‐skinned and thin‐skinned thrusting in the La Ramada fold and thrust belt: Crustal evolution of the High Andes of San Juan, Argentina (32°S.L.). Tectonophysics, 317(3–4), 205–235. https://doi.org/10.1016/S0040‐1951(99)00276‐0
    [Google Scholar]
  35. Dahlquist, J. A., Pankhurst, R. J., Gaschnig, R. M., Rapela, C. W., Casquet, C., Alasino, P. H., Galindo, C., & Baldo, E. G. (2013). Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto‐Andean margin of Gondwana. Gondwana Research, 23(4), 1617–1630. https://doi.org/10.1016/j.gr.2012.08.013
    [Google Scholar]
  36. Damanti, J. F. (1993). Geomorphic and structural controls on facies patterns and sediment composition in a modern foreland basin. In M.Marzo, & C.Puigdefábregas (Eds.), Alluvial sedimentation (Vol. 17, pp. 221–233). International Association of Sedimentologists, Special Publication.
    [Google Scholar]
  37. Dávila, F. M., Astini, R. A., Jordan, T. E., Gehrels, G., & Ezpeleta, M. (2007). Miocene forebulge development previous to broken foreland partitioning in the southern Central Andes, west‐central Argentina. Tectonics, 26(5), TC5016. https://doi.org/10.1029/2007TC002118
    [Google Scholar]
  38. Dávila, F. M., & Lithgow‐Bertelloni, C. (2015). Dynamic uplift during slab flattening. Earth and Planetary Science Letters, 425, 34–43. https://doi.org/10.1016/j.epsl.2015.05.026
    [Google Scholar]
  39. Dávila, F. M., Lithgow‐Bertelloni, C., & Giménez, M. (2010). Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab. Earth and Planetary Science Letters, 295, 187–194. https://doi.org/10.1016/j.epsl.2010.03.039
    [Google Scholar]
  40. De Doncker, F., Herman, F., & Fox, M. (2020). Inversion of provenance data and sediment load into spatially varying erosion rates. Earth Surface Processes and Landforms, 45(15), 3879–3901. https://doi.org/10.1002/esp.5008
    [Google Scholar]
  41. DeCelles, P. G. (2012). Foreland basin systems revisited: Variations in response to tectonic settings. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 405–426). Blackwell.
    [Google Scholar]
  42. DeCelles, P. G., Carrapa, B., Horton, B. K., & Gehrels, G. E. (2011). Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics, 30(6), TC6013. https://doi.org/10.1029/2011TC002948
    [Google Scholar]
  43. DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227, 313–330. https://doi.org/10.1016/j.epsl.2004.08.019
    [Google Scholar]
  44. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  45. DeCelles, P. G., & Horton, B. K. (2003). Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geological Society of America Bulletin, 115(1), 58–77. https://doi.org/10.1130/0016‐7606(2003)115<0058:ETMTFB>2.0.CO;2
    [Google Scholar]
  46. del Río, J. L., Colado, U. R., & Gaido, E. S. (1991). Estabilidad y dinámica del delta de reflujo de la boca del Río Negro. Revista De La Asociación Geológica Argentina, 46(3–4), 325–332.
    [Google Scholar]
  47. Deruelle, B. (1982). Petrology of the Plio‐Quaternary volcanism of the south‐central and meridional Andes. Journal of Volcanology and Geothermal Research, 14(1–2), 77–124. https://doi.org/10.1016/0377‐0273(82)90044‐0
    [Google Scholar]
  48. Dèzes, P., Schmid, S. M., & Ziegler, P. A. (2004). Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389(1–2), 1–33. https://doi.org/10.1016/j.tecto.2004.06.011
    [Google Scholar]
  49. Di Giulio, A., Ronchi, A., Sanfilippo, A., Balgord, E. A., Carrapa, B., & Ramos, V. A. (2017). Cretaceous evolution of the Andean margin between 36° S and 40°S latitude through a multi‐proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research, 29(3), 284–304. https://doi.org/10.1111/bre.12176
    [Google Scholar]
  50. Di Giulio, A., Ronchi, A., Sanfilippo, A., Tiepolo, M., Pimentel, M., & Ramos, V. A. (2012). Detrital zircon provenance from the Neuquén Basin (south‐central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc‐foreland basin. Geology, 40(6), 559–562. https://doi.org/10.1130/G33052.1
    [Google Scholar]
  51. Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research, 40(2), 695–707.
    [Google Scholar]
  52. Dickinson, W. R. (1988). Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In K. L.Kleinspehn & C.Paola (Eds.), New perspectives in basin analysis (pp. 3–25). Springer.
    [Google Scholar]
  53. Doglioni, C. (1994). Foredeeps versus subduction zones. Geology, 22(3), 271–274. https://doi.org/10.1130/0091‐7613(1994)022<0271:FVSZ>2.3.CO;2
    [Google Scholar]
  54. Doglioni, C., Carminati, E., Cuffaro, M., & Scrocca, D. (2007). Subduction kinematics and dynamic constraints. Earth‐Science Reviews, 83(3–4), 125–175. https://doi.org/10.1016/j.earscirev.2007.04.001
    [Google Scholar]
  55. Doglioni, C., Gueguen, E., Harabaglia, P., & Mongelli, F. (1999). On the origin of west‐directed subduction zones and applications to the western Mediterranean. Geological Society, London, Special Publications, 156(1), 541–561. https://doi.org/10.1144/GSL.SP.1999.156.01.24
    [Google Scholar]
  56. Doglioni, C., Harabaglia, P., Merlini, S., Mongelli, F., Peccerillo, A. T., & Piromallo, C. (1999). Orogens and slabs vs. their direction of subduction. Earth‐Science Reviews, 45(3–4), 167–208. https://doi.org/10.1016/S0012‐8252(98)00045‐2
    [Google Scholar]
