1887
Volume 34, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The three stages of fault network evolution are (A) Initiation, (B) Interaction, and (C) Through‐going zones. We expand on this model by presenting a schematic evolution (1–5) that aims to honour kinematic and geometric constraints imposed by observations, and the recognition of stress feedback between fault arrays.

, Abstract

Continental rifting is accommodated by the development of normal fault networks. Fault growth patterns control their related seismic hazards, and the tectonostratigraphic evolution and resource and CO storage potential of rifts. Our understanding of fault evolution is largely derived by observing the final geometry and displacement ()‐length () characteristics of active and inactive fault arrays, and by subsequently inferring their kinematics. We can rarely determine how these geometric properties change through time, and how the growth of individual fault relate to the temporal evolution of their host . Here we use 3D seismic reflection and borehole data from the Exmouth Plateau, NW Shelf, Australia to determine the growth of rift‐related, crustal‐scale fault arrays and networks over geological timescales (>106 Ma). The excellent‐quality seismic data allows us to reconstruct the entire Jurassic‐to‐Early Cretaceous fault network over a relatively large area (ca. 1,200 km2). We find that fault trace lengths were established early, within the first ca. 7.2 Myr of rifting, and that along‐strike migration of throw maxima towards the centre of individual fault arrays occurred after ca. 28.5 Myr of rifting. Faults located in stress shadows become inactive and appear under‐displaced relative to adjacent larger faults, onto which strain localises as rifting proceeds. This implies that the scatter frequently observed in plots can simply reflect fault growth and network maturity. We show that by studying complete rift‐related normal networks, rather than just individual fault arrays, we can better understand how faults grow and more generally how continental lithosphere deforms as it stretches.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12613
2022-01-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/1/bre12613.html?itemId=/content/journals/10.1111/bre.12613&mimeType=html&fmt=ahah