  57. Doglioni, C., & Panza, G. (2015). Polarized plate tectonics. Advances in Geophysics, 56, 1–167.
    [Google Scholar]
  58. Einsele, G., Ratschbacher, L., & Wetzel, A. (1996). The Himalaya‐Bengal Fan denudation‐accumulation system during the past 20 Ma. The Journal of Geology, 104(2), 163–184. https://doi.org/10.1086/629812
    [Google Scholar]
  59. Eppinger, K. J., & Rosenfeld, U. (1996). Western margin and provenance of sediments of the Neuquén Basin (Argentina) in the Late Jurassic and Early Cretaceous. Tectonophysics, 259(1–3), 229–244. https://doi.org/10.1016/0040‐1951(95)00157‐3
    [Google Scholar]
  60. Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, D., Cáceres, J., & Comte, D. (2008). Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). Tectonics, 27, TC1005. https://doi.org/10.1029/2006TC002046
    [Google Scholar]
  61. Figuereido, J., Hoorn, C., Van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep‐sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37(7), 619–622. https://doi.org/10.1130/G25567A.1
    [Google Scholar]
  62. Folguera, A., Naranjo, J. A., Orihashi, Y., Sumino, H., Nagao, K., Polanco, E., & Ramos, V. A. (2009). Retroarc volcanism in the northern San Rafael Block (34–35 30′S), southern Central Andes: Occurrence, age, and tectonic setting. Journal of Volcanology and Geothermal Research, 186(3–4), 169–185. https://doi.org/10.1016/j.jvolgeores.2009.06.012
    [Google Scholar]
  63. Folguera, A., & Ramos, V. A. (2011). Repeated eastward shifts of arc magmatism in the Southern Andes: A revision to the long‐term pattern of Andean uplift and magmatism. Journal of South American Earth Sciences, 32(4), 531–546. https://doi.org/10.1016/j.jsames.2011.04.003
    [Google Scholar]
  64. Folguera, A., Zárate, M., Tedesco, A., Dávila, F., & Ramos, V. A. (2015). Evolution of the Neogene Andean foreland basins of the Southern Pampas and northern Patagonia (34°–41°S), Argentina. Journal of South American Earth Sciences, 64, 452–466. https://doi.org/10.1016/j.jsames.2015.05.010
    [Google Scholar]
  65. Fosdick, J. C., Carrapa, B., & Ortíz, G. (2015). Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records. Earth and Planetary Science Letters, 432, 73–83. https://doi.org/10.1016/j.epsl.2015.09.041
    [Google Scholar]
  66. France‐Lanord, C., Spiess, V., Klaus, A., & Schwenk, T.; Expedition 354 Scientists . (2016). Expedition 354 summary. In C.France‐Lanord, T.Schwenk & A.Klaus (Eds.), Expedition 354 scientific prospectus: Bengal Fan (Vol. 354, pp. 1–35). Proceedings of the International Ocean Discovery Program. International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.354.101.2016
    [Google Scholar]
  67. Franke, D., Neben, S., Schreckenberger, B., Schulze, A., Stiller, M., & Krawczyk, C. M. (2006). Crustal structure across the Colorado Basin, offshore Argentina. Geophysical Journal International, 165(3), 850–864. https://doi.org/10.1111/j.1365‐246X.2006.02907.x
    [Google Scholar]
  68. Fuentes, F., Horton, B. K., Starck, D., & Boll, A. (2016). Structure and tectonic evolution of hybrid thick‐and thin‐skinned systems in the Malargüe fold–thrust belt, Neuquén basin, Argentina. Geological Magazine, 153(5–6), 1066–1084. https://doi.org/10.1017/S0016756816000583
    [Google Scholar]
  69. Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453–467. https://doi.org/10.1093/biomet/58.3.453
    [Google Scholar]
  70. Gallay, M., Martinez, J. M., Mora, A., Castellano, B., Yépez, S., Cochonneau, G., Alfonso, J. A., Carrera, J. M., López, J. L., & Laraque, A. (2019). Assessing Orinoco river sediment discharge trend using MODIS satellite images. Journal of South American Earth Sciences, 91, 320–331. https://doi.org/10.1016/j.jsames.2019.01.010
    [Google Scholar]
  71. Garzanti, E. (2017). The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research, 87(4), 353–365. https://doi.org/10.2110/jsr.2017.17
    [Google Scholar]
  72. Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth‐Science Reviews, 192, 545–563. https://doi.org/10.1016/j.earscirev.2018.12.014
    [Google Scholar]
  73. Garzanti, E. (2020). The Himalayan Foreland Basin from collision onset to the present: A sedimentary–petrology perspective. In P. J.Treloar & M. P.Searle (Eds.), Himalayan tectonics: A modern synthesis (Vol. 483, pp. 65–122). Geological Society of London, Special Publication.
    [Google Scholar]
  74. Garzanti, E., & Andò, S. (2007). Heavy mineral concentration in modern sands: implications for provenance interpretation. In M.Mange & D.Wright (Eds.), Heavy minerals in use (Vol. 58, pp. 517–545). Elsevier, Amsterdam, Developments in Sedimentology.
    [Google Scholar]
  75. Garzanti, E., & Andò, S. (2019). Heavy minerals for junior woodchucks. In S.Andò (Ed.), Heavy minerals: Methods & case histories (Vol. 9(3), p. 148). MDPI, Basel, Minerals. https://doi.org/10.3390/min9030148
    [Google Scholar]
  76. Garzanti, E., Doglioni, C., Vezzoli, G., & Ando, S. (2007). Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115(3), 315–334. https://doi.org/10.1086/512755
    [Google Scholar]
  77. Garzanti, E., Limonta, M., Vezzoli, G., & Sosa, N. (2021). From Patagonia to Río de la Plata: Multistep long‐distance littoral transport of Andean volcaniclastic sand along the Argentine passive margin. Sedimentology, in press. https://doi.org/10.1111/sed.12902
    [Google Scholar]
  78. Garzanti, E., & Malusà, M. G. (2008). The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth and Planetary Science Letters, 268(3–4), 487–500. https://doi.org/10.1016/j.epsl.2008.01.039
    [Google Scholar]
  79. Garzanti, E., Resentini, A., Vezzoli, G., Andò, S., Malusà, M., & Padoan, M. (2012). Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 280, 149–164. https://doi.org/10.1016/j.sedgeo.2012.03.012
    [Google Scholar]
  80. Garzanti, E., Vermeesch, P., Padoan, M., Resentini, A., Vezzoli, G., & Andò, S. (2014). Provenance of passive‐margin sand (Southern Africa). The Journal of Geology, 122(1), 17–42. https://doi.org/10.1086/674803
    [Google Scholar]
  81. Garzanti, E., & Vezzoli, G. (2003). A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73(5), 830–837. https://doi.org/10.1306/012203730830
    [Google Scholar]
  82. Garzanti, E., Vezzoli, G., & Andò, S. (2011). Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, northern Italy). Earth‐Science Reviews, 105(1–2), 25–48. https://doi.org/10.1016/j.earscirev.2010.11.004
    [Google Scholar]
  83. Garzanti, E., Vezzoli, G., Ando, S., & Castiglioni, G. (2001). Petrology of rifted‐margin sand (Red Sea and Gulf of Aden, Yemen). The Journal of Geology, 109(3), 277–297. https://doi.org/10.1086/319973
    [Google Scholar]
  84. Geological Map of South America
    Geological Map of South America . (2019). Scale: 1:5,000,000. In J.Gómez, C.Schobbenhaus & N. E.Montes (Eds.), Commission for the geological map of the world (CGMW). Colombian Geological Survey and Geological Survey of Brazil.
    [Google Scholar]
  85. Giambiagi, L., Mescua, J., Bechis, F., Tassara, A., & Hoke, G. (2012). Thrust belts of the southern Central Andes: Along‐strike variations in shortening, topography, crustal geometry, and denudation. Geological Society of America Bulletin, 124(7–8), 1339–1351. https://doi.org/10.1130/B30609.1
    [Google Scholar]
  86. Giambiagi, L. B., Mescua, J. F., Heredia, N., Farías, P., García Sansegundo, J., Fernández, C., Stier, S., Pérez, D., Bechis, F., Moreiras, S. M., & Lossada, A. C. (2014). Reactivation of Paleozoic structures during Cenozoic deformation in the Cordón del Plata and Southern Precordillera ranges (Mendoza, Argentina). Journal of Iberian Geology, 40(2), 309–320. https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45302
    [Google Scholar]
  87. Gianni, G. M., Dávila, F. M., Echaurren, A., Fennell, L., Tobal, J., Navarrete, C., Quezada, P., Folguera, A., & Giménez, M. (2018). A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America. Earth‐Science Reviews, 185, 437–462. https://doi.org/10.1016/j.earscirev.2018.06.016
    [Google Scholar]
  88. Gianni, G. M., García, H. P., Lupari, M., Pesce, A., & Folguera, A. (2017). Plume overriding triggers shallow subduction and orogeny in the southern Central Andes. Gondwana Research, 49, 387–395. https://doi.org/10.1016/j.gr.2017.06.011
    [Google Scholar]
  89. Gill, J. (1981). Orogenic andesites and plate tectonics (p. 390). Springer.
    [Google Scholar]
  90. Gonzalez, M., Clavel, F., Christiansen, R., Gianni, G. M., Klinger, F. L., Martinez, P., Butler, K., Suriano, J., Mardonez, D., & Díaz, M. (2020). The Iglesia basin in the southern Central Andes: A record of backarc extension before wedge‐top deposition in a foreland basin. Tectonophysics, 792, 228590. https://doi.org/10.1016/j.tecto.2020.228590
    [Google Scholar]
  91. Graham, S. A., Dickinson, W. R., & Ingersoll, R. V. (1975). Himalayan‐Bengal model for flysch dispersal in the Appalachian‐Ouachita system. Geological Society of America Bulletin, 86(3), 273–286.
    [Google Scholar]
  92. Haschke, M., Günther, A., Melnick, D., Echtler, H., Reutter, K. J., Scheuber, E., & Oncken, O. (2006). Central and southern Andean tectonic evolution inferred from arc magmatism. In O.Oncken (Ed.), The Andes (pp. 337–353). Springer.
    [Google Scholar]
  93. Hermanns, R. L., Fauqué, L., & Wilson, C. G. (2015). 36Cl terrestrial cosmogenic nuclide dating suggests Late Pleistocene to Early Holocene mass movements on the south face of Aconcagua mountain and in the Las Cuevas–Horcones valleys, Central Andes, Argentina. In S. A.Sepúlveda, L. B.Giambiagi, S. M.Moreiras, L.Pinto, M.Tunik, G. D.Hoke & M.Farıías (Eds.), Geodynamic processes in the Andes of Central Chile and Argentina (Vol. 399, pp. 345–368). Geological Society of London, Special Publication.
    [Google Scholar]
  94. Hervé, F., Fanning, C. M., Calderón, M., & Mpodozis, C. (2014). Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28°–31°S): SHRIMP U‐Pb zircon ages and Lu–Hf and O isotope systematics. Lithos, 184, 436–446. https://doi.org/10.1016/j.lithos.2013.10.018
    [Google Scholar]
  95. Hinderer, M. (2012). From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280, 21–59. https://doi.org/10.1016/j.sedgeo.2012.03.009
    [Google Scholar]
  96. Horton, B. K. (2018). Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37(2), 402–429. https://doi.org/10.1002/2017TC004624
    [Google Scholar]
  97. Horton, B. K., Fuentes, F., Boll, A., Starck, D., Ramirez, S. G., & Stockli, D. F. (2016). Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina. Journal of South American Earth Sciences, 71, 17–40. https://doi.org/10.1016/j.jsames.2016.06.003
    [Google Scholar]
  98. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén basin: An overview. In G. D.Veiga, L. A.Spalletti, J. A.Howell & E.Schwarz (Eds.), The Neuquén basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 1–14). Geological Society of London, Special Publication.
    [Google Scholar]
  99. Hu, X. M., Garzanti, E., Li, J., BouDagher‐Fadel, M., Coletti, G., Ma, A., Liang, W., & Xue, W. W.The “underfilled trinity” from the western Alpine foreland basin: Reality or myth?Tectonics, in review.
    [Google Scholar]
  100. Hubert, J. F. (1962). A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Petrology, 32(3), 440–450.
    [Google Scholar]
  101. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Petrology, 54(1), 103–116.