References

  1. Ackermann, R. V., Schlische, R. W., & Withjack, M. O. (2001). The geometric and statistical evolution of normal fault systems: An experimental study of the effects of mechanical layer thickness on scaling laws. Journal of Structural Geology, 23(11), 1803–1819. https://doi.org/10.1016/S0191‐8141(01)00028‐1
    [Google Scholar]
  2. Allmendinger, R. W., & Shaw, J. H. (2000). Estimation of fault propagation distance from fold shape: Implications for earthquake hazard assessment. Geology, 28(12), 1099–1102.
    [Google Scholar]
  3. Anders, M. H., & Schlische, R. W. (1994). Overlapping faults, intrabasin highs, and the growth of normal faults. The Journal of Geology, 102(2), 165–179. https://doi.org/10.1086/629661
    [Google Scholar]
  4. Baker, B. H., Mohr, P. A., & Williams, L. A. J. (1972). Geology of the eastern rift system of Africa (Vol. 136). Geological Society of America.
    [Google Scholar]
  5. Barber, P. M. (1988). The Exmouth Plateau deep water frontier: A case history (pp. 173–187). The North West Shelf, Australia. Symposium.
    [Google Scholar]
  6. Bell, R. E., Jackson, C. A. L., Whipp, P. S., & Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33(10), 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  7. Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. L., & Leeder, M. R. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research, 21(6), 824–855. https://doi.org/10.1111/j.1365‐2117.2009.00401.x
    [Google Scholar]
  8. Bilal, A., McClay, K., & Scarselli, N. (2020). Fault‐scarp degradation in the central Exmouth Plateau, North West Shelf, Australia. Geological Society, London, Special Publications, 476(1), 231–257.
    [Google Scholar]
  9. Black, M., McCormack, K. D., Elders, C., & Robertson, D. (2017). Extensional fault evolution within the Exmouth Sub‐basin, North West Shelf, Australia. Marine and Petroleum Geology, 85, 301–315. https://doi.org/10.1016/j.marpetgeo.2017.05.022
    [Google Scholar]
  10. Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9), 1319–1326. https://doi.org/10.1016/0191‐8141(95)00033‐A
    [Google Scholar]
  11. Chapman, T. J., & Meneilly, A. W. (1991). The displacement patterns associated with a reverse‐reactivated, normal growth fault. Geological Society, London, Special Publications, 56(1), 183–191. https://doi.org/10.1144/GSL.SP.1991.056.01.12
    [Google Scholar]
  12. Childs, C., Easton, S. J., Vendeville, B. C., Jackson, M. P. A., Lin, S. T., Walsh, J. J., & Watterson, J. (1993). Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue. Tectonophysics, 228(3–4), 313–329.
    [Google Scholar]
  13. Childs, C., Manzocchi, T., Nicol, A., Walsh, J. J., Soden, A. M., Conneally, J. C., & Delogkos, E. (2017). The relationship between normal drag, relay ramp aspect ratio and fault zone structure. Geological Society, London, Special Publications, 439(1), 355–372. https://doi.org/10.1144/SP439.16
    [Google Scholar]
  14. Cladouhos, T. T., & Marrett, R. (1996). Are fault growth and linkage models consistent with power‐law distributions of fault lengths?Journal of Structural Geology, 18(2–3), 281–293. https://doi.org/10.1016/S0191‐8141(96)80050‐2
    [Google Scholar]
  15. Collettini, C., & Barchi, M. R. (2002). A low‐angle normal fault in the Umbria region (Central Italy): A mechanical model for the related microseismicity. Tectonophysics, 359(1–2), 97–115. https://doi.org/10.1016/S0040‐1951(02)00441‐9
    [Google Scholar]
  16. Colwell, J. B., & Stagg, H. M. J. (1994). Structure of the offshore Canning basin: First impressions from a new regional deep‐seismic data set. Petroleum Exploration Society of Australia (PESA). 757. https://archives.datapages.com/data/petroleum‐exploration‐society‐of‐australia/conferences/012/012001/pdfs/349.html
    [Google Scholar]
  17. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model. Basin Research, 12(3–4), 241–261. https://doi.org/10.1046/j.1365‐2117.2000.00126.x
    [Google Scholar]
  18. Cowie, P. A., Malinverno, A., Ryan, W. B., & Edwards, M. H. (1994). Quantitative fault studies on the East Pacific Rise: A comparison of sonar imaging techniques. Journal of Geophysical Research: Solid Earth, 99(B8), 15205–15218. https://doi.org/10.1029/94JB00041
    [Google Scholar]
  19. Cowie, P. A., & Scholz, C. H. (1992). Physical explanation for the displacement‐length relationship of faults using a post‐yield fracture mechanics model. Journal of Structural Geology, 14(10), 1133–1148. https://doi.org/10.1016/0191‐8141(92)90065‐5
    [Google Scholar]
  20. Dawers, N. H., & Underhill, J. R. (2000). The role of fault interaction and linkage in controlling synrift stratigraphic sequences: Late Jurassic, Statfjord East area, northern North Sea. AAPG Bulletin, 84(1), 45–64.
    [Google Scholar]
  21. Driscoll, N. W., & Karner, G. D. (1998). Lower crustal extension across the Northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment. Journal of Geophysical Research: Solid Earth, 103(B3), 4975–4991. https://doi.org/10.1029/97JB03295
    [Google Scholar]
  22. Dutton, D. M., & Trudgill, B. D. (2009). Four‐dimensional analysis of the Sembo relay system, offshore Angola: Implications for fault growth in salt‐detached settings. AAPG Bulletin, 93(6), 763–794. https://doi.org/10.1306/02230908094
    [Google Scholar]
  23. Gartrell, A. P. (2000). Rheological controls on extensional styles and the structural evolution of the Northern Carnarvon Basin, North West Shelf, Australia. Australian Journal of Earth Sciences, 47(2), 231–244. https://doi.org/10.1046/j.1440‐0952.2000.00776.x
    [Google Scholar]
  24. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1046/j.1365‐2117.2000.00121.x
    [Google Scholar]
  25. Gibbons, A. D., Barckhausen, U., Van Den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J. M., & Müller, R. D. (2012). Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13(5). https://doi.org/10.1029/2011GC003919
    [Google Scholar]
  26. Gillespie, P. A., Howard, C. B., Walsh, J. J., & Watterson, J. (1993). Measurement and characterisation of spatial distributions of fractures. Tectonophysics, 226(1–4), 113–141. https://doi.org/10.1016/0040‐1951(93)90114‐Y
    [Google Scholar]
  27. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26(7), 595–598. https://doi.org/10.1130/0091‐7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  28. Hamilton, W. (1987). Crustal extension in the Basin and Range province, southwestern United States. Geological Society, London, Special Publications, 28(1), 155–176.
    [Google Scholar]
  29. Heine, C., & Müller, R. D. (2005). Late Jurassic rifting along the Australian North West Shelf: Margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1), 27–39. https://doi.org/10.1080/08120090500100077
    [Google Scholar]
  30. Jackson, C. A. L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geological Society, London, Special Publications, 439(1), 187–217. https://doi.org/10.1144/SP439.22
    [Google Scholar]
  31. Jackson, C. A. L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234. https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  32. Logatchev, N. A., & Zorin, Y. A. (1992). Baikal rift zone: Structure and geodynamics. Tectonophysics, 208(1–3), 273–286. https://doi.org/10.1016/0040‐1951(92)90349‐B
    [Google Scholar]
  33. Long, J. J., & Imber, J. (2010). Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault‐array. Journal of Structural Geology, 32(2), 222–234. https://doi.org/10.1016/j.jsg.2009.11.009
    [Google Scholar]
  34. Longley, I. M., Buessenschuett, C., Clydsdale, L., Cubitt, C. J., Davis, R. C., Johnson, M. K., Marshall, N. M., Murray, A. P., Somerville, R., Spry, T. B., & Thompson, N. B. (2002). The north west shelf of Australia—A woodside perspective. In The sedimentary basins of Western Australia 3: Proceedings of the Petroleum Exploration Society of Australia Symposium Perth (pp. 27–88). Petroleum Exploration Society of Australia.
    [Google Scholar]
  35. Marrett, R., & Allmendinger, R. W. (1991). Estimates of strain due to brittle faulting: sampling of fault populations. Journal of Structural Geology, 13(6), 735–738. https://doi.org/10.1016/0191‐8141(91)90034‐G
    [Google Scholar]
  36. McCormack, K., & McClay, K. (2013). Structural architecture of the Gorgon Platform, North West Shelf, Australia. In M.Keep, & S. J.Moss (Eds.), The Sedimentary Basins of Western Australia 4: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, Australia (pp. 1–24). Petroleum Exploration Society of Australia.
    [Google Scholar]
  37. McLeod, A. E., Dawers, N. H., & Underhill, J. R. (2000). The propagation and linkage of normal faults: Insights from the Strathspey–Brent–Statfjord fault array, northern North Sea. Basin Research, 12(3–4), 263–284. https://doi.org/10.1111/j.1365‐2117.2000.00124.x
    [Google Scholar]
  38. Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
    [Google Scholar]
  39. Meyer, V., Nicol, A., Childs, C., Walsh, J. J., & Watterson, J. (2002). Progressive localisation of strain during the evolution of a normal fault population. Journal of Structural Geology, 24(8), 1215–1231. https://doi.org/10.1016/S0191‐8141(01)00104‐3
    [Google Scholar]
  40. Morley, C. K. (1999). Patterns of displacement along large normal faults: Implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bulletin, 83(4), 613–634.
    [Google Scholar]
  41. Morley, C. K. (2002). A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia. Tectonophysics, 347(4), 189–215. https://doi.org/10.1016/S0040‐1951(02)00061‐6
    [Google Scholar]
  42. Nicol, A., Walsh, J., Berryman, K., & Nodder, S. (2005). Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27(2), 327–342. https://doi.org/10.1016/j.jsg.2004.09.002
    [Google Scholar]
  43. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733. https://doi.org/10.1016/0191‐8141(91)90033‐F
    [Google Scholar]
  44. Petersen, K., Clausen, O. R., & Korstgård, J. A. (1992). Evolution of a salt‐related listric growth fault near the D‐1 well, block 5605, Danish North Sea: Displacement history and salt kinematics. Journal of Structural Geology, 14(5), 565–577. https://doi.org/10.1016/0191‐8141(92)90157‐R
    [Google Scholar]
  45. Pryer, L. L., Romine, K. K., Loutit, T. S., & Barnes, R. G. (2002). Carnarvon basin architecture and structure defined by the integration of mineral and petroleum exploration tools and techniques. The APPEA Journal, 42(1), 287–309. https://doi.org/10.1071/AJ01016
    [Google Scholar]
  46. Rotevatn, A., Jackson, C. A. L., Tvedt, A. B., Bell, R. E., & Blækkan, I. (2019). How do normal faults grow?Journal of Structural Geology, 125, 174–184. https://doi.org/10.1016/j.jsg.2018.08.005
    [Google Scholar]
  47. Rowan, M. G., Hart, B. S., Nelson, S., Flemings, P. B., & Trudgill, B. D. (1998). Three‐dimensional geometry and evolution of a salt‐related growth‐fault array: Eugene Island 330 field, offshore Louisiana, Gulf of Mexico. Marine and Petroleum Geology, 15(4), 309–328. https://doi.org/10.1016/S0264‐8172(98)00021‐X
    [Google Scholar]
  48. Schlische, R. W., Young, S. S., Ackermann, R. V., & Gupta, A. (1996). Geometry and scaling relations of a population of very small rift‐related normal faults. Geology, 24(8), 683–686. https://doi.org/10.1130/0091‐7613(1996)024<0683:GASROA>2.3.CO;2
    [Google Scholar]
  49. Scholz, C. H., Dawers, N. H., Yu, J. Z., Anders, M. H., & Cowie, P. A. (1993). Fault growth and fault scaling laws: Preliminary results. Journal of Geophysical Research: Solid Earth, 98(B12), 21951–21961. https://doi.org/10.1029/93JB01008
    [Google Scholar]
  50. Thorsen, C. E. (1963). Age of growth faulting in the southeast Louisiana. Transactions Gulf Coast Association of Geological Societies, 13, 103–110.
    [Google Scholar]
  51. Walsh, J. J., Childs, C., Imber, J., Manzocchi, T., Watterson, J., & Nell, P. A. R. (2003). Strain localisation and population changes during fault system growth within the Inner Moray Firth, Northern North Sea. Journal of Structural Geology, 25(2), 307–315. https://doi.org/10.1016/S0191‐8141(02)00028‐7
    [Google Scholar]
  52. Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24(11), 1669–1675. https://doi.org/10.1016/S0191‐8141(01)00165‐1
    [Google Scholar]
  53. Walsh, J. J., & Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10(3), 239–247. https://doi.org/10.1016/0191‐8141(88)90057‐0
    [Google Scholar]
  54. Watterson, J. (1986). Fault dimensions, displacements and growth. Pure and Applied Geophysics, 124(1–2), 365–373. https://doi.org/10.1007/BF00875732
    [Google Scholar]
  55. Whipp, P. S., Jackson, C. A. L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523–549. https://doi.org/10.1111/bre.12050
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12613
Loading
/content/journals/10.1111/bre.12613
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): displacement; extension; fault growth; networks; rifting; seismic; strain; structural

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error