    [Google Scholar]
  102. Introcaso, A., & Ruiz, F. (2001). Geophysical indicators of Neogene strike‐slip faulting in the Desaguadero‐Bermejo tectonic lineament (northwestern Argentina). Journal of South American Earth Sciences, 14(7), 655–663. https://doi.org/10.1016/S0895‐9811(01)00057‐8
    [Google Scholar]
  103. Iriondo, M. (1994). Los climas cuaternarios de la región pampeana. Museo Provincial De Ciencias Naturales" Florentino Ameghino", 4(2), 48.
    [Google Scholar]
  104. Iriondo, M. (1999). Climatic changes in the South American plains: Records of a continent‐scale oscillation. Quaternary International, 57, 93–112. https://doi.org/10.1016/S1040‐6182(98)00053‐6
    [Google Scholar]
  105. Iriondo, M. H., & García, N. O. (1993). Climatic variations in the Argentine plains during the last 18,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 101(3–4), 209–220. https://doi.org/10.1016/0031‐0182(93)90013‐9
    [Google Scholar]
  106. Isla, F. I. (2014). Variaciones espaciales y temporales de la deriva litoral, SE de la Provincia de Buenos Aires, Argentina. Revista Geográfica Del Sur, 5(8), 24–41.
    [Google Scholar]
  107. Isla, F. I., & Cortizo, L. C. (2014). Sediment input from fluvial sources and cliff erosion to the continental shelf of Argentina. Revista De Gestão Costeira Integrada‐Journal of Integrated Coastal Zone Management, 14(4), 541–552. https://doi.org/10.5894/rgci436
    [Google Scholar]
  108. Isla, F. I., Cortizo, L., Merlotto, A., Bértola, G., Albisetti, M. P., & Finocchietti, C. (2018). Erosion in Buenos Aires province: Coastal‐management policy revisited. Ocean & Coastal Management, 156, 107–116. https://doi.org/10.1016/j.ocecoaman.2017.09.008
    [Google Scholar]
  109. Isla, F. I., Cortizo, L. C., & Orellano, H. A. T. (2001). Dinámica y evolución de las barreras medanosas, Provincia de Buenos Aires, Argentina. Revista Brasileira De Geomorfología, 2(1), 73–83.
    [Google Scholar]
  110. Johnson, N. M., Jordan, T. E., Johnsson, P. A., & Naeser, C. W. (1986). Magnetic polarity stratigraphy, age and tectonic setting of fluvial sediments in an eastern Andean foreland basin, San Juan Province, Argentina. In P. A.Allen & P.Homewood (Eds.), Foreland basins (pp. 63–75). The International Association of Sedimentologists.
    [Google Scholar]
  111. Jones, R. E., Kirstein, L. A., Kasemann, S. A., Litvak, V. D., Poma, S., Alonso, R. N., & Hinton, R. (2016). The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes. Lithos, 262, 169–191. https://doi.org/10.1016/j.lithos.2016.07.002
    [Google Scholar]
  112. Jordan, T. E. (1995). Retroarc foreland and related basins. In C. J.Busby & R. V.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 331–362). Blackwell.
    [Google Scholar]
  113. Jordan, T. E., Allmendinger, R. W., Damanti, J. F., & Drake, R. E. (1993). Chronology of motion in a complete thrust belt: The Precordillera, 30–31°S, Andes Mountains. The Journal of Geology, 101(2), 135–156. https://doi.org/10.1086/648213
    [Google Scholar]
  114. Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A., & Ando, C. J. (1983). Andean tectonics related to geometry of subducted Nazca plate. Geological Society of America Bulletin, 94(3), 341–361. https://doi.org/10.1130/0016‐7606(1983)94<341:ATRTGO>2.0.CO;2
    [Google Scholar]
  115. Jordan, T. E., Schlunegger, F., & Cardozo, N. (2001). Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. Journal of South American Earth Sciences, 14(7), 775–798. https://doi.org/10.1016/S0895‐9811(01)00072‐4
    [Google Scholar]
  116. Kay, S. M., Ardolino, A. A., Gorring, M. L., & Ramos, V. A. (2007). The Somuncurá Large Igneous Province in Patagonia: Interaction of a transient mantle thermal anomaly with a subducting slab. Journal of Petrology, 48(1), 43–77.
    [Google Scholar]
  117. Kay, S. M., Burns, W. M., Copeland, P., & Mancilla, O. (2006). Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes (Vol. 407, pp. 19–60). Geological Society of America, Special Paper.
    [Google Scholar]
  118. Kay, S. M., & Copeland, P. (2006). Early to middle Miocene backarc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America. In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat) (Vol. 407, pp. 185–213). Geological Society of America, Special Paper, https://doi.org/10.1130/2006.2407(09
    [Google Scholar]
  119. Kay, S. M., Godoy, E., & Kurtz, A. (2005). Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south‐central Andes. Geological Society of America Bulletin, 117(1–2), 67–88. https://doi.org/10.1130/B25431.1
    [Google Scholar]
  120. Kay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid‐late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In R. S.Harmon & C. W.Rapela (Eds.), Andean magmatism and its tectonic setting (Vol. 265, pp. 113–137). Geological Society of America, Special Paper.
    [Google Scholar]
  121. Kleiman, L. E., & Japas, M. S. (2009). The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics, 473(3–4), 283–299. https://doi.org/10.1016/j.tecto.2009.02.046
    [Google Scholar]
  122. Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I., & Kazmer, M. (2002). Post‐collisional sediment budget history of the Alps: Tectonic versus climatic control. International Journal of Earth Sciences, 91(5), 818–837. https://doi.org/10.1007/s00531‐002‐0266‐y
    [Google Scholar]
  123. Latrubesse, E. M., & Restrepo, J. D. (2014). Sediment yield along the Andes: Continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216, 225–233. https://doi.org/10.1016/j.geomorph.2014.04.007
    [Google Scholar]
  124. Le Pera, E., & Morrone, C. (2020). The use of mineral interfaces in sand‐sized volcanic rock fragments to infer mechanical durability. Journal of Palaeogeography, 9(21), 1–26. https://doi.org/10.1186/s42501‐020‐00068‐8
    [Google Scholar]
  125. Leanza, H. A., Hugo, C. A., & Repol, D. (2001). Hoja Geológica 3969‐I, Zapala (Vol. 275, pp. 1–128). Provincia del Neuquén. Instituto de Geología y Recursos Minerales, Boletín Servicio Geológico Minero Argentino, Buenos Aires.
    [Google Scholar]
  126. Limonta, M., Garzanti, E., Resentini, A., Andò, S., Boni, M., & Bechstädt, T. (2015). Multicyclic sediment transfer along and across convergent plate boundaries (Barbados, Lesser Antilles). Basin Research, 27(6), 696–713. https://doi.org/10.1111/bre.12095
    [Google Scholar]
  127. Litvak, V. D., Spagnuolo, M. G., Folguera, A., Poma, S., Jones, R. E., & Ramos, V. A. (2015). Late Cenozoic calc‐alkaline volcanism over the Payenia shallow subduction zone, South‐Central Andean back‐arc (34°30′–37°S), Argentina. Journal of South American Earth Sciences, 64, 365–380. https://doi.org/10.1016/j.jsames.2015.09.010
    [Google Scholar]
  128. Lossada, A. C., Giambiagi, L., Hoke, G., Mescua, J., Suriano, J., & Mazzitelli, M. (2018). Cenozoic uplift and exhumation of the frontal cordillera between 30° and 35°S and the influence of the subduction dynamics in the flat slab subduction Context, South Central Andes. In A.Folguera (Ed.), The evolution of the Chilean‐Argentinean Andes (pp. 387–409). Springer.
    [Google Scholar]
  129. Lupker, M., France‐Lanord, C., Lavé, J., Bouchez, J., Galy, V., Métivier, F., Gaillardet, J., Lartiges, B., & Mugnier, J.‐L. (2011). A Rouse‐based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research, 116, F04012. https://doi.org/10.1029/2010JF001947
    [Google Scholar]
  130. Mackaman‐Lofland, C., Horton, B. K., Fuentes, F., Constenius, K. N., & Stockli, D. F. (2019). Mesozoic to Cenozoic retroarc basin evolution during changes in tectonic regime, southern Central Andes (31–33°S): Insights from zircon U‐Pb geochronology. Journal of South American Earth Sciences, 89, 299–318. https://doi.org/10.1016/j.jsames.2018.10.004
    [Google Scholar]
  131. Markert, B., Pedrozo, F., Geller, W., Friese, K., Korhammer, S., Baffico, G., Diaz, M., & Wölfl, S. (1997). A contribution to the study of the heavy‐metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Science of the Total Environment, 206(1), 1–15. https://doi.org/10.1016/S0048‐9697(97)00218‐0
    [Google Scholar]
  132. Marsaglia, K. M., & Ingersoll, R. V. (1992). Compositional trends in arc‐related, deep‐marine sand and sandstone: A reassessment of magmatic‐arc provenance. Geological Society of America Bulletin, 104(12), 1637–1649. https://doi.org/10.1130/0016‐7606(1992)104<1637:CTIARD>2.3.CO;2
    [Google Scholar]
  133. Martin, E. L., Collins, W. J., & Spencer, C. J. (2020). Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon. Geological Society of America Bulletin, 132(1–2), 273–290. https://doi.org/10.1130/B35150.1
    [Google Scholar]
  134. Martínez, O. A., & Kutschker, A. (2011). The ‘Rodados Patagónicos’ (Patagonian shingle formation) of eastern Patagonia: Environmental conditions of gravel sedimentation. Biological Journal of the Linnean Society, 103, 336–345. https://doi.org/10.1111/j.1095‐8312.2011.01651.x
    [Google Scholar]
  135. Melo, W. D., Schillizzi, R., Perillo, G. M., & Piccolo, M. C. (2003). Influencia del área continental pampeana en la evolución morfológica del estuarío de Bahía Blanca. Latin American Journal of Sedimentology and Basin Analysis, 10(1), 39–52.
    [Google Scholar]
  136. Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean: A global synthesis (p. 384). Cambridge University Press.
    [Google Scholar]
  137. Moreiras, S. M., & Sepúlveda, S. A. (2015). Megalandslides in the Andes of central Chile and Argentina (32°–34° S) and potential hazards. In S. A.Sepúlveda, L. B.Giambiagi, S. M.Moreiras, L.Pinto, M.Tunik, G. D.Hoke & M.Farías (Eds.), Geodynamic processes in the Andes of Central Chile and Argentina (Vol. 399, pp. 329–344). Geological Society of London, Special Publication.
    [Google Scholar]
  138. Moreiras, S. M., Sepúlveda, S. A., Correas‐González, M., Lauro, C., Vergara, I., Jeanneret, P., Junquera‐Torrado, S., Cuevas, J. G., Maldonado, A., Antinao, J. L., & Lara, M. (2021). Debris flows occurrence in the semiarid central Andes under climate change scenario. Geosciences, 11(2), 43, 1–25. https://doi.org/10.3390/geosciences11020043
    [Google Scholar]
  139. Moreno, J. A., Dahlquist, J. A., Cámera, M. M. M., Alasino, P. H., Larrovere, M. A., Basei, M. A., Galindo, C., Zandomeni, P. S., & Rocher, S. (2020). Geochronology and geochemistry of the Tabaquito batholith (Frontal Cordillera, Argentina): Geodynamic implications and temporal correlations in the SW Gondwana margin. Journal of the Geological Society of London, 177(3), 455–474.
    [Google Scholar]
  140. Mpodozis, C., & Kay, S. M. (1992). Late Paleozoic to Triassic evolution of the Gondwana margin: Evidence from Chilean Frontal Cordilleran batholiths (28°S to 31°S). Geological Society of America Bulletin, 104(8), 999–1014. https://doi.org/10.1130/0016‐7606(1992)104<0999:LPTTEO>2.3.CO;2
    [Google Scholar]
  141. Mpodozis, C., & Ramos, V. (1989). The Andes of Chile and Argentina. In G. E.Ericksen, M. T.Cañas Pinochet & J. A.Reinemund (Eds.), Geology of the Andes and its relation to hydrocarbon and mineral resources (Vol. 11, Ch. 5, pp. 59–90). Circum‐Pacific Council for Energy and Mineral Resources, Houston, Texas, Earth Science Series.
    [Google Scholar]
  142. Naylor, M., & Sinclair, H. D. (2008). Pro‐vs. retro‐foreland basins. Basin Research, 20(3), 285–303. https://doi.org/10.1111/j.1365‐2117.2008.00366.x
    [Google Scholar]
  143. Nelson, D. A., & Cottle, J. M. (2019). Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere, 11(3), 386–398. https://doi.org/10.1130/L1015.1
    [Google Scholar]
  144. Nivière, B., Messager, G., Carretier, S., & Lacan, P. (2013). Geomorphic expression of the southern Central Andes forebulge (37°S, Argentina). Terra Nova, 25(5), 361–367. https://doi.org/10.1111/ter.12044
    [Google Scholar]
  145. Ori, G. G., & Friend, P. F. (1984). Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12(8), 475–478. https://doi.org/10.1130/0091‐7613(1984)12<475:SBFACP>2.0.CO;2
    [Google Scholar]
  146. Pankhurst, R. J., & Rapela, C. R. (1995). Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters, 134(1–2), 23–36. https://doi.org/10.1016/0012‐821X(95)00103‐J
    [Google Scholar]
  147. Pankhurst, R. J., Weaver, S. D., Hervé, F., & Larrondo, P. (1999). Mesozoic‐Cenozoic evolution of the North Patagonian batholith in Aysen, southern Chile. Journal of the Geological Society of London, 156(4), 673–694. https://doi.org/10.1144/gsjgs.156.4.0673
    [Google Scholar]
  148. Parada, M. A., Nyström, J. O., & Levi, B. (1999). Multiple sources for the Coastal Batholith of central Chile (31–34°S): Geochemical and Sr–Nd isotopic evidence and tectonic implications. Lithos, 46(3), 505–521. https://doi.org/10.1016/S0024‐4937(98)00080‐2
    [Google Scholar]
  149. Parada, M. A., Rivano, S., Sepúlveda, P., Hervé, M., Hervé, F., Puig, A., Munizaga, F., Brook, M., Pankhurst, R., & Snelling, N. (1988). Mesozoic and Cenozoic plutonic development in the Andes of central Chile (30°30′–32°30′S). Journal of South American Earth Sciences, 1(3), 249–260. https://doi.org/10.1016/0895‐9811(88)90003‐X
    [Google Scholar]
  150. Perillo, G. M. E., Piccolo, M. C., Parodi, E., & Freije, R. H. (2001). The Bahía Blanca Estuary, Argentina. In U.Seeliger & B.Kjerfve (Eds.), Coastal marine ecosystems of Latin America (pp. 205–217). Springer.
    [Google Scholar]
  151. Piccolo, M. C., & Perillo, G. M. E. (1999). The Argentina estuaries: A review. In G. M. E.Perillo (Ed.), Estuaries of South America (pp. 101–132). Springer.
    [Google Scholar]
  152. Pinto, L., Alarcón, P., Morton, A., & Naipauer, M. (2018). Geochemistry of heavy minerals and U‐Pb detrital zircon geochronology in the Manantiales Basin: Implications for Frontal Cordillera uplift and foreland basin connectivity in the Andes of central Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 492, 104–125. https://doi.org/10.1016/j.palaeo.2017.12.017
    [Google Scholar]
  153. Ponce, J. F., Rabassa, J., Coronato, A., & Borromei, A. M. (2011). Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biological Journal of the Linnean Society, 103(2), 363–379. https://doi.org/10.1111/j.1095‐8312.2011.01653.x
    [Google Scholar]
  154. Porras, H., Pinto, L., Tunik, M., Giambiagi, L., & Deckart, K. (2016). Provenance of the Miocene Alto Tunuyán Basin (33 40′S, Argentina) and its implications for the evolution of the Andean Range: Insights from petrography and U‐Pb LA–ICPMS zircon ages. Tectonophysics, 690, 298–317. https://doi.org/10.1016/j.tecto.2016.09.034
    [Google Scholar]
  155. Potter, P. E. (1978). Significance and origin of big rivers. The Journal of Geology, 86(1), 13–33. https://doi.org/10.1086/649653
    [Google Scholar]
  156. Potter, P. E. (1984). South American modern beach sand and plate tectonics. Nature, 311(5987), 645–648.
    [Google Scholar]
  157. Potter, P. E. (1994). Modern sands of South America: Composition, provenance and global significance. Geologische Rundschau, 83(1), 212–232. https://doi.org/10.1007/BF00211904
    [Google Scholar]
  158. Potter, P. E. (1997). The Mesozoic and Cenozoic paleodrainage of South America: A natural history. Journal of South American Earth Sciences, 10(5–6), 331–344. https://doi.org/10.1016/S0895‐9811(97)00031‐X
    [Google Scholar]
  159. Ramos, M. E., Folguera, A., Fennell, L., Giménez, M., Litvak, V. D., Dzierma, Y., & Ramos, V. A. (2014). Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40°S). Journal of South American Earth Sciences, 51, 59–75. https://doi.org/10.1016/j.jsames.2013.12.010
    [Google Scholar]
  160. Ramos, V. A. (1988). The tectonics of the Central Andes; 30° to 33°S latitude. In S. P.Clark, B. C.Burchfiel & J.Suppe (Eds.), Processes in continental lithospheric deformation (Vol. 218, pp. 31–54). Geological Society of America, Special Paper.
    [Google Scholar]
  161. Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In S. M.Kay, V. A.Ramos & W. R.Dickinson (Eds.), Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision (Vol. 204, pp. 31–65). Geological Society of America Memoir. https://doi.org/10.1130/2009.1204(02
    [Google Scholar]
  162. Ramos, V. A., Cristallini, E. O., & Pérez, D. J. (2002). The Pampean flat‐slab of the Central Andes. Journal of South American Earth Sciences, 15(1), 59–78.
    [Google Scholar]
  163. Ramos, V. A., & de Brodtkorb, M. K. (1990). The barite and celestite metallotects of the Neuquén retroarc basin, Central Argentina. In G. C.Amstutz, M.Cardozo, E.Cedillo, L.Fontboté & J.Frutos (Eds.), Stratabound ore deposits in the Andes (Vol. 47, pp. 599–613), Springer.
    [Google Scholar]
  164. Ramos, V. A., & Folguera, A. (2005). Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In G. D.Veiga, L. A.Spalletti, J. A.Howell & E.Schwarz (Eds.), The Neuquén basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 15–35). Geological Society of London, Special Publication.
    [Google Scholar]
  165. Ramos, V. A., & Folguera, A. (2009). Andean flat‐slab subduction through time. In J. B.Murphy, J. D.Keppie & A. J.Hynes (Eds.), Ancient orogens and modern analogues (Vol. 327, pp. 31–54). Geological Society of London, Special Publication.
    [Google Scholar]
  166. Ramos, V. A., & Folguera, A. (2011). Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting. Journal of Volcanology and Geothermal Research, 201(1–4), 53–64. https://doi.org/10.1016/j.jvolgeores.2010.09.008
    [Google Scholar]
  167. Ramos, V. A., Jordan, T. E., Allmendinger, R. W., Kay, S. M., Cortés, J. M., & Palma, M. A. (1984). Chilenia: Un terreno alóctono en la evolución paleozoica de los Andes Centrales. In Congreso Geológico Argentino (Vol. 9, Actas II, pp. 84–106).
    [Google Scholar]
  168. Ramos, V. A., Jordan, T. E., Allmendinger, R. W., Mpodozis, C., Kay, S. M., Cortés, J. M., & Palma, M. (1986). Paleozoic terranes of the central Argentine‐Chilean Andes. Tectonics, 5(6), 855–880.
    [Google Scholar]
  169. Ramos, V. A., & Kay, S. M. (2006). Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39°S latitude). In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S latitude) (Vol. 407, pp. 1–17). Geological Society of America, Special Paper. https://doi.org/10.1130/2006.2407(01
    [Google Scholar]
  170. Ramos, V. A., Zapata, T., Cristallini, E., & Introcaso, A. (2004). The Andean thrust system—Latitudinal variations in structural styles and orogenic shortening. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon system (Vol. 82, pp. 30–50). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  171. Ranero, C. R., von Huene, R., Weinrebe, W., & Reichert, C. (2006). Tectonic processes along the Chile convergent margin. In O.Oncken (Ed.), The Andes (pp. 91–121). Springer.
    [Google Scholar]
  172. Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Galindo, C., Fanning, C. M., & Dahlquist, J. M. (2010). The Western Sierras Pampeanas: Protracted Grenville‐age history (1330–1030 Ma) of intra‐oceanic arcs, subduction–accretion at continental‐edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 29(1), 105–127.
    [Google Scholar]
  173. Rapela, C. W., Pankhurst, R. J., Fanning, C. M., & Herve, F. (2005). Pacific subduction coeval with the Karoo mantle plume: The Early Jurasssic Subcordilleran belt of northwestern Patagonia. Geological Society of London, Special Publications, 246(1), 217–239.
    [Google Scholar]
  174. Rapela, C. W., Verdecchia, S. O., Casquet, C., Pankhurst, R. J., Baldo, E. G., Galindo, C., Murra, J. A., Dahlquist, J. A., & Fanning, C. M. (2016). Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 32, 193–212.
    [Google Scholar]
  175. Resentini, A., Goren, L., Castelltort, S., & Garzanti, E. (2017). Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7), 1430–1454.
    [Google Scholar]
  176. Reynolds, J. H., Jordan, T. E., Johnson, N. M., Damanti, J. F., & Tabbutt, K. D. (1990). Neogene deformation of the flat‐subduction segment of the Argentine‐Chilean Andes: Magnetostratigraphic constraints from Las Juntas, La Rioja province, Argentina. Geological Society of America Bulletin, 102(12), 1607–1622. https://doi.org/10.1130/0016‐7606(1990)102<1607:NDOTFS>2.3.CO;2
    [Google Scholar]
  177. Ricci Lucchi, F. (1986). The Oligocene to Recent foreland basins of the northern Apennines. In P. A.Allen & P.Homewood (Eds.), Foreland basins (Vol. 8, pp. 105–139). Blackwell, Oxford, International Association of Sedimentologists, Special Pubblication.
    [Google Scholar]
  178. Richetti, P. C., Schmitt, R. S., & Reeves, C. (2018). Dividing the South American continent to fit a Gondwana reconstruction: A model based on continental geology. Tectonophysics, 747, 79–98. https://doi.org/10.1016/j.tecto.2018.09.011
    [Google Scholar]
  179. Sato, A. M., Llambías, E. J., Basei, M. A., & Castro, C. E. (2015). Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. Journal of South American Earth Sciences, 63, 48–69. https://doi.org/10.1016/j.jsames.2015.07.005
    [Google Scholar]
  180. Schenk, C. J., Viger, R. J., & Anderson, C. P. (1999). South America Geologic Map (geo6ag). Maps showing geology, oil and gas fields, and geological provinces of South America region (No. 97‐470‐D). U.S. Geological Survey, Central Energy Resources Team.
    [Google Scholar]
  181. Siame, L. L., Bellier, O., Sébrier, M., & Araujo, M. (2005). Deformation partitioning in flat subduction setting: Case of the Andean foreland of western Argentina (28°S–33°S). Tectonics, 24(5), TC5003. https://doi.org/10.1029/2005TC001787
    [Google Scholar]
  182. Sinclair, H. D. (1997). Tectonostratigraphic model for underfilled peripheral foreland basins: An Alpine perspective. Geological Society of America Bulletin, 109(3), 324–346.
    [Google Scholar]
  183. Sinclair, H. D., & Naylor, M. (2011). Foreland basin subsidence driven by topographic growth versus plate subduction. Geological Society of America Bulletin, 124(3–4), 368–379.
    [Google Scholar]
  184. Sinha, R., & Friend, P. F. (1994). River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41(4), 825–845. https://doi.org/10.1111/j.1365‐3091.1994.tb01426.x
    [Google Scholar]
  185. Søager, N., Holm, P. M., & Llambías, E. J. (2013). Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chemical Geology, 349, 36–53. https://doi.org/10.1016/j.chemgeo.2013.04.007
    [Google Scholar]
  186. Spalletti, L. A., & Isla, F. I. (2003). Características y evolución del delta del Río Colorado (“Colú‐Leuvú”), provincia de Buenos Aires, República Argentina. Latin American Journal of Sedimentology and Basin Analysis, 10(1), 23–37.
    [Google Scholar]
  187. Stern, C. R. (2004). Active Andean volcanism: Its geologic and tectonic setting. Revista Geológica De Chile, 31(2), 161–206.
    [Google Scholar]
  188. Stern, C. R. (2020). The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research, 88, 220–249.
    [Google Scholar]
  189. Teruggi, M., Chaar, E., Remiro, J., & Limousin, T. (1959). Las arenas de la costa de la provincia de Buenos Aires entre Cabo San Antonio y Bahía Blanca (Vol. 12, pp. 1–77). Provincia de Buenos Aires, Ministerio de Obras Publicas, Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas, La Plata.
    [Google Scholar]
  190. Teruggi, M. E., Etchichury, M., & Remiro, J. (1964). Las arenas de la costa de la provincia de Buenos Aires entre Bahía Blanca y Río Negro (Serie II, Vol. 81, pp. 1–38). Provincia de Buenos Aires, Ministerio de Obras Publicas, Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas, La Plata.
    [Google Scholar]
  191. Thomas, W. A., Astini, R. A., Mueller, P. A., & McClelland, W. C. (2015). Detrital‐zircon geochronology and provenance of the Ocloyic synorogenic clastic wedge, and Ordovician accretion of the Argentine Precordillera terrane. Geosphere, 11(6), 1749–1769. https://doi.org/10.1130/GES01212.1
    [Google Scholar]
  192. Tripaldi, A., Ciccioli, P. L., Alonso, M. S., & Forman, S. L. (2010). Petrography and geochemistry of late Quaternary dune fields of western Argentina: Provenance of aeolian materials in southern South America. Aeolian Research, 2(1), 33–48. https://doi.org/10.1016/j.aeolia.2010.01.001
    [Google Scholar]
  193. Tripaldi, A., & Forman, S. L. (2007). Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(2), 300–320. https://doi.org/10.1016/j.palaeo.2007.04.007
    [Google Scholar]
  194. Tripaldi, A., & Forman, S. L. (2016). Eolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina. Quaternary Science Reviews, 139, 77–93.
    [Google Scholar]
  195. Val, P., Venerdini, A. L., Ouimet, W., Alvarado, P., & Hoke, G. D. (2018). Tectonic control of erosion in the southern Central Andes. Earth and Planetary Science Letters, 482, 160–170. https://doi.org/10.1016/j.epsl.2017.11.004
    [Google Scholar]
  196. Valcarce, G. Z., Zapata, T., del Pino, D., & Ansa, A. (2006). Structural evolution and magmatic characteristics of the Agrio fold‐and‐thrust belt. In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat) (Vol. 407, pp. 125–146). Geological Society of America, Special Paper.
    [Google Scholar]
  197. Vauchel, P., Santini, W., Guyot, J. L., Moquet, J. S., Martinez, J. M., Espinoza, J. C., Baby, P., Fuertes, O., Noriega, L., Puita, O., Sondag, F., Fraizy, P., Armijos, E., Cochonneau, G., Timouk, F., de Oliveira, E., Filizola, N., Molina, J., & Ronchail, J. (2017). A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme. Journal of Hydrology, 553, 35–48.
    [Google Scholar]
  198. Vergara Dal Pont, I. P., Caselli, A. T., Moreiras, S. M., & Lauro, C. (2017). Recent coastal geomorphological evolution in the Negro River’s mouth (41°S), Argentinean Patagonia. Journal of Coastal Research, 33(6), 1367–1375.
    [Google Scholar]
  199. Vergara, I., Moreiras, S. M., Araneo, D., & Garreaud, R. (2020). Geo‐climatic hazards in the eastern subtropical Andes: Distribution, climate drivers and trends. Natural Hazards and Earth System Sciences, 20, 1353–1367.
    [Google Scholar]
  200. Vezzoli, G., Garzanti, E., Limonta, M., Andó, S., & Yang, S. (2016). Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk‐sample versus single‐mineral provenance budgets. Geomorphology, 261, 177–192.
    [Google Scholar]
  201. Violante, R. A., & Parker, G. (2004). The post‐last glacial maximum transgression in the de la Plata River and adjacent inner continental shelf. Argentina. Quaternary International, 114(1), 167–181. https://doi.org/10.1016/S1040‐6182(03)00036‐3
    [Google Scholar]
  202. Vogt, H., Vogt, T., & Calmels, A. P. (2010). Influence of the post‐Miocene tectonic activity on the geomorphology between Andes and Pampa Deprimida in the area of Provincia de La Pampa, Argentina. Geomorphology, 121, 152–166. https://doi.org/10.1016/j.geomorph.2010.03.011
    [Google Scholar]
  203. von Gosen, W. (1992). Structural evolution of the argentine precordillera: The Río San Juan section. Journal of Structural Geology, 14(6), 643–667.
    [Google Scholar]
  204. von Huene, R., Corvalán, J., Flueh, E. R., Hinz, K., Korstgard, J., Ranero, C. R., & Weinrebe, W. (1997). Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics, 16(3), 474–488. https://doi.org/10.1029/96TC03703
    [Google Scholar]
  205. Yáñez, G. A., Ranero, C. R., von Huene, R., & Díaz, J. (2001). Magnetic anomaly interpretation across the southern central Andes (32–34°S): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. Journal of Geophysical Research: Solid Earth, 106(B4), 6325–6345.
    [Google Scholar]
  206. Zapata, T., & Folguera, A. (2005). Tectonic evolution of the Andean fold and thrust belt of the southern Neuquén Basin, Argentina. Geological Society of London, Special Publications, 252(1), 37–56. https://doi.org/10.1144/GSL.SP.2005.252.01.03
    [Google Scholar]
  207. Zárate, M., & Blasi, A. (1993). Late Pleistocene‐Holocene eolian deposits of the southern Buenos Aires Province, Argentina: A preliminary model. Quaternary International, 17, 15–20. https://doi.org/10.1016/1040‐6182(93)90075‐Q
    [Google Scholar]
  208. Zárate, M. A., & Tripaldi, A. (2012). The aeolian system of central Argentina. Aeolian Research, 3(4), 401–417. https://doi.org/10.1016/j.aeolia.2011.08.002
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12607
Loading
/content/journals/10.1111/bre.12607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error